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The receptor-interacting protein kinase 4 (RIPK4), a member of the RIPK family,
was originally described as an interaction partner of protein kinase C (PKC) β and
PKCδ. RIPK4 is identified as a key regulator of keratinocyte differentiation, cutaneous
inflammation, and cutaneous wound repair. The mechanism by which RIPK4 integrates
upstream signals to initiate specific responses remains elusive. Previous studies have
indicated that RIPK4 can regulate several signaling pathways, including the NF-κB,
Wnt/β-catenin, and RAF/MEK/ERK pathways. Furthermore, RIPK4-related biological
signaling pathways interact with each other to form a complex network. Mounting
evidence suggests that RIPK4 is aberrantly expressed in various kinds of cancers. In
several types of squamous cell carcinoma (SCC), the mutations that drive aggressive
SCC have been found in RIPK4. In addition, the function of RIPK4 in carcinogenesis
is probably tissue-specific, since RIPK4 can play a dual role as both a tumor promoter
and a tumor suppressor in different tumor types. Therefore, RIPK4 may represent as
an independent prognostic factor and a promising novel therapeutic target, which can
be used to identify the risks of patients and guide personalized treatments. In future,
RIPK4-interacting pathways and precise molecular targets need to be investigated
in order to further elucidate the mechanisms underlying epidermal differentiation
and carcinogenesis.
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INTRODUCTION

The receptor-interacting protein kinase 4 (RIPK4), a member of the RIPK family, was originally
identified interacting with protein kinase C (PKC) β and PKCδ by yeast two-hybrid-based screens
(1, 2). RIPK4 was first identified as DIK (PKC-delta-interacting protein kinase) in humans. The
mouse ortholog of DIK was also found to interact with PKCβ, another PKC isoform, and thus
was referred to as PKK (protein kinase C-associated kinase). DIK and PKK have therefore been
described as human and mouse RIPK4, respectively (3, 4). RIPK4, containing an N-terminal kinase
domain, an intermediate domain, and a unique C-terminal region characterized by the presence
of 11 ankyrin repeats, belongs to the serine/threonine kinase family (4). Except for the low-level
expression of RIPK4 in the spleen, RIPK4 is widely expressed in a variety of embryonic and mature
tissues (e.g., heart, brain, lung, liver, skeletal muscle, kidney, testis) (2, 5). RIPK4 exists in various
cytosolic and membrane-associated forms but is not present in the nucleus (2).
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Previous studies have indicated that RIPK4 can modulate
the actin cytoskeleton and restrict intercellular adhesion (6).
Skin-specific loss of RIPK4 results in delayed keratinization,
stratum corneum maturation, and aberrantly lipid distribution
(7). Therefore, RIPK4 is essential for keratinocyte differentiation
and the formation of a normal epidermal barrier (6). In addition,
RIPK4 expression is strongly downregulated in keratinocytes
early after skin wounds, indicating that RIPK4 may be a regulator
of keratinocyte migration during wound healing (8). RIPK4
also plays a critical role in the maintenance of recirculating
mature B cells and B cell development in vivo (9). Nevertheless,
whether RIPK4 influences keratinocyte proliferation remains
controversial and deserves additional investigation (3, 8, 10, 11).

THE ROLE OF RIPK4 IN KERATINOCYTE
DIFFERENTIATION

RIPK4 has emerged as a key regulator of keratinocyte
differentiation, cutaneous inflammation, and cutaneous
wound repair (8, 12). RIPK4-deficient animals display striking
abnormality in skin differentiation. The epidermis of RIPK4
knockout mice contains an outermost layer of parakeratotic
cells instead of enucleated squamous cells and is thickened with
marked hyperplasia of both spinous and granular layers (3).
The epidermis-specific RIPK4 knockout mice have a largely
normal expression of epidermal differentiation markers (7).
By contrast, RIPK4 full deficiency in mice results in aberrant
expression patterns of various differentiation markers, such as
abnormal expression of keratin 14 in the granular and outermost
parakeratotic layer, as well as filaggrin in the spinous and
granular layers (3). The observed differences between epidermal-
specific RIPK4 knockout mice and RIPK4 full knockout mice
may be due to the timing of RIPK4 ablation (7). Furthermore,
RIPK4 knockout leads to perinatal lethality in mice, which
was most likely due to the suffocation caused by abnormal
epidermal differentiation (3). RIPK4 mutations have been
linked to Bartsocas-Papas syndrome (BPS) in human, which
is typically characterized by aberrant skin, craniofacial and
genital development, and early death (13, 14). RIPK4 mutations
are also associated with CHAND syndrome, and the acronym
summarizes the main features: curly hair, ankyloblepharon
(fused eyelids), and nail dysplasia (15). In general, RIPK4 acts as
an important regulator of keratinocyte differentiation.

RIPK4-RELATED SIGNALING PATHWAYS

Although RIPK4 plays a critical role in epidermal development
and keratinocyte differentiation, the mechanism by which
it integrates upstream signals to trigger specific responses
remains elusive. Phorbol 12-myristate 13-acetate (PMA), a small-
molecule mimic of diacylglycerol, can potentially activate PKCs
(16). As previously mentioned, RIPK4 was initially identified
as an interaction partner of the PKC family. PKCs could
activate RIPK4, which then induced uncontrolled epidermal
inflammatory responses (17). Transgenic mice with epidermal

overexpressing RIPK4 reacted hypersensitively to PKC (12,
17). This was in accordance with the finding that RIPK4
knockdown in normal keratinocytes hampered the expression of
differentiation markers upon PKC activation (18). Collectively,
RIPK4 regulates the keratinocyte differentiation and functions via
the PKC pathway (18).

In addition, RIPK4 can regulate several other signaling
pathways, such as the NF-κB, Wnt/β-catenin, and
RAF/MEK/ERK pathways (19–21). The NF-κB pathway is
involved in the regulation of diverse functions, including
epithelial tissue proliferation, differentiation, inflammation, and
immune responses (22). PIPK4 overexpression can cause the
dose-dependent activation of NF-κB and Jun N-terminal kinase
(JNK) (4). The balanced NF-κB and JNK activation in vivo
is vital for the regulation of keratinocyte differentiation (23).
Inhibition of RIPK4 expression can enhance IκB level in cultured
keratinocytes, indicating the reduced activation of NF-κB and
the enhancement of keratinocyte differentiation (8). Inhibition of
PMA-induced NF-κB activation by a dominant negative mutant
of RIPK4 can be reverted by the co-expression of PKC isoform,
PKCβI, suggesting that RIPK4 may act as a functional link
between PKCβI and NF-κB activation (4, 19). The mechanism
by which the PKCβI expression reverts the dominant negative
effect of the RIPK4 mutant is still unclear. It is speculated that
overexpression of catalytically active PKCβI may compete out
the dominant negative RIPK4 for cellular factors necessary for
function (19).

Moreover, though the intact kinase properties of RIPK4
are required for NF-κB activation, catalytically inactive RIPK4
mutants can unexpectedly enhance MEKK2- and MEKK3-
induced activation of NF-κB. Hence, RIPK4 can activate the NF-
κB pathway in both a kinase-dependent and kinase-independent
manner (4, 24). Intriguingly, the phenotype of RIPK4-deficient
mice in part resembles that of mice lacking IKKα, which implies
that these two NF-κB-related kinases may function in a common
pathway to regulate epidermal homeostasis and differentiation
(25). RIPK4 functions in a PKC-mediated signaling pathway
of NF-κB activation that requires IKKα and IKKβ but is
independent of Bcl10 and IKKγ, a regulatory subunit of the IκB
kinase complex (19).

In addition to activating NF-κB, RIPK4 can also regulate
the Wnt signaling pathway. RIPK4 induces the β-catenin
accumulation via phosphorylating DVL2, a receptor protein
of the Wnt pathway. Phosphorylation of DVL2 at Ser298 and
Ser480 by RIPK4 favors canonical Wnt signaling (20). Except
for the essential functions of the Wnt pathway for cell growth,
development, and death (26), the Wnt pathway is also related to
keratinocyte differentiation (27). The disruption of Wnt signaling
can lead to cleft lip/palate (28).

RIPK4 and interferon regulatory factor 6 (IRF6) can also
function as a signaling axis downstream of PKC activation
to mediate keratinocyte differentiation (18). RIPK4 promotes
keratinocyte differentiation, at least in part by inducing
IRF6 transactivator function through the phosphorylation of
Ser413 and Ser424 in the C-terminal domain of IRF6. RIPK4
can directly phosphorylate and activate IRF6 to induce the
expression of key transcriptional regulators of keratinocyte
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differentiation, including grainyhead-like 3 (GRHL3) and Ovo-
like zinc-finger 1 (OVOL1) (18). The ELF3 gene, an ETS
family transcription factor, is regulated downstream of GRHL3
in keratinocytes. RIPK4 may regulate the epidermal barrier
functions partly through regulating an IRF6-GRHL3-ELF3
transcriptional network (29). In addition to the regulation of
keratinocyte differentiation, the multifaceted role of the RIPK4-
IRF6 signaling axis in epithelial homeostasis may also extend to
the regulation of inflammation. RIPK4 stimulates the expression
of specific proinflammatory cytokines (e.g., CCL5 and CXCL11)
in keratinocytes through activating IRF6 (30).

A recent study revealed that the RIPK4 kinase domain
could directly phosphorylate IRF6 at Ser90. Furthermore, IRF6
regulated the expression of genes that are involved in the lipid
metabolism and tight junctions. The above findings provide the
insight into how RIPK4 and IRF6 function to ensure the integrity
of the epidermis and offer the mechanistic explanation for why
genetic defects in the RIPK4-IRF6 axis lead to developmental
syndromes (31). Mutations in human IRF6 give rise to Van
der Woude syndrome (VWS), a developmental condition, and
popliteal pterygium syndrome (PPS), which is a less severe
form of BPS (32). To our knowledge, IRF6 is more than a key
transcriptional regulator involved in skin differentiation (33); it
has also been reported to exhibit tumor suppressor activity in
squamous cell carcinoma (SCC) (34). Hence, loss of IRF6 per se
or an impaired RIPK4-IRF6 signaling axis may also be related to
the development of SCC.

INTERACTIONS OF RIPK4-RELATED
SIGNALING PATHWAYS

Overall, RIPK4 functions as a key nodal point for the
maintenance of epithelial homeostasis (Figure 1). RIPK4-related
biological signaling pathways interact with each other to form
a complex network. It is worth noting that both RIPK4 and
IRF6 are direct transcriptional targets of the protein p63, which
is a master regulator of stratified epithelial development (13,
35). Mice harboring loss-of-function mutations of RIPK4 and
IRF6 have close phenotypic similarities (36). Furthermore, Wnt
signaling regulates IRF6 expression in vivo by transactivating
p63 (37). IRF6 may be a novel effector of the Wnt pathway in
keratinocytes given that its transactivator function is regulated by
RIPK4 (18).

RIPK4 has been proven to be a modulator of the PKC
signaling pathway (1). PKCδ activation increases the expression
of the transcription factor Kruppel-like factor 4 (KLF4), which
upregulates the expression of the differentiation-associated gene,
involucrin (IVL) (38). It is worth noting that KLF4 has been
identified as an IRF6 target gene (34, 39). Hence, PKCδ may
regulate KLF4-mediated IVL transcription via the RIPK4-IRF6
regulatory module.

In addition, the RIPK4 p.Ile121Asn missense mutation,
which has been identified in Bartsocas-Papas syndrome, inhibits
the kinase activity of RIPK4, thereby abolishing RIPK4-
mediated IRF6 and NF-κB activation (14, 18). The mutation
also compromises RIPK4-mediated β-catenin stabilization (20).

Therefore, the severe manifestation of the RIPK4 p.Ile121Asn
missense mutation is likely due to impaired signaling by the
RIPK4-IRF6 axis, as well as the NF-κB and Wnt pathways.
Another BPS-associated mutation, RIPK4 p.Ser376X nonsense
mutation, can impair the IRF6 activation and inhibit its
stabilization of β-catenin, while the ability of RIPK4 to activate
NF-κB and JNK is unaffected (40). These findings not only
suggest molecular bases for how RIPK4 mutations cause
epidermal disorders but also provide important mechanistic
insights into the regulation of keratinocyte differentiation by a
RIPK4-related complex signaling network.

Taken together, RIPK4 plays a vital role in keratinocytes
by participating in various signaling transduction pathways.
However, the functional significance of RIPK4 in the signaling
networks remains unclear. The identification of novel RIPK4-
interacting proteins, particularly physiologically relevant
substrates, awaits further investigation, which will elucidate the
precise role of RIPK4 in a variety of signaling pathways.

THE ROLE OF RIPK4 IN
CARCINOGENESIS

As stated above, RIPK4 plays a pivotal role in skin development
and keratinocyte differentiation. RIPK4 dysregulation causes
the aberrant epidermal differentiation, which may impose a
remarkable effect to the occurrence and development of SCC.
RIPK4 mutations have been found in several SCCs. The
cutaneous SCC (cSCC) data deposited in The Cancer Genome
Atlas (TCGA) and the analysis of metastatic cSCC reported
a similar high rate of RIPK4 mutagenesis, with mutations
clustering within the kinase and ankyrin repeat domains (41, 42).
It was strongly implied that the mutations were non-random,
thus supporting the hypothesis that RIPK4 is a putative tumor
suppressor for cSCC. The RIPK4 mutations have also been
identified in human head and neck SCC (HNSCC) through large-
scale sequencing, implicating its critical function in squamous
epithelial differentiation and carcinogenesis (43). In addition,
RIPK4 point mutation was observed in esophageal SCC and
RIPK4 was thus considered as the driver gene for this malignancy
(44). A significant enrichment of somatic mutations in RIPK4
was also confirmed in human papillomavirus (HPV)-positive oral
SCCs (45).

In addition to mutations, RIPK4 is aberrantly expressed in
various kinds of cancers, including skin, ovarian, cervical SCCs
(10, 20, 46). Compelling evidence highlighted the essential and
specific role of RIPK4 as a tumor suppressor in epidermal
keratinocytes and RIPK4 deficiency in the skin epidermis greatly
impaired skin differentiation and enhanced skin carcinogenesis.
RIPK4 expression was decreased in human cSCC in comparison
with adjacent skin (11). In a novel RIPK4 conditional knockout
mouse model, the loss of keratinocyte RIPK4 promoted SCC
formation during chemically induced carcinogenesis (47). RIPK4
could phosphorylate the N-terminal domain of desmosome
protein plakophilin-1 (Pkp1), which was essential for RIPK4-
mediated epidermal differentiation. The novel RIPK4-Pkp1
signaling axis could then promote SHOC2 binding with Pkp1
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FIGURE 1 | Network of RIPK4 in the multiple signaling pathways for epidermal homeostasis and differentiation.

(10). This interaction functionally suppressed the Ras/MAP
kinase signaling pathway, which played a key role in epidermal
homeostasis (48). It was also noteworthy that RIPK4 expression
was reduced in tongue SCC and its expression was positively
associated with a favorable prognosis. RIPK4 knockdown
enhanced migration and invasion capabilities of tongue cancer
cells, thus implying that RIPK4 might be a tumor suppressor
(49). Similarly, RIPK4 has also been identified as a putative
and novel tumor suppressor in human hepatocarcinogenesis.
RIPK4 was significantly suppressed in 80% of the hepatocellular
carcinoma (HCC) samples, and RIPK4 overexpression resulted in
almost complete elimination of anchorage-independent growth
in the already transformed human fetal hepatocytes. The role
of RIPK4 as a tumor suppressor involved in HCC development
might relate to NF-κB signaling (50). The suppression of
RIPK4 regulated NF-κB signaling with the increased acquisition
of oxidative stress-induced genetic changes and an expansion
of pre-malignant subclones (51). Furthermore, bioinformatics
analyses of human lung adenocarcinoma samples indicated
that poorly differentiated tumors express significantly lower
levels of RIPK4, which was associated with poorer overall
survival. NF-κB and signal transducer, as well as activator of
transcription 3 (STAT3), were two transcription factors often
activated in lung adenocarcinoma (52, 53). They also promoted
dedifferentiation (54, 55), which was linked to various features of

cancer development such as invasion, metastasis, and stemness
of cancer cells. Quite strikingly, RIPK4 knockdown leading to
lung cancer dedifferentiation was NF-κB independent and the
potential of RIPK4 in reducing lung cancer cells metastases was
kinase-independent. The loss of RIPK4 enhanced the STAT3
pathway in lung cancer cells and promoted the expression of
extracellular matrix (ECM) remodeling genes (56).

On the contrary, mounting evidence has demonstrated the
oncogenic role of RIPK4 (20, 21, 46, 57–59). RIPK4 knockdown
in A2780 and COV434 ovarian cancer cells could inhibit β-
catenin accumulation and RIPK4 overexpression could promote
ovarian cancer in a xenograft tumor model (20). In addition,
RIPK4 was significantly upregulated in osteosarcoma and RIPK4
knockdown suppressed EMT by inactivating Wnt/β-catenin
signaling (60). RIPK4 promoted Wnt signaling, implying that
RIPK4 overexpression might be involved in the development
of certain tumor types. However, RIPK4 might only act as an
oncogene in Wnt-dependent tumors, since RIPK4 knockdown
had no effect on Wnt3a-induced β-catenin accumulation in
pancreatic PANC1 cells, kidney 786-O cells, and breast HCC38
or HS578T cells (20). Additionally, RIPK4 did not enhance the
transcription activity of β-catenin in cervical SCC cells. A pro-
metastasis function of RIPK4 was observed in the progression of
cervical SCC, since RIPK4 promoted the epithelial–mesenchymal
transition (EMT) process (46).
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Moreover, RIPK4 exerts an oncogenic role through activating
NF-κB signaling, which is involved in the pathogenesis of some
malignant diseases. Meylan et al. reported a dose-dependent
activation of NF-κB in 293T cells by overexpression of RIPK4 (4).
RIPK4 was required for the survival of human diffuse large B-cell
lymphoma (DLBCL) cells primarily through controlling NF-κB
activation induced by the B cell-activating factor of the tumor
necrosis factor family (BAFF). RIPK4 inactivation inhibited NF-
κB activity, impaired the survival of DLBCL cells, and sensitized
DLBCL cells to the treatment with chemotherapeutic agents (57).
Consistent with previous studies in bladder urothelial carcinoma,
the oncogenic activity of RIPK4 depended on the activation of
NF-κB, leading to increased vascular endothelial growth factor
A (VEGF-A) levels, which ultimately mediated the RIPK4-
induced EMT and promoted bladder urothelial carcinoma cell
aggressiveness (58). RIPK4 overexpression promoted the growth
of nasopharyngeal carcinoma (NPC) cells. RIPK4 could activate
NF-κB signaling by enhancing the interaction between IKKα

and IKKβ and improving the stability of the IKK complex (59).
Hence, RIPK4 might regulate NF-κB signaling at multiple levels,
with differing molecular mechanisms in different cell types.

Compared to normal pancreatic tissues, RIPK4 was
upregulated in the subgroup of pancreatic cancer with a high
metastatic potential (21). Phosphatidylethanolamine-binding
protein 1 (PEBP1) was a physiological endogenous inhibitor of
the mitogen-activated protein kinase (MAPK) pathway; the effect
of PEBP1 on the MAPK pathway could be regulated by PKC
(61, 62). Notably, as a downstream signaling molecule of PKCδ,
RIPK4 overexpression promoted pancreatic cancer cell migration
and invasion via the proteasome-mediated PEBP1 degradation-
induced activation of the RAF1/MEK/ERK signaling pathway
(21). The activation loop of RIPK4 contains a Ser-X-X-X-Ser
motif, implying that RIPK4 is related to MAP kinase kinases and
it may be also activated in vivo by a MAP kinase kinase kinase.
PKCδ has been found to participate in MAPK signaling (63).
Therefore, it is reasonable to assume that RIPK4, as a protein
kinase that interacts with PKCδ, may serve as an intermediary
in PKCδ and MAPK pathway. Further studies are needed to
identify the MAP kinase kinase kinase required for the activation
of RIPK4 (2).

DISCUSSION

RIPK4 is essential for skin development during embryogenesis
and normal skin tissue homeostasis in adult animals through
regulating epidermal differentiation. To date, the critical role
of RIPK4 in the pathogenesis of malignant diseases has
not been extensively investigated. The current controversy
concerning the potential role of RIPK4 in carcinogenesis
indicates that RIPK4 may have a context-specific function in
carcinogenesis and/or different signal transduction mechanisms
in different tumor types. Although the previous studies
have not fully elucidated the mechanism by which RIPK4
promotes carcinogenesis, the observations of the association
between RIPK4 and carcinogenesis may have prognostic and
therapeutic implications.

As mentioned above, RIPK4 expression is positively
associated with favorable prognosis in tongue SCC and
lung adenocarcinoma (49, 56). By contrast, increased RIPK4
expression predicts a poor prognosis in cervical SCC, pancreatic
cancer, bladder cancer, and osteosarcoma (21, 46, 58, 60). RIPK4
is a novel and independent prognostic factor, which may be used
to identify patients at risk and guide individualized treatment.

Furthermore, targeting the RIPK4 pathway may be a
promising therapeutic strategy for the treatment of patients
with a specific malignancy. Natural halloysite nanotube (HNT)–
assisted delivery of an active small interfering RNA targeting
RIPK4 efficiently inhibited RIPK4 expression in vivo and
suppressed bladder cancer tumorigenesis and progression with
no adverse effects. Further analysis indicated that the NF-
κB signaling pathway might be involved as the downstream
pathway for the regulation of proliferation and progression
in bladder cancer (64). RIPK4 is a critical activator of NF-
κB signaling, which contributes to cancer development and
progression, as well as to the resistance of cancer cells to
chemoradiotherapy (65). Thus, targeting RIPK4 may be a viable
approach for cancer therapy.

So far, there is little known about the physiological upstream
signals that regulate RIPK4. However, understanding the
activation mechanism of RIPK4 gives valuable information about
how RIPK4 functions at the biochemical level and how it controls
epidermal differentiation and carcinogenesis. Constitutively
activated RIPK4 by PKC can be degraded by the SCFβ-TrCP-
mediated proteasomal degradation pathway to maintain cortical
actin organization in cultured keratinocytes (17). β-TrCP, which
regulates multiple signaling pathways controlling cell growth,
survival, death, and differentiation, is found to be involved in
the process of carcinogenesis (66, 67). Consistent with RIPK4’s
dual oncogenic and tumor-suppressive effects depending on the
cellular context, β-TrCP also exerts dual functions in tumor
development and progression (67).

Expression level, subcellular localization, and tissue
localization of RIPK4 in human cancers should be further
clarified to improve our understanding of the biological bases
of cancer progression. Additional functional experiments are
needed to identify the novel RIPK4-interacting partners and
elucidate the precise molecular mechanisms of RIPK4 in different
kinds of cancer. There is also great need to uncover the other
signaling networks that are regulated by RIPK4 in both normal
skin differentiation and carcinogenesis.
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