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Immune-related genes (IRGs) play considerable roles in tumor immunemicroenvironment

(IME). This research aimed to discover the differentially expressed immune-related genes

(DEIRGs) based on the Cox predictive model to predict survival for lung squamous cell

carcinoma (LUSC) through bioinformatics analysis. First of all, the differentially expressed

genes (DEGs) were acquired based on The Cancer Genome Atlas (TCGA) using the

limma R package, the DEIRGs were obtained from the ImmPort database, whereas the

differentially expressed transcription factors (DETFs) were acquired from the Cistrome

database. Thereafter, a TFs-mediated IRGs network was constructed to identify the

candidate mechanisms for those DEIRGs in LUSC at molecular level. Moreover, Gene

Ontology (GO), together with Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis, was conducted for exploring those functional enrichments

for DEIRGs. Besides, univariate as well as multivariate Cox regression analysis was

conducted for establishing a prediction model for DEIRGs biomarkers. In addition,

the relationship between the prognostic model and immunocytes was further explored

through immunocyte correlation analysis. In total, 3,599 DEGs, 223 DEIRGs, and

46 DETFs were obtained from LUSC tissues and adjacent non-carcinoma tissues.

According to multivariate Cox regression analysis, 10 DEIRGs (including CALCB, GCGR,

HTR3A, AMH, VGF, SEMA3B, NRTN, ENG, ACVRL1, and NR4A1) were retrieved to

establish a prognostic model for LUSC. Immunocyte infiltration analysis showed that

dendritic cells and neutrophils were positively correlated with IRGs, which possibly

exerted an important part within the IME of LUSC. Our study identifies a prognostic model

based on IRGs, which is then used to predict LUSC prognosis and analyze immunocyte

infiltration. This may provide a novel insight for exploring the potential IRGs in the IME

of LUSC.

Keywords: lung squamous cell carcinoma, immune-related genes (IRGs), transcription factors (TFs) mediated

IRGs network, a Cox prediction model, prognostic biomarkers
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INTRODUCTION

Lung cancer remains a leading factor leading to cancer-related
deaths worldwide (1). Lung cancer is associated with a high
mortality compared with that of breast cancer (BC), prostate
cancer (PCa), colorectal cancer (CRC), and leukemia (1, 2). Lung
squamous cell carcinoma (LUSC) occupies about 20–30% non-
small cell lung cancer (NSCLC) cases, which causes an annual
of 400,000 deaths around the world (3, 4). For TNM stage II
LUSC cases, the survival at 5 years is 40%, while that for LUSC
cases at pathological TNM stage IV is <5% (5). Moreover, the
prognostic biomarkers that can be used in a prediction model for
LUSC patients are still lacking (6, 7).

Recently, immunotherapy has been widely recognized to be
the efficient therapy for many cancer types (8–11). Recently,
Fan et al. had identified reliable markers for predicting the
immunotherapy effect on non-small cell lung cancer (NSCLC)
(12). Currently, immunotherapy has been considered as the
potentially efficient therapy in tumor patients (12). Prat et al.
estimated the correlations of immune-related genes (IRGs)
expression profiles in squamous NSCLC (sqNSCLC) cases with
advanced non-squamous NSCLC (non-sqNSCLC) after PD-1
blockade (13). Furthermore, several clinical studies promote
tumor immunology development within LUSC (14). Recently,
Li et al. used IRGPs to construct the personalized prognostic
model to predict the prognosis for early non-sqNSCLC patients
(15). However, the prognostic significance of IRGs and clinical
relevance in LUSC have not been illustrated so far.

This study aimed to obtain the differentially expressed
genes (DEGs), differentially expressed IRGs (DEIRGs), and
differentially expressed TFs (DETFs) in LUSC, so as to establish
a Cox prediction model based on the DEIRGs to predict the
prognosis for LUSC. The regulatory network between DEIRGs
and DETFs possibly exerts an important part in exploring
the underlying mechanisms at molecular level. Meanwhile,
correlation analysis of immunocytes and risk score also sheds
new light on the tumor immunemicroenvironment (IME) status.

MATERIALS AND METHODS

Clinical Patients and Data Acquisition
Transcriptome RNA-sequencing gene expression profiles were
downloaded from TCGA GDC data portal (https://portal.gdc.
cancer.gov/), including 502 LUSC as well as 49 non-LUSC
tissue specimens. Additionally, FPKM data were downloaded
for differential analysis. Meanwhile, IRGs were obtained using
the Immunology Database and Analysis Portal (ImmPort)

Abbreviations: AUC, Area under the curves; BC, breast cancer; CRC, colorectal

cancer; DAVID, The Database for Annotation, Visualization and Integrated

Discovery; DEGs, Differentially expressed genes; DEIRGs, Differentially expressed

immune-related genes; DETFs, Differentially expressed transcription factors;

EMT, epithelial-mesenchymal transition; FDR, False discovery rate; GO, Gene

ontology; IMMPORT, Immunology Database and Analysis Portal; IME, immune

microenvironment; IRGs, Immune-related genes; KEGG, Kyoto Encyclopedia

of Genes and Genomes; LUSC, Lung squamous cell carcinoma; NSCLC, Non-

small-cell lung cancer; OS, overall survival; PCa, prostate cancer; ROC, Receiver

operating characteristic; TCGA, The Cancer Genome Atlas Project; TIMER,

Tumor Immune Estimation Resource; TFs, Transcription factors.

(http://www.immport.org/) (16). Besides, the cancer TF targets
were downloaded from Cistrome Project (http://www.cistrome.
org/) (17).

Differential Expression Analysis in LUSC
All transcriptome RNA-Seq data, IRGs, and cancer TF
targets were differentially analyzed using the “limma R”
package (http://www.bioconductor.org/packages/release/bioc/
html/limma.html) (18), according to the thresholds of adjusted
false discovery rate (FDR) P-value of <0.01 and absolute fold
change (log2) of >2. DEIRGs were obtained from DEGs based
on the ImmPort database, whereas DETFs were extracted from
DEGs using the Cistrome database.

Functional Analyses for DEIRGs in the
Context of LUSC
For exploring the functions among those DEIRGs in terms
of their expression profiles, Gene Ontology (GO), together
with Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis, was conducted on DEIRGs using
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID: https://david.ncifcrf.gov/) (19). Upon GO
analysis, a difference of P< 0.05 indicated statistical significance.
Furthermore, the GOCircle as well as GOChord plotting
was obtained using GOplot R package (https://cran.r-project.
org/web/packages/GOplot/citation.html) (20). In addition,
KEGG pathway enrichment analysis was performed using
the “cluster profile R” package (http://www.bioconductor.
org/packages/release/bioc/html/clusterProfiler.html) (21), and
a difference of P<0.05 indicated statistical significance. For
additionally exploring the associations of DEIRGs with
KEGG pathways, the Cytoscape software (version 3.6.1)
was employed to construct the pathway-IRGs network for
visual analysis.

Prognosis-Related DEIRGs and TFs
Mediated IRGs Regulatory Network
We used the “survival R” package to perform the univariate
Cox regression analysis to obtain prognosis-related DEIRGs
in LUSC (P < 0.05). TFs stand for the significant molecules
that can regulate gene expression level directly. Therefore,
exploring the mechanism of TFs in the regulation of prognosis-
related DEIRGs is of great necessity. The Cistrome Cancer
database provides the regulatory interactions between TFs
and transcriptomes from TCGA profiles (http://cistrome.org/
CistromeCancer/CancerTarget/) (17). To further examine the
molecular regulatory mechanisms of prognosis-related DEIRGs,
a co-expression network between prognosis-related DEIRGs
and DETFs was constructed, according to the thresholds
of p-value filter of <0.001 and standard coefficient filter
of >0.4.

Construction of the DEIRGs-Based
Prediction Model in LUSC
Univariate Cox regression analysis was carried out for obtaining
those prognosis-related DEIRGs as the prognostic biomarkers
for multivariate Cox regression analysis (P < 0.05). Then, LUSC
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TABLE 1 | The top 50 differentially expressed genes in LUSC.

Gene conMean treatMean logFC p-value fdr

AL136369.1 1.98879 0.0600881 −5.04867 1.46E-45 3.01E-41

AC093787.1 2.173824 0.171427 −3.66457 3.72E-39 3.85E-35

LINC02016 2.931133 0.0408282 −6.16575 2.00E-35 1.38E-31

LINC01863 1.503632 0.0785902 −4.25796 2.71E-35 1.40E-31

CHIAP2 6.197897 0.0680397 −6.50926 5.34E-33 1.84E-29

AC008268.1 17.9719 0.2358032 −6.25202 9.24E-33 2.73E-29

AC236972.3 2.186485 0.0599542 −5.18861 1.73E-32 4.48E-29

MND1 0.289446 3.7030027 3.67733 1.70E-30 1.96E-28

RNU5B-4P 1.532508 0.18249 −3.07 2.11E-31 1.96E-28

AL136452.1 2.791136 0.1523629 −4.19527 1.61E-31 1.96E-28

TNXB 11.87023 0.5435242 −4.44886 1.70E-30 1.96E-28

C17orf53 0.360671 4.4624943 3.629094 1.61E-30 1.96E-28

AOC3 73.87922 6.4846345 −3.51007 1.59E-30 1.96E-28

ORC1 0.390146 4.9528996 3.666189 1.85E-30 1.96E-28

ECE2 0.475444 6.3754234 3.745173 1.51E-30 1.96E-28

VEPH1 12.09418 0.6410265 −4.23779 1.59E-30 1.96E-28

NUSAP1 1.93641 23.164864 3.580482 1.85E-30 1.96E-28

TCF21 12.24521 0.5784433 −4.4039 1.31E-30 1.96E-28

NUF2 0.333614 7.8340392 4.553505 1.12E-30 1.96E-28

UBE2T 1.924445 28.589623 3.892977 9.24E-31 1.96E-28

ROBO4 22.11991 1.9320734 −3.51712 1.09E-30 1.96E-28

KIF23 0.509013 6.9497515 3.771186 1.05E-30 1.96E-28

SPAG5 0.786741 9.6333224 3.614073 1.81E-30 1.96E-28

C1orf112 0.505165 2.6353294 2.383156 1.23E-30 1.96E-28

CDT1 0.72442 10.295085 3.828985 1.74E-30 1.96E-28

POLR2H 7.537011 33.727951 2.16188 1.65E-30 1.96E-28

HID1-AS1 1.35454 0.089802 −3.91491 1.40E-30 1.96E-28

RGCC 288.1421 28.362066 −3.34475 1.65E-30 1.96E-28

TGFBR2 115.8615 18.11443 −2.67719 8.19E-31 1.96E-28

HIGD1B 21.27528 1.7726118 −3.58523 1.49E-30 1.96E-28

MCM10 0.186824 3.4332974 4.199846 2.02E-30 1.96E-28

EPAS1 302.4099 33.349552 −3.18077 1.83E-30 1.96E-28

CLIC5 39.51339 1.1414586 −5.11339 9.44E-31 1.96E-28

SELENBP1 111.762 10.323329 −3.43645 1.31E-30 1.96E-28

GGCT 9.148941 40.088046 2.131495 1.49E-30 1.96E-28

PTPRB 14.86132 1.3793306 −3.42952 9.65E-31 1.96E-28

ADH1B 67.03419 2.2531234 −4.8949 1.08E-30 1.96E-28

CCDC34 1.017814 6.1059669 2.584746 1.59E-30 1.96E-28

SFTA1P 82.09988 3.7230534 −4.46282 1.41E-30 1.96E-28

ZWINT 2.229253 22.492483 3.334811 1.32E-30 1.96E-28

CCNF 0.757461 5.0397914 2.73412 1.58E-30 1.96E-28

BIRC5 0.928432 25.691831 4.790369 1.24E-30 1.96E-28

F11 2.491881 0.0953831 −4.70736 7.91E-31 1.96E-28

SLC39A8 89.4114 7.0744202 −3.65977 1.16E-30 1.96E-28

NCAPH 0.575465 10.404005 4.176267 1.20E-30 1.96E-28

ORC6 0.254266 4.3566875 4.098821 1.37E-30 1.96E-28

AQP4 88.754 5.2209159 −4.08744 1.56E-30 1.96E-28

CDH5 49.44781 4.7938158 −3.36666 1.06E-30 1.96E-28

DLC1 30.49691 2.3005572 −3.72861 1.06E-30 1.96E-28

PAICS 5.058223 26.320499 2.379484 2.07E-30 1.96E-28
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TABLE 2 | Differentially expressed LUSC-specific IRGs.

ID conMean treatMean logFC p-value fdr

HLA-DRB5 461.077 109.62816 −2.0723894 2.71E-22 1.59E-21

ICAM1 200.9799 36.943198 −2.4436708 1.24E-24 1.02E-23

ULBP2 1.50686 9.6289134 2.67582715 6.64E-17 2.26E-16

RAET1L 0.030786 8.0824655 8.03636713 2.54E-27 3.62E-26

PDIA2 0.073611 1.0614969 3.85003002 9.82E-12 2.26E-11

PI3 6.418965 461.90441 6.16910991 8.76E-18 3.23E-17

CAMP 3.875693 0.6317096 −2.6171211 1.37E-25 1.31E-24

PPBP 11.65881 1.0032034 −3.538735 8.03E-27 1.00E-25

CXCL14 5.521033 92.426437 4.06529538 2.82E-19 1.19E-18

CXCL6 1.873474 12.382785 2.72454767 7.67E-05 0.00011

CXCL13 7.549611 63.072959 3.06254743 1.20E-14 3.43E-14

CXCL2 153.9137 11.811675 −3.7038364 1.61E-24 1.29E-23

PF4 3.171328 0.2377575 −3.7375244 5.94E-27 7.68E-26

CXCL3 13.05216 2.2707005 −2.5230792 5.62E-19 2.31E-18

S100A9 353.8853 2142.2339 2.59776246 0.0038027 0.004757

MMP12 0.975359 53.808365 5.78575307 2.25E-29 7.12E-28

SFTPD 614.2878 45.427889 −3.7572644 4.32E-30 2.41E-28

PTGDS 109.6646 20.700635 −2.4053506 3.15E-28 5.75E-27

PGLYRP1 0.900004 0.1497306 −2.5875615 6.34E-18 2.37E-17

S100A7 0.471424 199.23171 8.72320725 1.55E-21 8.27E-21

DEFB126 0.006159 0.4725901 6.26166111 1.24E-19 5.38E-19

PGLYRP3 0.027964 7.0022917 7.96813356 7.21E-27 9.12E-26

S100A2 3.869624 453.25178 6.87197532 7.92E-27 9.90E-26

PGLYRP4 0.067634 2.866368 5.4053312 5.43E-23 3.50E-22

S100A7A 0.00904 3.3194881 8.52035084 2.92E-19 1.23E-18

COLEC12 19.14472 3.0983999 −2.6273512 3.22E-30 2.14E-28

ZC3HAV1L 1.209927 5.077833 2.06929309 1.11E-24 9.22E-24

IL6 52.06098 7.711136 −2.7551872 2.36E-10 4.97E-10

MMP9 10.69609 59.036572 2.46452609 8.00E-15 2.32E-14

A2M 779.4476 80.073835 −3.2830493 1.96E-30 1.96E-28

RBP1 4.821542 27.500384 2.51188523 3.87E-14 1.06E-13

PLAU 12.17388 87.051351 2.83807706 7.23E-24 5.23E-23

PAEP 0.122048 3.3062914 4.75968891 1.11E-06 1.82E-06

SFTPA2 6955.058 386.38136 −4.1699652 3.22E-30 2.14E-28

RBP4 18.01029 3.0610576 −2.5567192 3.99E-26 4.28E-25

SFTPA1 6643.919 304.55793 −4.4472458 1.61E-30 1.96E-28

FABP7 0.024762 6.0551539 7.93389244 8.73E-13 2.17E-12

FABP3 24.57766 5.3883187 −2.1894403 3.86E-19 1.61E-18

FABP4 90.39398 10.227004 −3.1438431 9.78E-28 1.54E-26

CRABP2 5.28148 103.8912 4.29798745 6.32E-26 6.53E-25

CRABP1 0.193769 4.6479257 4.58417545 5.06E-14 1.38E-13

RBP2 3.53304 0.2851016 −3.6313624 6.60E-27 8.42E-26

CTSG 3.970499 0.7948064 −2.3206448 3.81E-18 1.45E-17

PGC 223.8479 9.6219528 −4.5400456 1.63E-29 5.64E-28

TFR2 0.100153 0.9874083 3.30143471 4.30E-27 5.75E-26

CST4 0.00279 0.9936466 8.47641081 3.84E-21 1.95E-20

TLR8 5.311872 1.2317698 −2.1084878 6.26E-25 5.38E-24

WNT5A 3.486577 17.57491 2.33363418 2.90E-12 6.92E-12

MSR1 34.39919 5.0062628 −2.7805688 5.44E-29 1.34E-27

DLL4 10.83279 2.6478642 −2.0325043 2.46E-25 2.26E-24

SLC11A1 15.13747 3.0198257 −2.3255873 1.00E-26 1.22E-25

(Continued)
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TABLE 2 | Continued

ID conMean treatMean logFC p-value fdr

DMBT1 66.28137 8.9206125 −2.8933888 1.05E-22 6.53E-22

DES 46.13218 2.4958105 −4.2081932 9.47E-30 3.96E-28

MARCO 187.9552 13.295954 −3.8213293 1.50E-29 5.32E-28

TNFSF11 0.131349 0.6009262 2.19378786 2.23E-18 8.65E-18

LTB4R 1.839662 9.386993 2.35122214 2.13E-19 9.07E-19

PTX3 9.998778 1.9020955 −2.3941621 6.55E-13 1.64E-12

MASP1 1.386826 0.2849014 −2.2832521 1.17E-26 1.40E-25

PROC 0.127545 0.8345956 2.71007007 2.36E-19 1.00E-18

NDRG1 38.71135 180.94254 2.2247031 9.88E-19 3.96E-18

RNASE7 0.083332 4.0970218 5.61955547 4.28E-18 1.63E-17

HGF 3.517767 0.8361882 −2.0727603 3.83E-26 4.13E-25

ARRB1 19.75633 2.6517601 −2.8972928 5.41E-30 2.76E-28

PCSK1 0.077937 1.3661507 4.13166332 2.97E-20 1.38E-19

AQP9 14.01407 3.308435 −2.0826552 3.66E-23 2.42E-22

APOH 5.821132 0.4219598 −3.7861222 4.67E-29 1.21E-27

BIRC5 0.928432 25.691831 4.79036933 1.24E-30 1.96E-28

AGER 913.1753 16.384691 −5.8004714 1.06E-30 1.96E-28

CCL14 2.456679 0.2098038 −3.5495966 6.38E-28 1.06E-26

CCL26 0.253326 3.8308785 3.9186095 1.46E-23 1.01E-22

CCL2 113.1869 22.493875 −2.3311034 2.73E-13 7.04E-13

CCL23 9.054335 0.7469719 −3.5994829 3.06E-29 8.82E-28

CCL25 0.040678 0.3132759 2.94512442 1.64E-10 3.49E-10

CCL24 13.27311 2.3991627 −2.4679039 1.43E-09 2.86E-09

FGR 25.27742 5.290182 −2.2564599 4.84E-29 1.24E-27

MIF 14.7758 72.891126 2.30250675 4.59E-29 1.19E-27

OLR1 62.64622 6.9919204 −3.1634667 6.58E-29 1.56E-27

RAC3 1.676118 13.227695 2.9803664 1.75E-28 3.48E-27

CHP2 0.199304 3.057916 3.93950328 1.29E-11 2.95E-11

FOS 333.8072 67.494468 −2.3061738 4.01E-21 2.04E-20

IGHG4 113.2865 646.40241 2.51245651 2.38E-11 5.33E-11

IGKV1-37 0.051562 0.2643369 2.35800204 2.53E-05 3.77E-05

IGKV1D-33 0.42836 1.7998077 2.0709486 0.0033446 0.004203

IGKV2D-28 0.413773 1.8014914 2.12228042 0.0062903 0.00772

IGLV11-55 0.039412 0.2158332 2.45319674 8.86E-05 0.000127

CMA1 0.912088 0.1684654 −2.436721 5.62E-16 1.78E-15

CYR61 219.7772 53.240959 −2.0454331 1.02E-22 6.30E-22

EDN2 1.629824 6.5658989 2.01027659 2.53E-05 3.77E-05

PROK2 1.404653 0.2697099 −2.3807331 3.20E-15 9.54E-15

SEMA3B 15.98977 2.6014242 −2.6197754 6.07E-28 1.02E-26

SEMA3G 12.84195 1.3824059 −3.2156109 3.07E-29 8.82E-28

SEMA4B 10.31778 54.302037 2.39587386 5.90E-25 5.09E-24

SLIT2 13.30398 2.3227635 −2.5179442 1.36E-28 2.82E-27

TNC 16.76456 67.140469 2.00176783 1.41E-07 2.46E-07

C5AR1 37.98875 8.0161238 −2.2445957 2.45E-28 4.65E-27

CCRL2 7.041071 1.445888 −2.2838392 1.67E-29 5.73E-28

CX3CR1 5.167159 0.5712854 −3.1770877 3.40E-27 4.67E-26

EDNRB 32.29231 1.87733 −4.1044363 1.43E-30 1.96E-28

FPR1 24.59865 5.0476023 −2.2849091 6.14E-23 3.92E-22

FPR2 7.519719 0.7269767 −3.3706979 3.36E-27 4.63E-26

GPR17 1.114164 0.1314182 −3.0837243 2.85E-27 4.01E-26

LTB4R2 0.460114 1.9873162 2.1107577 2.18E-19 9.29E-19

(Continued)
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TABLE 2 | Continued

ID conMean treatMean logFC p-value fdr

PLXNB3 0.339127 3.2805048 3.27401847 5.72E-27 7.42E-26

ADM2 0.463038 3.4662184 2.90416101 3.15E-25 2.84E-24

AGRP 4.924205 0.2325856 −4.4040572 2.07E-30 1.96E-28

AMH 0.13159 0.942215 2.84000501 8.13E-07 1.35E-06

APLN 23.412 3.00256 −2.9629829 1.03E-19 4.53E-19

ARTN 0.188148 8.4091957 5.48202581 4.84E-29 1.24E-27

BMP2 22.54047 4.9700208 −2.181194 7.99E-25 6.77E-24

BMP5 7.604228 1.4532498 −2.3875191 2.60E-27 3.70E-26

BMP7 0.863562 17.007779 4.29975063 3.90E-21 1.99E-20

CALCB 0.018958 0.2403375 3.66421158 0.000197 0.000274

CGA 0.004451 0.5006056 6.81336953 0.0019182 0.002461

CGB7 0.043046 0.3288359 2.9334072 1.00E-20 4.88E-20

CHGA 0.135288 4.4348736 5.03478987 0.0053207 0.006571

CHGB 0.085331 2.6634662 4.96408972 6.77E-11 1.47E-10

CMTM2 1.853074 0.4255054 −2.1226714 1.88E-21 9.90E-21

CSF3 39.48564 2.0020425 −4.3017836 7.05E-19 2.87E-18

DKK1 1.896679 8.8747812 2.226236 1.78E-05 2.68E-05

FGF11 0.033473 0.6242029 4.2209609 2.21E-27 3.21E-26

FGF12 0.347641 1.6173135 2.2179291 2.32E-08 4.25E-08

FGF18 1.920716 0.4252406 −2.175293 4.36E-26 4.66E-25

FGF19 0.006679 3.8373226 9.16618982 1.07E-13 2.84E-13

FGF8 0.036014 0.2943497 3.03091193 4.61E-05 6.73E-05

GAL 0.05919 5.1206915 6.43485126 3.00E-28 5.54E-27

GAST 0.020864 3.2728535 7.29341768 2.74E-22 1.61E-21

GDF10 11.18805 0.4802897 −4.5419097 2.59E-30 2.02E-28

GDNF 0.034377 0.8466851 4.62231808 3.53E-21 1.81E-20

GPI 19.82174 86.319584 2.12260465 1.33E-29 4.96E-28

GREM1 0.452455 5.1376902 3.50527377 5.04E-23 3.26E-22

GREM2 0.881029 0.213174 −2.0471577 2.66E-23 1.79E-22

IFNE 0.023322 0.3698422 3.98716901 1.49E-10 3.18E-10

IL11 0.2357 1.4544656 2.62546653 2.38E-19 1.01E-18

IL19 0.009421 0.3151672 5.0641215 7.94E-10 1.61E-09

IL23A 0.705467 4.0015916 2.50392301 2.24E-23 1.52E-22

INHA 0.092499 1.6216373 4.13187128 1.70E-20 8.09E-20

INHBE 0.080694 0.5566857 2.78633466 9.09E-19 3.66E-18

JAG1 8.342649 43.423872 2.3799109 1.34E-22 8.19E-22

KL 3.189386 0.320923 −3.3129795 1.72E-29 5.86E-28

LEFTY2 1.2978 0.131131 −3.3069875 1.02E-28 2.23E-27

MDK 17.16142 108.6156 2.66199044 5.12E-26 5.37E-25

NDP 0.083266 0.3699254 2.15144096 0.0001198 0.000169

NPPC 0.102034 6.4303417 5.97777863 3.10E-17 1.09E-16

NRTN 0.42792 1.8945531 2.14644486 4.41E-16 1.40E-15

NTS 2.922934 256.00821 6.45262894 3.66E-08 6.63E-08

OGN 11.89253 0.7461729 −3.9944021 6.65E-29 1.57E-27

POMC 0.645712 5.0113501 2.95623682 1.04E-06 1.71E-06

PTHLH 0.474844 58.687804 6.94946355 3.39E-28 6.12E-27

REG1A 0.011046 0.2256665 4.35254251 1.60E-09 3.18E-09

RETN 26.71932 1.0816423 −4.6265878 3.78E-30 2.23E-28

SCG2 0.673358 6.8328843 3.34304839 0.0006537 0.000871

SCGB3A1 340.4085 35.154133 −3.2755009 1.25E-23 8.69E-23

SLURP1 0.027479 1.2987794 5.56270309 1.70E-13 4.45E-13

(Continued)
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TABLE 2 | Continued

ID conMean treatMean logFC p-value fdr

SPP1 19.69514 452.25766 4.52123351 2.80E-25 2.55E-24

TG 0.064614 0.3917236 2.59991949 1.57E-15 4.78E-15

TNFSF13 19.26061 4.7280304 −2.0263422 2.96E-30 2.11E-28

UCN2 0.034901 2.5094825 6.16798312 1.66E-28 3.34E-27

VGF 0.044767 0.7533296 4.07276254 1.13E-16 3.78E-16

ACVR1C 0.114121 0.7988812 2.80741073 3.32E-22 1.92E-21

ACVRL1 38.01144 4.6870551 −3.0196801 8.01E-31 1.96E-28

ADRB1 9.178733 0.8539406 −3.4260873 1.51E-28 3.08E-27

ADRB2 11.55157 1.5885658 −2.8622923 1.05E-29 4.25E-28

AGTR1 2.398264 0.3281341 −2.8696331 3.23E-29 9.14E-28

AGTR2 10.89749 1.1084088 −3.2974335 5.33E-25 4.65E-24

ANGPT1 8.056934 1.2371929 −2.7031604 8.30E-29 1.89E-27

ANGPTL1 4.07565 0.3954179 −3.3655799 2.83E-30 2.07E-28

AVPR2 1.210134 0.2127857 −2.5076941 3.26E-26 3.58E-25

CALCRL 31.44559 5.2338716 −2.5869074 1.72E-27 2.56E-26

CSF3R 15.61837 3.2362367 −2.270855 5.17E-27 6.79E-26

ENG 111.7984 23.420986 −2.2550262 3.75E-30 2.23E-28

FGFR3 7.514727 34.279517 2.18955411 2.10E-11 4.73E-11

FGFR4 16.22647 2.093487 −2.9543695 1.33E-29 4.96E-28

FLT4 6.553111 1.3946479 −2.232279 6.26E-28 1.05E-26

GALR2 0.056636 0.3470297 2.61525621 5.63E-12 1.32E-11

GCGR 0.012172 0.3952067 5.02096267 6.83E-18 2.54E-17

HNF4G 0.144068 0.6783255 2.23522365 9.36E-13 2.32E-12

HTR3A 0.058628 0.9644891 4.04009594 2.60E-12 6.23E-12

HTR3C 1.12333 0.1739655 −2.6909089 1.00E-25 9.85E-25

IL12RB2 0.157606 1.0603025 2.75008257 4.12E-15 1.22E-14

IL1RL1 12.31321 0.9700207 −3.6660481 4.54E-28 7.88E-27

IL1RL2 0.356559 1.5434502 2.11394595 4.01E-18 1.53E-17

IL20RB 0.334829 16.959207 5.66250039 4.22E-28 7.41E-27

IL22RA2 0.059908 0.4350077 2.86021389 3.31E-19 1.39E-18

IL31RA 0.048264 0.496303 3.36218938 6.63E-14 1.79E-13

IL3RA 22.1212 4.6459548 −2.2513828 2.53E-29 7.63E-28

IL5RA 1.221382 0.1871493 −2.7062533 7.09E-24 5.13E-23

KDR 18.30759 3.376128 −2.4390006 9.03E-29 2.01E-27

LEPR 6.218121 1.0129005 −2.6179862 1.96E-29 6.46E-28

LGR4 1.755462 8.5709768 2.28760862 1.27E-25 1.22E-24

LIFR 14.38279 3.3477143 −2.1030953 8.69E-26 8.69E-25

NGFR 1.334232 8.4440305 2.6619221 8.37E-08 1.48E-07

NPR1 17.17307 1.2954758 −3.7285939 1.01E-30 1.96E-28

NR0B1 0.013368 5.448542 8.67094443 2.29E-08 4.21E-08

NR0B2 4.127285 0.8196907 −2.3320415 2.36E-28 4.49E-27

NR3C2 4.652115 0.9041322 −2.3632811 1.07E-28 2.31E-27

NR4A1 64.22084 9.6411929 −2.735758 3.56E-23 2.35E-22

NR4A2 17.96171 4.4469599 −2.0140337 1.07E-16 3.58E-16

NR4A3 13.16555 1.6840739 −2.9667404 6.44E-21 3.19E-20

NR5A1 0.009207 0.5656858 5.94115282 2.06E-09 4.06E-09

NR5A2 1.380175 0.2935232 −2.2333049 3.09E-23 2.06E-22

OPRK1 0.059067 0.4938854 3.06376221 0.0007962 0.001053

PTH1R 3.487933 0.5849558 −2.5759728 1.24E-29 4.78E-28

PTH2R 0.04934 1.1430188 4.53395516 0.0021887 0.002795

RORC 5.43979 1.1361492 −2.2593987 9.43E-25 7.89E-24

(Continued)
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TABLE 2 | Continued

ID conMean treatMean logFC p-value fdr

RXFP1 1.799126 0.3225014 −2.4799191 3.36E-27 4.63E-26

RXRG 2.374553 0.3050428 −2.9605726 1.75E-28 3.48E-27

S1PR1 53.92726 5.198261 −3.3749137 1.21E-30 1.96E-28

SCTR 6.672413 1.1492864 −2.5374702 6.53E-27 8.35E-26

SSTR1 4.071218 0.3735964 −3.4459081 1.62E-28 3.27E-27

TEK 20.30388 1.4018787 −3.8563218 9.44E-31 1.96E-28

TGFBR2 115.8615 18.11443 −2.6771903 8.19E-31 1.96E-28

TIE1 16.35046 2.5457047 −2.6831939 3.44E-30 2.19E-28

TNFRSF10C 3.589903 0.8587616 −2.0636151 1.69E-24 1.35E-23

TNFRSF18 1.303109 14.476521 3.47368513 1.50E-25 1.43E-24

TNFRSF25 1.140956 5.1233473 2.16684331 8.68E-20 3.84E-19

TUBB3 0.10875 1.2231949 3.49156862 4.42E-23 2.88E-22

VIPR1 16.39261 1.5679781 −3.3860679 5.53E-28 9.39E-27

ICAM2 10.66629 2.1235578 −2.328503 2.05E-29 6.67E-28

SHC3 2.660188 0.4328611 −2.6195523 1.18E-28 2.51E-27

SH2D1B 0.946486 0.2338434 −2.0170378 7.89E-20 3.51E-19

CBLC 1.349684 24.094321 4.1579992 3.25E-28 5.90E-27

PDK1 0.900902 4.2255279 2.22968943 1.68E-28 3.37E-27

TRGJP2 6.410727 1.2902415 −2.3128469 2.20E-24 1.73E-23

cases were classified into low or high-risk group according to the
median risk score value. The receiver operating characteristics
(ROC) curve is based on the specificity and sensitivity of various
critical values of continuous diagnostic tests judged according
to the binary gold standard (22). To evaluate the specificity
and sensitivity of the prognostic model, the ROC curve was
performed to examine the signature of DEIRGs (low vs. high risk)
on overall survival (OS).Moreover, the area under the ROC curve
(AUC) values were determined for evaluating the prognostic
model to reveal the prognostic biomarkers in LUSC, with values
of 0.5–0.7 representing moderate, 0.7–0.9 representing better,
and more than 0.9 representing superior values.

Correlation Analysis Between Clinical
Features and DEIRGs in Prediction Model
of LUSC
In order to further explore the correlations between DEIRGs in
prediction model and clinical characteristics of LUSC, we used
the “beeswarm” R package to analyze the correlations between
clinical features (age, gender, pathological T stage, pathological N
stage, pathological M stage, and pathological TNM stage) and the
expression levels of 10 DEIRGs in the prediction model.

Infiltration of Immunocytes
Tumor Immune Estimation Resource (TIMER), an online
database, is able to analyze and visualize the tumor-infiltrating
immunocyte levels (23). It reanalyzes gene expression data
of 10,897 TCGA samples from 32 types of cancers for
identifying correlation between immunocyte infiltration and
other characteristics, incorporating dendritic cells, neutrophils,

macrophages, CD4T cells, CD8T cells, and B cells (https://
zenodo.org/record/57669#.Xeezu9V5uMo).

Statistical Analysis
The “limma R” package in R software was used for differential
analysis, whereas the “GOplot R” and “cluster profile R” packages
were adopted for functional enrichment analysis. The prediction
model was constructed and applied in univariate as well as
multivariate Cox regression analysis. Besides, the “survival ROC
R,” “survival R,” “risk Plot R,” and “beeswarm R” packages
were adopted to validate the prognostic model in LUSC. The
independent t-test was performed to validate the heterogeneities
in clinical characteristics. A difference of P < 0.05 indicated
statistical significance.

RESULTS

DEGs, DEIRGs, and DETFs
In the present study, a total of 551 tissues were analyzed, which
included 502 LUSC as well as 49 normal tissue specimens.
According to the set thresholds (P < 0.01 and fold change of
>2), 3,599 DEGs, 223 DEIRGs, and 46 DETFs were screened
in LUSC as well as non-LUSC tissue specimens. In line
with these criteria, we screened 2,598 up-regulated DEGs and
995 down-regulated ones, 110 up-regulated DEIRGs and 113
down-regulated ones, 31 up-regulated DETFs and 15 down-
regulated ones. Among them, the top 50 DEGs, DEIRGs, and
DETFs are shown in Tables 1–3, respectively. For exhibiting the
distributions of all DEGs, DEIRGs, and DETFs at logFC and -
log (FDR) dimensions, the volcano plots and heat maps were
drawn (Figures 1A–F). Figure 2 presents the flow diagram of
this research.
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Functional Analyses for DEIRGs
For explaining biological functions of DEIRGs in LUSC
patients, functional enrichment analyses were conducted.
According to GO analysis results, 5 GOs displayed significant
difference (P < 0.05), among which, “GO: 0005576 extracellular
region” was the most significant GO term (Figures 3A,C).

Figure 3B shows the correlations between the top 30
statistically significant DEIRGs and corresponding GO terms.
Furthermore, the “cluster profile R” package was used for
KEGG pathway enrichment analyses. The dot plot shows the
10 most significant pathways with the highest enrichment
levels of DERGs within the KEGG database (Figure 3D).

TABLE 3 | Differentially expressed TFs.

ID conMean treatMean logFC p-value fdr

BCL11A 0.564995 5.573467 3.302266 3.95E-25 3.51E-24

BRCA1 0.715878 3.122877 2.125091 1.59E-27 2.38E-26

CBX2 0.657288 7.539504 3.519873 5.22E-27 6.84E-26

CDX2 0.003056 0.270279 6.466585 2.99E-08 5.46E-08

CENPA 0.277394 7.535176 4.76363 1.03E-30 1.96E-28

E2F1 2.77481 11.86825 2.096646 1.48E-27 2.23E-26

E2F7 0.123771 3.109288 4.650835 2.28E-30 1.97E-28

EMX1 0.005446 0.358422 6.040421 1.47E-22 8.91E-22

EPAS1 302.4099 33.34955 -3.18077 1.83E-30 1.96E-28

ERG 9.45181 1.810232 -2.38442 9.89E-30 4.06E-28

EZH2 0.904531 8.895519 3.297837 1.94E-30 1.96E-28

FLI1 8.69851 1.975634 -2.13845 4.00E-29 1.08E-27

FOS 333.8072 67.49447 -2.30617 4.01E-21 2.04E-20

FOXA2 14.60491 1.667552 -3.13065 1.25E-28 2.64E-27

FOXM1 0.857509 20.68245 4.592112 1.74E-30 1.96E-28

GATA6 11.25897 2.044409 -2.46132 1.31E-29 4.93E-28

H2AFX 10.15427 45.57329 2.166102 2.11E-29 6.81E-28

HNF1B 4.134758 0.37293 -3.47083 5.55E-29 1.36E-27

HNF4G 0.144068 0.678326 2.235224 9.36E-13 2.32E-12

HOXA9 0.107939 0.590502 2.451718 1.07E-08 2.01E-08

HOXB13 0.006008 2.234528 8.538856 5.14E-17 1.77E-16

HOXB7 1.658101 10.96895 2.725822 9.06E-20 4.00E-19

HOXC11 0.003249 1.075878 8.37151 1.30E-21 6.97E-21

HOXC9 0.120816 1.739933 3.848151 3.95E-19 1.64E-18

LHX2 0.012917 1.339701 6.696443 1.62E-27 2.42E-26

LMNB1 4.194354 19.46207 2.214144 9.73E-29 2.14E-27

MYBL2 1.383085 39.37181 4.831201 2.00E-30 1.96E-28

NCAPG 0.389631 5.24307 3.750232 2.41E-30 1.98E-28

NFE2 2.345071 0.566439 -2.04964 7.79E-26 7.88E-25

NR4A1 64.22084 9.641193 -2.73576 3.56E-23 2.35E-22

NR5A2 1.380175 0.293523 -2.2333 3.09E-23 2.06E-22

PAX3 0.002614 0.233341 6.480211 5.45E-16 1.72E-15

RBP2 3.53304 0.285102 -3.63136 6.60E-27 8.42E-26

RXRG 2.374553 0.305043 -2.96057 1.75E-28 3.48E-27

SALL4 0.058452 1.022483 4.128681 1.26E-27 1.94E-26

SCML2 0.228445 1.192228 2.38374 1.58E-10 3.35E-10

SNAI2 5.61899 23.77576 2.081109 7.12E-22 3.93E-21

SOX17 6.052244 0.613681 -3.30191 8.42E-30 3.66E-28

SOX2 2.181036 85.96764 5.300708 1.48E-23 1.02E-22

SOX9 3.284094 13.75398 2.066282 7.94E-12 1.84E-11

TAL1 3.049298 0.413054 -2.88408 1.05E-28 2.27E-27

TCF21 12.24521 0.578443 -4.4039 1.31E-30 1.96E-28

TFAP2A 0.158501 6.923488 5.448932 8.24E-30 3.61E-28

TFAP2C 2.540361 13.91772 2.453817 1.32E-26 1.56E-25

TP63 1.27116 73.18094 5.847251 5.80E-24 4.26E-23

TP73 0.806192 3.82784 2.247336 3.90E-16 1.25E-15
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FIGURE 1 | Identification of differential expression genes, IRGs and TFs in LUSC vs. normal tissues. (A–C) The volcano plot of differential expression genes, IRGs and

TFs in LUSC vs. normal tissues. (D–F) The hierarchical clustering heat maps of differential expression genes, IRGs and TFs in LUSC vs. normal tissues.

In addition, the bar plot indicates the 12 most significant
pathways with the highest enrichment levels of DEIRGs
within the KEGG database (Figure 3E). Those 21 statistically
significant pathways in the KEGG database were selected to
construct the “pathway-DEIRGs” network (Figure 3F). The
21 statistically significant pathways in the KEGG database
are shown in Table 4. A difference of P < 0.05 indicated
statistical significance.

Univariate Cox Regression Analysis and
Regulatory Network of Prognosis-Related
DEIRGs and DETFs
Univariate Cox regression analysis was analyzed to identify

prognosis-related DEIRGs in LUSC (P < 0.05). Then, 37 OS-

related DEIRGs were identified, incorporating 31 high-risk
DEIRGs and 6 low-risk DEIRGs (Figure 4A). For exploring
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FIGURE 2 | The flow diagram of the whole study.

the molecular mechanism of prognosis-related DEIRGs, we
constructed the TFs-IRGs regulatory network. A total of 26

prognosis-related DEIRGs and 13 DETFs were shown in the

network (Figure 4B). As shown in Figure 4B, CENPA had a
negatively relationship with A2M, TIE1, ENG, and ACVRL1.

ARRB1 had a negatively relationship with TP63, SNAI2. SOX2

had a negatively relationship with ICAM1 and TNFRSF10C. The

coefficient filter >0.4 and the p-value filter <0.001 were set as
the threshold to indicate statistical significance. Table 5 shows
the regulatory network between DETFs and prognosis-related

DEIRGs in LUSC.

Establishment of the 10 DEIRGs-Based
Prediction Model in LUSC
The prognostic DEIRGs were screened through univariate Cox

regression analyses in LUSC, including 37 OS-related DEIRGs

(P < 0.05) (Figure 4A). Then, the 37 DEIRGs were selected

to incorporate into multivariate Cox regression analysis, which
suggested that 10 DEIRGs might serve to be the prognostic
factors to independently predict LUSC prognosis. These 10
DEIRGs were finally screened for constructing the prediction
model (Table 6). Besides, expression profiles of these 10 DEIRGs
were then linearly combined to build up the prediction model
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FIGURE 3 | Functional enrichment analysis of differential expression IRGs in LUSC. (A) The outer circle shows the expression (logFC) of differential expression IRGs in

each enriched GO terms: red dots which were on each Go terms indicated the up-regulation differential expression IRGs. Blue dots indicated the down-regulation

differential expression IRGs. The inner-circle shows the prominence of GO terms (log10-adjusted P-values). (B) The circle represents the relationship between

statistically top 30 differential expression IRGs and their GO terms. (C) The top five most significant GO terms and their annotations. (D) The top 10 pathways which

were enriched in differential expression IRGs were showed in the dot plot. (E) The top 12 pathways which were enriched in differential expression IRGs were showed

in the barplot. (F) the significantly statistically different 21 pathways were used Cytoscape software for constructing a pathway-IRG network with differential expression

IRGs. The green rectangles indicate the pathways, the red circles indicate the up-regulation differential expression IRGs, the blue circles indicate the down-regulation

differential expression IRGs.
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TABLE 4 | KEGG Pathway analysis of differential expression IRGs in LUSC.

ID Description Count p-value p.adjust q-value

hsa04060 Cytokine-cytokine receptor interaction 46 8.05E-28 1.48E-25 1.21E-25

hsa04080 Neuroactive ligand-receptor interaction 33 1.38E-13 1.27E-11 1.04E-11

hsa04061 Viral protein interaction with cytokine and cytokine receptor 18 2.57E-12 1.58E-10 1.29E-10

hsa05323 Rheumatoid arthritis 14 8.87E-09 4.08E-07 3.34E-07

hsa04062 Chemokine signaling pathway 18 1.03E-07 3.80E-06 3.11E-06

hsa04630 JAK-STAT signaling pathway 14 9.11E-06 0.0002793 0.0002285

hsa04657 IL-17 signaling pathway 10 2.79E-05 0.000705 0.0005768

hsa04350 TGF-beta signaling pathway 10 3.07E-05 0.000705 0.0005768

hsa04015 Rap1 signaling pathway 13 0.00056668 0.0097149 0.0079475

hsa04151 PI3K-Akt signaling pathway 18 0.00056926 0.0097149 0.0079475

hsa04010 MAPK signaling pathway 16 0.00058078 0.0097149 0.0079475

hsa04668 TNF signaling pathway 9 0.00065132 0.0099868 0.00817

hsa05224 Breast cancer 10 0.00121214 0.0171564 0.0140353

hsa04614 Renin-angiotensin system 4 0.00132305 0.0173887 0.0142253

hsa04014 Ras signaling pathway 13 0.00142622 0.017495 0.0143123

hsa04928 Parathyroid hormone synthesis, secretion and action 8 0.00194247 0.0223384 0.0182746

hsa05144 Malaria 5 0.00383322 0.041489 0.0339412

hsa05150 Staphylococcus aureus infection 7 0.0044752 0.0457465 0.0374242

hsa04640 Hematopoietic cell lineage 7 0.00473805 0.0458843 0.0375369

hsa04145 Phagosome 9 0.0053595 0.0493074 0.0403373

hsa05133 Pertussis 6 0.0056862 0.0498219 0.0407582

FIGURE 4 | OS-related DEIRGs and TFs-IRGs regulatory network. (A) The forest map of OS-related DEIRGs in LUSC. Red and green dots indicate the high and

low-risk, respectively. (B) Regulatory network between prognosis-related DEIRGs and DETFs in LUSC. The red and blue circles indicate the high and low-risk DEIRGs,

respectively. The green diamonds indicate DETFs. Solid and dashed lines in the network showed that there is a positive and negative correlation between

prognosis-related DEIRGs and DETFs.
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TABLE 5 | Correlation analysis between TFs and IRGs in LUSC.

TF ImmuneGene cor p-value Regulation

CENPA A2M −0.4136 3.07E-19 Negative

CENPA ACVRL1 −0.4029 3.01E-18 Negative

CENPA ENG −0.4025 3.27E-18 Negative

CENPA TIE1 −0.4228 4.06E-20 Negative

EPAS1 A2M 0.42186 5.01E-20 Positive

EPAS1 ARRB1 0.40984 6.89E-19 Positive

EPAS1 EDNRB 0.49683 3.01E-28 Positive

EPAS1 ACVRL1 0.42222 4.62E-20 Positive

EPAS1 AGTR2 0.40382 2.46E-18 Positive

EPAS1 ENG 0.44962 7.77E-23 Positive

EPAS1 NR4A3 0.4066 1.37E-18 Positive

EPAS1 PTH1R 0.49468 5.55E-28 Positive

EPAS1 TIE1 0.48626 5.81E-27 Positive

ERG A2M 0.48924 2.55E-27 Positive

ERG DLL4 0.40045 4.96E-18 Positive

ERG HGF 0.41438 2.59E-19 Positive

ERG EDNRB 0.46326 2.58E-24 Positive

ERG ACVRL1 0.46495 1.68E-24 Positive

ERG AGTR2 0.45101 5.53E-23 Positive

ERG ENG 0.4115 4.83E-19 Positive

ERG TIE1 0.52801 2.59E-32 Positive

FLI1 ICAM1 0.5065 1.83E-29 Positive

FLI1 A2M 0.63456 6.01E-50 Positive

FLI1 DLL4 0.53812 1.01E-33 Positive

FLI1 MARCO 0.48172 2.01E-26 Positive

FLI1 HGF 0.53757 1.21E-33 Positive

FLI1 ARRB1 0.5232 1.17E-31 Positive

FLI1 CYR61 0.4488 9.48E-23 Positive

FLI1 EDNRB 0.59983 1.82E-43 Positive

FLI1 RETN 0.42341 3.55E-20 Positive

FLI1 ACVRL1 0.70104 5.57E-65 Positive

FLI1 ENG 0.65288 1.04E-53 Positive

FLI1 FLT4 0.64726 1.57E-52 Positive

FLI1 NR4A3 0.46872 6.33E-25 Positive

FLI1 PTH1R 0.4162 1.74E-19 Positive

FLI1 TIE1 0.68268 1.99E-60 Positive

FLI1 ICAM2 0.68806 9.99E-62 Positive

FOS NR4A1 0.57363 4.46E-39 Positive

FOXA2 DLL4 0.40778 1.07E-18 Positive

FOXA2 ARRB1 0.44232 4.51E-22 Positive

FOXA2 NR0B2 0.6318 2.12E-49 Positive

GATA6 ICAM1 0.46427 2.00E-24 Positive

GATA6 A2M 0.46541 1.49E-24 Positive

GATA6 ARRB1 0.40406 2.34E-18 Positive

GATA6 EDNRB 0.55237 8.54E-36 Positive

GATA6 BMP2 0.43468 2.71E-21 Positive

GATA6 ACVRL1 0.47913 4.04E-26 Positive

GATA6 FLT4 0.46192 3.63E-24 Positive

GATA6 NR4A3 0.48118 2.32E-26 Positive

GATA6 PTH1R 0.40226 3.41E-18 Positive

GATA6 TIE1 0.45951 6.69E-24 Positive

(Continued)

TABLE 5 | Continued

TF ImmuneGene cor p-value Regulation

GATA6 ICAM2 0.44256 4.26E-22 Positive

NR4A1 CYR61 0.47941 3.74E-26 Positive

NR4A1 EDNRB 0.40127 4.19E-18 Positive

NR4A1 NR4A1 0.87655 2.51E-138 Positive

NR4A1 NR4A3 0.67207 6.04E-58 Positive

RXRG NR0B2 0.51789 6.02E-31 Positive

RXRG SSTR1 0.40021 5.22E-18 Positive

SNAI2 ARRB1 −0.4122 4.19E-19 Negative

SOX2 ICAM1 −0.453 3.35E-23 Negative

SOX2 WNT5A 0.43716 1.53E-21 Positive

SOX2 TNFRSF10C −0.4192 8.97E-20 Negative

TCF21 SFTPD 0.46099 4.60E-24 Positive

TCF21 A2M 0.58905 1.30E-41 Positive

TCF21 DLL4 0.46154 4.00E-24 Positive

TCF21 MARCO 0.4991 1.57E-28 Positive

TCF21 HGF 0.4629 2.83E-24 Positive

TCF21 ARRB1 0.45689 1.29E-23 Positive

TCF21 EDNRB 0.60046 1.41E-43 Positive

TCF21 RETN 0.58495 6.35E-41 Positive

TCF21 ACVRL1 0.59241 3.50E-42 Positive

TCF21 AGTR2 0.51486 1.51E-30 Positive

TCF21 ENG 0.5005 1.05E-28 Positive

TCF21 FLT4 0.49341 7.93E-28 Positive

TCF21 PTH1R 0.54606 7.27E-35 Positive

TCF21 SCTR 0.47708 7.00E-26 Positive

TCF21 TIE1 0.57698 1.29E-39 Positive

TCF21 ICAM2 0.43744 1.43E-21 Positive

TP63 WNT5A 0.45232 4.00E-23 Positive

TP63 LTB4R 0.43924 9.36E-22 Positive

TP63 ARRB1 −0.4472 1.38E-22 Negative

TABLE 6 | Multivariate Cox regression analyses of 10 DEIRGs in risk models in

LUSC.

IRG coef exp (coef) se (coef) z P

SEMA3B 0.2141 1.2387 0.093 2.3 0.021

AMH −0.2698 0.7636 0.1251 −2.16 0.031

CALCB −0.6777 0.5078 0.2912 −2.33 0.02

NRTN −0.1896 0.8273 0.1092 −1.74 0.082

VGF 0.3628 1.4373 0.0903 4.02 5.90E-05

ACVRL1 0.4248 1.5293 0.2144 1.98 0.048

ENG −0.3538 0.702 0.1871 −1.89 0.059

GCGR −0.4009 0.6697 0.2073 −1.93 0.053

HTR3A 0.1985 1.2195 0.0856 2.32 0.02

NR4A1 0.1339 1.1433 0.0727 1.84 0.066

in LUSC. The weighted relative coefficients in multiple Cox
regression were shown below: survival riskscore value = (0.2141
× SEMA3B expression + (−0.2698) × AMH expression +

(−0.6777) × CALCB expression + 0.1896 × NRTN expression
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FIGURE 5 | Prognosis value of 10 differential expression IRGs in LUSC patients. (A) Kaplan-Meier curve analysis for OS (overall survival) in LUSC patients using the 10

differential expression IRGs signature. (B) ROC curve analysis of the prognostic 10 differential expressions IRGs signature. (C) The risk score analysis of prognostic 10

differential expressions IRGs signature in LUSC high-risk group and low-risk group. (D) The survival status analysis of prognostic 10 differential expressions IRGs

signature in LUSC high-risk group and low-risk group. (E) A risk heat-map constructed from 10 differential expression IRGs from 431 LUSC patients.

+ 0.3628 × VGF expression + 0.4248 × ACVRL1 expression +

(−0.3538) × ENG expression + (−0.4009) × GCGR expression
+ 0.1985 × HTR3A expression + 0.1339 × NR4A1 expression).
Multivariate Cox regression analyses are shown in Table 6. Based
on the median riskscore value, 431 cases who had intact survival

time and status data were classified as high-(n = 215) or low-
(n = 216) risk group. According to survival analysis based
on the prediction model with the 10 DEIRGs, LUSC cases of
high-risk group were associated with notably poor prognosis
compared with those of low-risk group (P = 0) (Figure 5A). To
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FIGURE 6 | Univariate and multivariate independent prognostic analysis in

LUSC. (A) Univariate independent prognostic analysis forest map of the

prognostic immune-related genes model and LUSC clinicopathological

characteristics. (B) Multivariate independent prognostic analysis forest map of

prognostic immune-related genes model and LUSC clinicopathological

characteristics. The red dots in the forest map shows that the clinical

characteristic is a high-risk factor. The green dots in the forest map shows that

the clinical characteristic is a low-risk factor.

evaluate the specificity and sensitivity of the prognosticmodel, we
performed the ROC curve, for which the AUC value was 0.709,
illustrating that the DEIRGs-based prediction model achieved
better accuracy in survival monitoring (Figure 5B). The riskscore
curve and survival status data of both groups of patients are
exhibited in Figures 5C,D, respectively. As shown in Figure 5E,
the expression of 10 DEIRGs was profiled.

Independent Prognosis Analysis
The prognostic IRGs were screened for predicting the prognosis
for LUSC cases. Eventually, altogether 37 DEIRGs showed
significant correlation with overall survival (OS) (P < 0.05)
(Figure 6A). Meanwhile, univariate independent prognostic
analysis showed that, pathological M stage and the riskscore were
related to OS, and the difference was of statistical significance
(P < 0.001). Moreover, the multivariate independent prognostic
analysis showed that, pathological M stage and the riskscore
might serve as the independent prognostic factors to predict the
survival for LUSC (Table 7; Figure 6B).

TABLE 7 | Univariate and multivariate independent prognostic analysis of LUSC

clinical characteristics based on prediction model.

Variables Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age 1.005 (0.978–1.032) 0.729 0.974 (0.903–0.051) 0.502

Gender 0.998 (0.667–1.494) 0.994 0.845 (0.406–1.758) 0.652

Stage 1.118 (0.778–1.606) 0.546 1.413 (0.568–3.513) 0.457

T 1.179 (0.924–1.504) 0.186 1.476 (0.864–2.52) 0.154

M 13.132(3.085–55.908) <0.001 7.241 (1.371–38.24) 0.02

N 1.092 (0.852–1.400) 0.488 0.815 (0.417–1.592) 0.549

riskScore 1.31 (1.124–1.527) <0.001 1.321 (1.122–1.556) <0.001

The bold values represent that the prediction model of IRGs could be act as independent

prognostic factors.

Relationships Between Differential IRGs in
Prediction Models and Clinical Features in
LUSC
Relationships between DEIRGs in risk model and clinical
characteristics, including gender, age, pathological classification,
pathological T stage, pathological N stage, and pathological
M stage, were analyzed (Table 8). As observed from Figure 7,
the expression levels of AMH, CALCB, ACVRL1 and NR4A1
were significantly different in LUSC at pathological I-II stage
compared with those at III-IV stage (P < 0.05) (Figures 7A–D).
The expression levels of AMH, CALCB, GCGR, and NR4A1
were significantly different in LUSC at pathological T1-T2 stage
compared with those at T3-T4 stage (P < 0.05) (Figures 7E–H).
The expression levels of SEMA3B, AMH, CALCB, and GCGR
were significantly different in LUSC at pathological M0 stage
relative to those at M1 stage (P < 0.05) (Figures 7I–L). The
expression of VGF was conspicuously different in LUSC at
pathological N0 stage relative to that at N1-N3 stage (P = 0.005)
(Figure 7M).

Correlation Analysis Between DEIRGs in
Prediction Model and Immunocyte
Infiltration in LUSC
To figure out whether DEIRGs precisely reflected the status of
LUSC IME, correlation analysis was carried out to examine the
relationship between DEIRGs in the LUSC prediction model and
immunocyte infiltration (Figure 8). As shown in Figure 8, B cells,
CD4-T cells, CD8-Tcells, Macrophages were not associated with
the riskScore of the prediction model (P > 0.05) (Figures 8A–E).
Dendritic cells and neutrophils had a positively relationship with
DEIRGs in prediction model (P < 0.05) (Figures 8D,F).

DISCUSSION

In recent years, IRGs show increasing importance to cancer
development and immunotherapies (24–27). However,
transcriptome studies on IRGs, the relationships of IRGs
with clinical characteristics, and the molecular mechanisms
have not been performed yet. In the present work, the Cox
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TABLE 8 | Relationships between the expression of IRGs in risk models and the clinical characteristics in LUSC.

Gene Age (<=65/>65) Gender Pathological Stage T (T1-T2/T3-T4) M (M0/M1) N (N0/N1-N3)

(male/female) (I–II/III-IV)

t P t P t P t P t P T P

SEMA3B −1.04 0.299 −1.319 0.188 0.15 0.055 0.92 0.381 2.776 0.03 −1.01 0.314

AMH 0.119 0.264 −0.12 0.905 6.389 <0.001 6.01 <0.001 5.744 <0.001 0.869 0.386

CALCB −0.052 0.958 −0.426 0.671 3.29 0.001 3.355 <0.001 3.19 0.002 −0.65 0.519

NRTN −1.363 0.175 −0.881 0.379 0.713 0.539 2.162 0.059 0.27 0.83 −1.26 0.212

VGF 0.413 0.68 0.37 0.712 0.23 0.834 1.406 0.184 −1.12 0.346 2.865 0.005

ACVRL1 1.063 0.289 0.977 0.33 2.164 0.044 0.662 0.533 1.582 0.19 0.011 0.991

ENG 1.035 0.301 0.763 0.447 0.272 0.809 −0.41 0.698 2.062 0.227 −0 0.998

GCGR −0.042 0.967 0.828 0.409 0.79 0.501 2.264 0.049 6.217 <0.001 −0.7 0.482

HTR3A −0.733 0.465 −0.179 0.858 −0.459 0.69 0.039 0.97 −0.64 0.637 −0.72 0.475

NR4A1 0.361 0.719 0.504 0.615 4.926 0.01 7.196 <0.001 3.44 0.12 −0.54 0.592

riskScore −0.416 0.678 −0.266 0.79 −0.492 0.67 −0.236 0.821 −1.94 0.293 0.732 0.465

The bold values represent the expression of IRGs were significantly associated with correspondence clinical characteristics.

prediction model was established for revealing IRGs specific to
LUSC, so as to predict LUSC prognosis. The regulatory network
between IRGs and TFs revealed the potential novel molecular
mechanisms in LUSC. In this study, the DEIRGs obtained in
LUSC might play a vital role in predicting the prognosis for
LUSC. More importantly, an individualized Cox prediction
model with DEIRGs was adopted for measuring immunocyte
infiltration and evaluating the clinical prognosis.

In recent years, the prognostic or predictive biomarkers
associated with the tumor IME are promising to identify new
molecular targets and to enhance the treatment for patients
during immunotherapy development (28–34). Several recent
studies reveal the prognostic biomarkers in tumor IME for
predicting tumor prognosis. Li et al. found that four IRGs were
identified as the biomarkers to predict the prognosis for breast
cancer (35). Pan et al. discovered that 149 immune genes were
identified as the prognostic genes in tumor IME to predict
ESCC prognosis (36). Yang et al. suggested that the diagnostic
immune score (DIS) and prognostic immune score (PIS) showed
diagnostic and prognostic significance for cancers in the digestive
system (37). Nowadays, prognostic biomarkers related to the
tumor IME in lung cancer are still lacking.

A study demonstrates that the NSCLC IME may be
adopted to be the potential prognostic biomarkers to predict
patient prognosis after receiving immune checkpoint inhibitor
treatments (37). However, the molecular mechanism of
prognosis-related DEIRGs associated with DETFs in LUSC
tumor IME is not examined yet. The present study was carried
out to explore DEIRGs and establish the IRGs-based prognostic
model in LUSC IME to reveal the prognostic biomarkers to
predict LUSC diagnosis and prognosis.

According to functional enrichment analysis in this work,
DEIRGs showed the highest enrichment levels within tumor-
related typical pathways, including the JAK-STAT signal
transduction pathway, the TGF-β signal transduction pathway,
the PI3K-Akt signal transduction pathway, the MAPK signal
transduction pathway, and the TNF signal transduction pathway.
According to recent research, alterations in MET-activation and

JAK2-inactivation are the independent factors that affect the
response to immune checkpoint inhibitors like PD-L1 in lung
cancer (25). As suggested in one study, the combination of MEK
and PD-L1 inhibitors in pre-clinical and ex-vivo NSCLC models
exerts an important part in predicting patient sensitivity to such
therapies (38).

For further exploring the underlying mechanisms of
DEIRGs at molecular level, the TF-mediated IRGs network
was constructed in the present study, so as to reveal the
significant TFs regulating DEIRGs in this network. FOXA2,
TP63, FLI1, TCF21, EPAS1, ERG, GATA6, FOS, CENPA,
SOX2, RXRG, NR4A1, and SNAI2 were the DETFs that might
regulate the DEIRGs in LUSC. Tang et al. discovered that
curcumin inhibited the growth of human NCI-H292 LUSCs
by up-regulating FOXA2 expression (39). FLI1 acts as a novel
oncogenic diver to promote the metastasis of small cell lung
cancer (SCLC). LncRNA LINC00163 serves as the tumor
suppressor through transcriptionally up-regulating TCF21
expression in inhibiting the development of lung cancer (40).
In addition, the hypoxic-stabilized EPAS1 proteins transactivate
DNMT1, which further promotes the hypermethylation of
EPAS1 promoter and down-regulates EPAS1 mRNA expression
in NSCLC (41). A recent study showed that CENPA could act
as a novel diagnostic biomarker in lung adenocarcinoma (42).
Compared with previous studies, our study had first constructed
the co-expression DETFs-prognosis-related DEIRGs regulatory
network in LUSC using bioinformatics analysis. From the
network in our study, the DETFs positively and negatively
regulated the DEIRGs, which shed new light on exploring the
DEIRGs mechanisms in LUSC at molecular level.

In our study, univariate as well as multivariate Cox regression
analysis was carried out to constructed the DEIRGs-based Cox
prediction model. Eventually, the 10 DEIRGs in prediction
model played critical parts in predicting LUSC prognosis.
In addition, the AUC was 0.709, while the P-value between
high and low risk groups was 0, which indicated that the
Cox prediction model might be able to accurately estimate
LUSC prognosis. Univariate as well as multivariate independent
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FIGURE 7 | Relationships between the clinical-pathological characteristics and the expressions of differential expression IRGs in LUSC. (A–D) Differences in the

expression of DEIRGs between the pathological TNM stages I-II/III-IV in LUSC. (E–H) Differences in the expression of DEIRGs between the pathological T1-T2/T3-T4

stages in LUSC. (I–L) Differences in the expression of DEIRGs between the pathological M0/M1 stages in LUSC. (M) Differences in the expression of DEIRGs

between the pathological N0/N1-N3 stages in LUSC.
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FIGURE 8 | Relationships between prognostic value and degree of infiltration of six types of immune cells. (A) B cells; (B) CD4T cells; (C) CD8T cells; (D) Dendritic

cells; (E) Macrophages; (F) Neutrophils.

prognosis analysis in our study indicated that, the pathological
M stage and the riskScore of the Cox prediction model might
serve as the independent prognostic factors to predict LUSC
prognosis. Furthermore, 10 DEIRGs were applied for correlation
analysis between the expression profiles of IRGs and clinical
characteristics. Semaphorin 3B (SEMA3B) can be used to be the
tumor suppressor gene to suppress the Akt signal transduction
pathway, which is achieved via the neuropilin-1 receptor in
lung cancer cells (43). The AMH/AMHR2 axis provides a
novel insight to illustrate the TGF-β/BMP resistance-associated
signaling in NSCLC (44). Epigenetic modifications facilitate
the expression of VGF, up-regulate its protein expression, and
promote epithelial-mesenchymal transition (EMT) progression

as well as kinase inhibitor resistance within NSCLC (45). GCGR
acts as a member of the prognostic model, which can exert an
important part in predicting LUSC survival (46). In addition,
NR4A1 exerts an important part in the regulation of TGFβ-
induced invasion and migration of lung cancer cells (47).

Our study first used bioinformatic analysis to integrate the
clinical characteristics of LUSC with the expression profiles of
10 DEIRGs to explore the statistically significant DEIRGs for
forecasting LUSC diagnosis and prognosis. Finally, immunocyte
correlation analysis was conducted using the contents of the
TIMER database of six types of immunocytes. According to our
results, dendritic cells and neutrophils exhibited a significantly
positive regulatory relationship with the riskscore of the Cox
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prediction model. Compared with previous studies, the present
study presented the new signature in which DEIRGs were
selected as the center, which might be used to predict LUSC
prognosis. Furthermore, the DEIRGs might act as the prognostic
biomarkers and immune status monitor for predicting LUSC
prognosis. We explored the relationships between DEIRGs in
prediction model and immunocyte infiltration to reflect the
status of IME in LUSC. Dendritic cells and neutrophils were
positively correlated with DEIRGs in prediction model, which
indicated that the high infiltration levels of dendritic cells
as well as neutrophils might be identified in high-risk LUSC
patients. These results showed that DEIRGs in prediction model
could act as predictor for predicting immunocyte infiltration in
LUSC. A study demonstrated that STAT3 and NF-κB signaling
pathways were simultaneously attenuated in dendritic cells of
lung cancer (48). A study showed that the tumor-associated
CD66b neutrophils were correlated with adverse prognostic
factors of NSCLC (49). The number of mature dendritic cells
were positively correlated with survival time in NSCLC patients
(50), While our findings showed that dendritic cells had a
positively relationship with the riskScore of the predictionmodel.
These results demonstrated that the prediction model based
on DEIRGs could predict the status of immunocyte infiltration
in LUSC.

Our prognostic model, which was constructed based on
10 DEIRGs in LUSC, indicated favorable clinical viability. It
showed that DEIRGs performed moderately in the ROC curve,
and were associated with age, gender, pathological TNM stage,
and metastasis. This predictive model may provide a treatment
plan based on the immunocyte infiltration degree revealed
by DEIRGs.

In conclusion, our study identifies the DEGs, DEIRGs, and
DETFs by bioinformatics analysis from TCGA, ImmPort and

Cistrome databases. A TFs-IRGs network is performed to reveal
the possible mechanism for DEIRGs in LUSC at molecular
level. Additionally, the Cox prediction model is constructed for
identifying the prognostic independent factors to predict LUSC
prognosis. Immunocyte correlation analysis is also performed to
identify the relationships between the immune status and the
clinical outcomes for LUSC patients.
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