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Increasing incidence of skin cancer combined with a shortage of dermatopathologists
has increased the workload of pathology departments worldwide. In addition, the
high intraobserver and interobserver variability in the assessment of melanocytic skin
lesions can result in underestimated or overestimated diagnosis of melanoma. Thus,
the development of new techniques for skin tumor diagnosis is essential to assist
pathologists to standardize diagnoses and plan accurate patient treatment. Here,
we describe the development of an artificial intelligence (AI) system that recognizes
cutaneous melanoma from histopathological digitalized slides with clinically acceptable
accuracy. Whole-slide digital images from 100 formalin-fixed paraffin-embedded primary
cutaneous melanoma were used to train a convolutional neural network (CNN) based on
a pretrained Inception-ResNet-v2 to accurately and automatically differentiate tumoral
areas from healthy tissue. The CNN was trained by using 60 digital slides in which
regions of interest (ROIs) of tumoral and healthy tissue were extracted by experienced
dermatopathologists, while the other 40 slides were used as test datasets. A total of
1377 patches of healthy tissue and 2141 patches of melanoma were assessed in
the training/validation set, while 791 patches of healthy tissue and 1122 patches of
pathological tissue were evaluated in the test dataset. Considering the classification
by expert dermatopathologists as reference, the trained deep net showed high
accuracy (96.5%), sensitivity (95.7%), specificity (97.7%), F1 score (96.5%), and a
Cohen’s kappa of 0.929. Our data show that a deep learning system can be trained
to recognize melanoma samples, achieving accuracies comparable to experienced
dermatopathologists. Such an approach can offer a valuable aid in improving diagnostic
efficiency when expert consultation is not available, as well as reducing interobserver
variability. Further studies in larger data sets are necessary to verify whether the deep
learning algorithm allows subclassification of different melanoma subtypes.

Keywords: cutaneous melanoma, artificial intelligence, convolutional neural network, image analysis, diagnosis

Abbreviations: AI, artificial intelligence; CNNs, convolutional neural networks; FFPE, formalin fixed paraffin embedded;
TIL, tumor infiltrating lymphocytes; WSIs, whole-slide images.
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INTRODUCTION

Melanoma is one of the major causes of cancer-related death,
and its incidence is increasing worldwide (1, 2). Histopathological
diagnosis of melanoma is based on the assessment of cyto-
architectural features on hematoxylin and eosin-stained slides,
which has been recognized to be highly subjective. Recent
observations have revealed a diagnostic discordance between
histopathologists in distinguishing benign nevi and malignant
melanomas (3, 4). A lack of access to dermatopathology expertise
in this context can slow diagnostic turnaround times, resulting in
delays in patient care and leading to potential adverse impacts on
clinical outcomes. In this scenario, the computer-aided diagnosis
(CAD) system reduces intraobserver and interobserver variability
and improves the accuracy of pathology interpretation (5, 6).

In recent years, AI has attracted a lot of attention for digital
imaging processing (7). The most commonly used and highly
functioning AI approach for medical image processing (including
histopathology) is based on deep learning algorithms and, in
particular, on CNNs (8). CNNs are deep neural networks, trained
for visual recognition tasks directly from pixel images with
minimal preprocessing (9). CNNs require a considerable amount
of data for training/validation, and the classification accuracy
of CNN classifiers is mainly dependent on the quality and size
of the image dataset (10). The training of a new CNN model
with a new image dataset requires extensive effort to collect a
large number of images. For this reason, a CNN architecture can
be built from pretrained models (Transfer Learning approach)
with a considerable reduction in the training image dataset
(11). Several types of pretrained CNN architectures, including
AlexNet, SqueezeNet, NASNet-Large, Inception-v3, ResNet-50,
Vgg19, and Inception- ResNet-v2 (12–14), have been designed.

The deep learning applied to digital pathology is a continuing
challenge for many reasons: (i) limited (labeled) dataset
availability, (ii) complexity of pathological variability, (iii) large
image sizes, and (iv) difficulty of implementation of CNN models
due to a large number of setting parameters (15, 16).

In recent years, few studies that focus on deep learning
algorithms have been proposed to automate the analysis of
melanoma and skin lesions in WSIs (17–19). Since the sizes of
WSIs are too large to be used as direct input to a CNN, the
typical approach is to train, validate, and test the CNN, instead
of using low-pixel-resolution patches of the WSI, obtaining tens
to thousands of patches from each WSI (20). Although AI
technology has achieved remarkable results for skin pathology
analysis, in this field, the potential of CNNs has not been
fully investigated, and their performances may be significantly
improved. Future studies will focus on the development of
different CNN architectures and training procedures, to finalize
an optimal AI-based algorithm useful for clinical support.

In this study, we aimed to implement an annotation
framework for the automated analysis of histopathological
cutaneous melanoma images. We developed a CNN-based
algorithm that allows us to build masks on scanned lesioned
tissues, in order to define areas of healthy and pathological tissue,
even in those samples for which identification by the pathologist
is more complex due to the presence of a scarce tumoral

component. Our data revealed a methodological approach to
build a map reporting the topological distribution of melanoma
and healthy tissues from analyzed WSIs.

MATERIALS AND METHODS

Sample Population and Data Set
The study included a retrospective collection of formalin-
fixed paraffin-embedded (FFPE) cutaneous primary invasive
melanomas (n = 100) from the Section of Pathology, Department
of Health Sciences, University of Florence, Florence, Italy; the
Center for Immuno-Oncology, Department of Oncology,
University Hospital of Siena, Siena, Italy; and the Unit
of Cancer Genetics, Institute of Biomolecular Chemistry
(ICB), National Research Council (CNR), Sassari, Italy.
Clinicopathological data of the patients are reported in Table 1.
Two expert dermatopathologists (VM and DM) performed
the histopathological reevaluation and confirmed the original
diagnosis. Representative histopathological whole slides stained
with hematoxylin and eosin were anonymized and digitalized
using Pannoramic 250 Flash III (3D HISTECH) and Aperio
AT2 (Leica) with × 20 power. From each scanned slide, a total
of 8 ROIs (4 representatives of the tumor area and 4 of the
adjacent healthy tissue) were extracted (Figure 1). The use of
FFPE sections of human samples was approved by the Local
Ethics Committee (#13676_bio and #17033_bio) according to
the Helsinki Declaration.

AI Methodology
To adapt the data size of the input images to the CNN input layer
size, smaller image patches were extracted from the labeled ROI.
Each ROI was tiled in non-overlapping 299 × 299 pixel square
patches (×20 magnification). The patch dimension of each pixel
was about 0.2428 mm; therefore, the dimension of each patch
was about 72.59 mm × 72.59 mm, corresponding to an area
of about 5269.3 mm2 (Figure 2). Patches were adjacent to each
other and covered the entire tissue region of each ROI. Patches
of the ROIs containing no more than 50% white background

TABLE 1 | Clinicopathological data of the patients.

Patients (n = 100)

Age Range (Mean ± SD) 24–89 (62.7 ±16.0)

Sex Male (n) 62

Female (n) 38

Location of primary tumor Trunk (n) 56

Extremity (n) 44

Tumor thickness >2mm (n) 100

Clark’s level III (n) 47

IV (n) 53

Ulceration Present (n) 71

Not present (n) 29

Stage III (n) 47

IV (n) 53

Mitotic rate/mm2 Range 0–57
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FIGURE 1 | ROI samples selected from healthy tissue (A–C) and invasive
cutaneous melanoma (D–F) on a whole slide image. Each ROI was obtained
at a magnification of 20×.

FIGURE 2 | Examples of patches cropped from ROIs. The first and second
lines report sampled patches of normal and pathological tissues, respectively.
Each patch has a size of 299 × 299 pixels (72.59 mm × 72.59 mm).

were used for further analysis. The patches obtained from ROIs
of 60 slides (1377 patches for healthy tissue and 2141 patches for
melanoma) were used as training/validation dataset; the patches
from ROIs of 40 slides (791 for healthy tissue and 1122 patches for
melanoma) were used as a test dataset. The training/validation
and testing datasets were completely disjointed (i.e., extracted
from different patients) in order to demonstrate the robustness of
the trained CNN. The expansion of the image dataset for training
and validation is useful for improving the capability of the model
and to avoid overfitting. We augmented the training/validation
dataset via affine transformations. The patches were horizontally
or vertically shifted between 0 and 30 pixels and scaled by
zoom-in and zoom-out operations with rate magnitude between
0 and 20%. The increased and original patches were used as
training/validation sets.

A CNN based on a pretrained Inception-ResNet-v2 (12) with
the training/validation dataset was trained by using 75% of the
patches for training and 25% for validation. For training the net,
stochastic gradient descent with momentum algorithm was used;
the first 10 layers of the net were frozen, and for the residual
layers, the learning rate was set to 0.003, and the momentum was
set to 0.9. The maximum number of epochs for training was set
to 15, and a mini-batch with 16 observations at each iteration was
used. Then, the net performance with the test dataset was tested.

For binary (healthy tissue vs. melanoma) patch-level
classification, the trained net performance was evaluated in terms
of the following metrics:

1. Accuracy: the ratio between the number of correct
predictions (both true positives and true negatives) and the
overall number of samples.

2. Sensitivity (or recall): the number of true positives divided
by the number of true positives and false negatives.

3. Specificity: the number of true negatives divided by the
number of true negatives and false positives.

4. F1 score: a measure of a classification accuracy often used
in case of imbalanced data. This is the harmonic mean
between precision and sensitivity. Precision is the number
of true positives divided by the number of true positives
and false positives.

5. Cohen’s kappa: a measure of the agreement between the
human and trained net classification (correcting for chance
agreement). This is a statistical measure of inter-rater
agreement. Kappa scores less than zero are interpreted
as “no” agreement. Kappa scores ranging from 0.01 to
0.20 are considered “slight” agreement, 0.21 to 0.40 “fair”
agreement, 0.41 to 0.60 “moderate” agreement, 0.61 to 0.80
“substantial” agreement, and 0.81 to 1.00 “almost perfect”
agreement.

The trained net as a sliding window over the whole WSI was
applied to evaluate the topological distribution of the melanoma
and healthy tissue. A scheme of the methodological process,
from raw WSI to trained CNN performance evaluation, is
reported (Figure 3).

RESULTS

Training by using the curated image patches took approximately
18 h to complete 3200 iterations with Matlab software (R2019b,
Natick, MA, United States: The MathWorks Inc.) and its
Deep Learning Toolbox. As reported in the confusion matrix
(Figure 4), the overall accuracy of our net in training set
classification was 96.5% (1847 correct classification from a total
of 1913). In particular, the misclassification rates were 2.3%
for healthy tissue (18 patches of 791) and 4.3% for melanoma
(48 patches of 1122). The obtained sensitivity, specificity, and
F1 score were 95.7, 97.7, and 97.0%, respectively, and Cohen’s
kappa was 0.929.

Misclassified patches were reviewed, and we found that, in
2/9 false-positive analyzed patches, signs of marked dermal
solar elastosis (grade 3) (Figure 5A) and/or epidermal atrophy
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FIGURE 3 | Representative scheme of the methodological pipeline. The whole slide images of melanoma from 100 patients were split in training/validation and
testing datasets that are disjointed during the process. ROIs of normal and pathological tissues were extracted from the two datasets and labeled. (A–C) Healthy
tissue, (D–F) invasive cutaneous melanoma. Each ROI was tiled in 299 × 299 pixel patches. The patches of training/validation sets were used for the training of
CNN. Finally, the performance indices of classification were estimated by applying the trained CNN to the testing set.

(Figures 5A–C) were observed. In the false-positive cases, the
prevalence of dermal-based, instead of epidermal based or
dermo-epidermal, patches was observed. In particular, in 3/9
of false-positive patches, an abnormal dilated small-to-medium-
size vessel surrounded by normal dermal collagen was observed
(Figure 5D). Extravasated erythrocytes in the dermis or within
the adnexal epithelium were found in 3/9 cases (Figures 5D,E),
and, in one case, normal sebaceous adnexal structures and
follicular epithelium were detected (Figure 5F).

Histopathological reevaluation of the false-negative cases
showed representative areas of pathological tissue with moderate-
to-severe cytological atypia (melanoma cells) in all cases, with
no significant areas of non-tumoral tissues. A known factor
that negatively affects tumor classification by CNN is the
presence of melanin (21); in our dataset, we observed that
the level of pigmentation in false negatives was heterogeneous.
In particular, it was absent in 5 cases (Figure 6A), mild in
8 cases (Figures 6B–D), and prominent (Figure 6E) in 18
cases, thus demonstrating that the trained neural network
was not influenced by the presence or absence of melanin.
Clear cell changes were detected in melanoma cells in two
patches (Figure 6F). A more detailed analysis showed that,
in 7/18 cases, tumor cells were arranged in large confluent
aggregates (diffuse growth), with no nests. Tumor-infiltrating
lymphocytes (TILs) were absent (16/18) or non-brisk (2/18),
and none of the selected images showed a prominent (brisk)
infiltration by TILs.

Finally, the classification maps obtained after the application
of the trained net to five representative WSIs of invasive
cutaneous melanoma were reported (Figure 7). The maps

FIGURE 4 | Confusion matrix describing the classification performance of the
trained CNN for the training dataset.

showed the topological distribution of patches of each WSI
classified as healthy tissue (green area) or melanoma (red area).

DISCUSSION

Since its development in the mid-twentieth century, research
using AI has been subjected to transformation and criticism.
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FIGURE 5 | ROI samples in which false-positive patches were identified.
(A) Dermal solar elastosis (Grade 3). (A–C) Epidermal atrophy. (D) Abnormal
dilated small-to-medium size vessels surrounded by normal dermal collagen.
(D,E) Extravasated erythrocytes in the dermis or within adnexal epithelium.
(F) Sebaceous adnexal structures and follicular epithelium.

FIGURE 6 | ROI samples in which false-negative patches were identified.
(A) Absent pigmentation. (B–D) Mild pigmentation. (E) Prominent
pigmentation. (F) Clear cell changes in melanoma cell.

Using a powerful workstation, a large amount of data, and
complex computer algorithms, AI can identify complex models
in the real world, producing considerations, conclusions,
extrapolations, associations, and forecasts that can match or
exceed human capabilities. The analysis of histopathological
images in general, and melanoma in particular, represent a
natural application of this field.

In this study, we showed that an AI algorithm to recognize
cutaneous melanoma can be a useful diagnostic tool for
supporting dermatopathologists for diagnostic purposes.
Although extensive research has been carried out on melanoma
dermatoscopic images processing with AI (22–24), few studies
have specifically shown the utility of AI in the recognition
of melanoma compared to normal tissue in histopathological
images (17–19).

Previous studies (18, 19) have proposed CNNs to distinguish
between histopathological images of melanomas and benign
tissue. First, a pretrained ResNet50 CNN with a randomly
cropped area from 595 WSIs (300 nevi WSIs for 50152 patches;

295 melanoma WSIs for 55263 patches) and tested with a
randomly cropped area from 100 WSIs (50 nevi WSIs for 50152
patches; 50 melanoma WSIs for 55263 patches) was used, and
an overall accuracy of 81% with respect to the gold standard
reference (i.e., classification by board-certified pathologists) was
reported (18). Second, a CNN that automatically detected
melanoma in WSIs and highlighted the lesion area on WSIs
using a probabilistic heat map was reported by using a pretrained
VGG16 CNN, trained with 38 WSI (27 healthy tissue WSIs for
50152 patches; 11 melanoma WSI for 55263 patches), and tested
with an independent dataset of 76 WSIs (38 healthy tissue WSIs
for 16904 patches; 38 melanoma WSI for 66222 patches). For
patch diagnosis on an independent dataset, the proposed model
also achieved accuracy, sensitivity, and specificity of 91.4, 91.0,
and 92.8%, respectively (19).

Our data clearly show that the AI algorithm we built
includes all the characteristics necessary for better recognition
of tumor cells, including lesions that are not easily identified.
The CNN proposed in this study has shown high performance
in detecting cutaneous melanoma areas in histopathological
slides. It can recognize portions of pathological and healthy
tissues on independent testing datasets with an accuracy,
sensitivity, specificity, and F1 score of 96.5, 95.7, 97.7, and
97.0%, respectively. Unlike recently published data (18), our
classification method does not aim to discriminate between
melanoma and nevi, but rather to distinguish, within a WSI,
healthy tissue from pathological tissue. Our aim is in line
with the patch-level classification on an independent dataset
(19). In addition, we obtained a classification performance
higher than that reported (19), in terms of accuracy (96.5%
vs. 91.4%), sensitivity (95.7% vs. 91.0%), and specificity (97.7%
vs. 92.8%). In the previous study (19), the F1 score was not
estimated and, therefore, we cannot compare it with the F1
score of our net; nevertheless, the value obtained is high
enough to demonstrate the high classification accuracy of
our CNN.

The proposed CNN has the potential to quickly classify
and give more detailed information on pathological cases,
defining a heat map that distinguishes the malignant areas
from the normal ones. A promising application would be
for the pathologist to focus on a more accurate and faster
identification of the tumor margin status, thus facilitating a heat
map on the scan, to streamline the task in clinically critical
decisions. Our results have also revealed that a dimension of
about 5000 mm2 per patch is sufficient to obtain a reliable
patch-level recognition of pathological tissue in WSIs. The
proposed CNN achieved a Cohen’s kappa of 0.929 with respect
to the reference classification of expert dermatopathologists,
thus showing a high level of agreement between human and
machine evaluation, as well as a higher inter-rater agreement
with respect to the previous study (19), which reported a
Cohen’s kappa of 0.878 for patch-level classification on an
independent dataset.

In our study, each misclassified patch was visually reanalyzed
by expert dermatopathologists in search of possible explanations
for the wrong classification by the trained CNN. In some
of the false-positive patches, signs of marked dermal solar
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FIGURE 7 | Sample images showing the results of the trained-CNN application to five WSIs. Each WSI was associated with a classification binary map with texels
representing classified patches: green area for non-melanoma patches and red area for melanoma patches. The background areas (corresponding to patches with
more than 50% of the white background) were represented by the white areas.

elastosis and epidermal atrophy, as expected from UV-related
melanomas arising on chronically sun-exposed anatomical
sites, were observed. This finding is significant in light of
the recent multidimensional classification for melanoma (25).
The possibility that the AI algorithms implemented allow a
better subclassification of Low-Cumulative Solar Damage (CSD)
melanomas vs. High-CSD melanomas, which are different,
as well as the genomic level and mutational status, should
be further explored in larger data sets. In addition, a
misdiagnosis could be attributed to the presence of more
heterogeneous patches showing prominent dilated vessels
and extravasated erythrocytes, or adnexal structures in the
dermis. In all false-negative patches, areas of homogeneous
pathological tissue with moderate–severe cytological atypia
(melanoma cells), with no significant areas of non-tumoral
tissues, were recognized. In about half of the cases, tumor
cells were arranged in large confluent aggregates with no
discrete nests. Whether or not the type of architectural tumor
growth and cellular arrangement (confluent aggregates vs.
small discrete nests) affects misclassification is currently a
matter of investigation. None of the false-negative patches
were associated with brisk TILs, thus avoiding the hypothesis
that a prominent tumor-associated lymphocytic component
in the tumor microenvironment could be responsible for
the misclassification. Finally, tissue pigmentation did not
affect classification.

The strength of our study is in the description of an
AI that is proficient in working on a heterogeneous data
set of melanomas, which reflects the cases usually inspected
by dermatopathologists in daily clinical practice. However,
this study has several limitations that will be addressed in

future studies. First, the case series includes only pT3 and
pT4 melanomas (Breslow thickness > 2 mm). Indeed, the
purpose of this study was to develop a CNN that works with
high performance on thick melanomas; the second step will
be to apply the neural network to melanomas with Breslow
<2 mm, to evaluate its performance and, possibly, implement
training with thinner melanomas. Second, a separate cohort
of melanocytic nevi was not included in the comparison;
we acknowledge that the ability to discriminate melanoma
from nevi would increase the strength of the proposed
AI approach. Third, additional studies incorporating larger
datasets from clinical practice settings, as well as more
general pathologists with a broader range of backgrounds, are
necessary to further validate our data. Finally, the technical
requirements for image acquisition should be validated in
additional independent cohorts. In particular, the classification
performance of the net could be reduced by the use of different
digital WSI scanners.

CONCLUSION

In conclusion, Our data show that a deep learning system
can be trained to recognize melanoma samples, achieving
accuracies comparable to experienced dermatopathologists.
This system could prove to be a valuable aid in improving
diagnostic efficiency when expert consultation is not available,
as well as reducing interobserver variability. Further studies
in larger data sets are required to verify whether the
deep learning algorithm allows subclassification of different
melanoma subtypes.
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