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Purpose: To develop a deep learning-based AI agent, DDD-PIOP (Dose-Distribution-
Driven PET Image Outcome Prediction), for predicting 18FDG-PET image outcomes
of oropharyngeal cancer (OPC) in response to intensity-modulated radiation therapy
(IMRT).

Methods: DDD-PIOP uses pre-radiotherapy 18FDG-PET/CT images and the planned
spatial dose distribution as the inputs, and it predicts the 18FDG-PET image outcomes
in response to the planned IMRT delivery. This AI agent centralizes a customized
convolutional neural network (CNN) as a deep learning approach, and it incorporates
a few designs to enhance prediction accuracy. 66 OPC patients who received IMRT
treatment on a sequential boost regime (2 Gy/daily fraction) were studied for DDD-PIOP
development. 61 patients were used for AI agent training/validation, and the remaining
five were used as independent tests. To evaluate the developed AI agent’s performance,
the predicted mean standardized uptake values (SUVs) of gross tumor volume (GTV) and
clinical target volume (CTV) were compared with the ground truth values. Overall SUV
distribution accuracy was evaluated by gamma test passing rates under different criteria.

Results: The developed DDD-PIOP successfully generated 18FDG-PET image outcome
predictions for five test patients. The predicted mean SUV values of GTV/CTV were
3.50/1.41, which were close to the ground-truth values of 3.57/1.51. In 2D-based
gamma tests, the average passing rate was 92.1% using 5%/10 mm criteria, which
was improved to 95.9%/93.2% when focusing on GTV/CTV regions. 3D gamma test
passing rates were 98.7% using 5%/10 mm criteria, and the corresponding GTV/CTV
results were 99.8%/99.4%.

Conclusion: The reported results suggest that the developed AI agent DDD-PIOP
successfully predicted 18FDG-PET image outcomes with high quantitative accuracy.
The generated voxel-based image outcome predictions could be used for treatment
planning optimization prior to radiation delivery for the best individual-based outcome.

Keywords: Positron Emission Tomography, deep learning, oropharangeal cancer, IMRT (intensity modulated
radiation therapy), outcome prediction
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INTRODUCTION

The oropharynx is one of the most common sites of origin of
head-and-neck cancer. Nearly 20,000 new cases of oropharyngeal
cancer (OPC) are diagnosed annually in the United States (1,
2). Radiotherapy (RT) with or without concurrent chemotherapy
constitutes one of the standard treatment options for OPC.
Compared to conventional 3D radiation treatment, intensity-
modulated radiation therapy (IMRT) has demonstrated an
improved therapeutic index with similar rates of tumor
control and reduced toxicity to the organs-at-risk (OARs) (3).
Consequently, IMRT has become the standard approach for
delivering RT in OPC.

Positron Emission Tomography (PET) provides information
on the metabolic status of a tumor and plays a crucial
role in staging and response assessment to RT for OPC (4–
10). PET has been also been used for primary and nodule
target volume delineation for treatment planning. An ongoing
area of investigation is the use of PET for assessing interim
treatment effect for adaptive radiotherapy implementation (11–
13). Although PET scans contain valuable information for
adaptive radiotherapy in a longitudinal treatment course, they
introduce extra ionizing radiation risk (>10 mSv) and add
significant extra cost and effort (14, 15). Furthermore, the optimal
time point of an interim PET is unknown. As a result, image-
based outcome prediction prior to the radiotherapy delivery
is conceptually appealing: based on the prediction, one can
optimize many radiation plan parameters to maximize the
therapeutic outcomes and address potential issues that indicated
by the prediction.

PET/CT images contain substantial predictive information in
terms of functional metabolic rate change (16, 17). Recently,
radiomics analysis that extracts high throughput features from
medical images have been reported for predictions of progression
(18), distant metastasis development (19), and treatment
outcome (20). With the rapid growth of computation power,
deep learning techniques have become a practical approach to the
implementation of artificial intelligence (AI). As a representative
deep learning technique, CNN is one such technique for
making treatment outcome predictions (21, 22). However, image-
based radiotherapy outcome predictions remain challenging,
and the incorporation of plan-specific information has yet to
be investigated.

In this work, we aim to develop a deep learning-based
AI agent for predicting PET image changes that occur in
response to specific oropharyngeal IMRT treatment plans. The
developed AI agent, Dose-Distribution-Driven PET Image-
Based Outcome Prediction (DDD-PIOP), utilizes pre-treatment
PET/CT images and the planned dose distribution as the
patient-specific source information and predicts a PET image
as the outcome of the planned dose delivery. DDD-PIOP
could potentially be further developed as a powerful tool for
physiologically-based IMRT dose alteration (“dose painting”):
given a radiation plan dose distribution with the associated PET
image outcome prediction, the planner(s) can adjust the target
volume definitions, target dose prescription levels, and OARs
dose constraints on a voxel level to obtain an updated plan

with possible iterative process to maximize individual IMRT
outcome effects.

MATERIALS AND METHODS

DDD-PIOP Design
The developed DDD-PIOP AI agent centralizes a custom-build
CNN as demonstrated in Figure 1. As illustrated, the constructed
CNN has a total of 8 convolutional layers. Multiple filters are
applied in each convolutional layer for screening predictive
features. All filters are designed with a kernel size of 3× 3. As the
network goes deeper, the number of filters in each convolution
layer increases from 32 to 256, and then collapses to 1. The image
dimension remains unchanged from the original ones of input.
Such a design enables the exploration of hidden hierarchical
features and the associations of spatial information with explored
features. Additionally, each convolution layer is followed by an
activation function. Rectifier linear unit (ReLU) was chosen as
the activation function due to its high computational efficiency
and smaller likelihood of gradient vanishing.

DDD-PIOP Training
DDD-PIOP training process involved multi-scale patient
resources. Figure 2 illustrates a brief workflow of DDD-PIOP
training. Specifically, pre-radiotherapy (pre-RT) PET/CT images
and planned dose distributions are used as the CNN inputs. The
planned dose distributions were derived from the radiotherapy
dose DICOM. 2D axial slices of pre-RT PET/CT images and the
resampled dose map are concatenated as a 3D matrix for single
channel input. After CNN implementation, a 2D axial PET image
that predicts treatment response can be generated as the output.
During DDD-PIOP training, the loss function is designed as a
modified mean square error (MMSE) between the CNN output
and the ground truth images from the training cases. Since gross
tumor volume (GTV) and clinical target volume (CTV) regions
are of more attentions as their primary roles in IMRT, these two
regions were prioritized in MMSE in Equation (1):

Lloss =
i,j∑

i,j = 0

1noni,j
(
pi,j − gi,j

)2
+ wCTV ·

i,j∑
i,j = 0

1CTVi,j
(
pi,j − gi,j

)2

+wGTV ·

i,j∑
i,j = 0

1GTVi,j
(
pi,j − gi,j

)2 (1)

where pi,j is the voxel SUV in the predicted PET image and gi,j is
the voxel SUV in the ground truth PET images. wGTV /wCTV are
factors for prioritized GTV/CTV penalties and were set as 6.0/3.0
empirically. 1GTVi,j , 1CTVi,j , and 1noni,j are binary regions-of-interest
(ROI) masks that were derived from the IMRT structure DICOM
file. To account for scale dispersion, the input images (PET/CT
and dose distribution) were normalized to [0,1] range. Prior to
the final output, the prediction PET images were restored to the
original range using the adopted input normalization values.

DDD-PIOP was implemented in Tensorflow and Keras
environment using a NVIDIA (NVIDIA Inc., Santa Clara, CA,
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FIGURE 1 | The illustration of CNN architecture in DDD-PIOP.

United States) GTX1060Ti graphic card. The Adam optimization
algorithm was utilized for adaptive learning rate. The training
process had 50 epochs and the overall training time was about 1 h.

Patients
DDD-PIOP was developed from scans that were prospectively
obtained from patients who were enrolled on an IRB approved
trial of PET imaging. A total of 66 eligible OPC patients who
received 70 Gy IMRT delivery with a sequential boost regime
(2 Gy/daily fraction) were studied. Each patient received a pre-
RT PET/CT scan and a 2nd PET/CT scan after 20 Gy delivery
(intra-RT scan) for the adaptive purpose. The intra-RT PET
image volumes were used for DDD-PIOP training while pre-
RT PET/CT image volumes and 20 Gy dose distribution were
used as the inputs.

All PET/CT images were acquired by a clinical PET/CT
scanner (Siemens, Erlangen, Germany). PET images were
acquired by 400 × 400 matrix size in a standard field of
view (FOV) of 54 cm, and slice thickness was 2 mm. CT
images were acquired by 512 × 512 matrix size in an extended
FOV of 65 cm, and slice thickness was 3 mm. A small FOV
(30 cm) CT volume was reconstructed from the standard
acquisition for contouring purpose. All PET images were
reconstructed by the ordered subset expectation maximization
(OSEM) algorithm with attenuation corrections using the CT
volumetric information. IMRT planning was performed on the
extended FOV CT volume using Eclipse system (Varian Medical
System, Palo Alto, CA, United States). Dose calculation was
implemented in 2.5 mm grid size. Both PET images and dose
distributions were resampled to the CT volume grid size for
DDD-PIOP execution.

The cohort was randomly divided into two subgroups: 61
patients were used for DDD-PIOP training/validation group
and the remaining five patients were used as independent tests.

Prior to the DDD-PIOP training, the intra-RT PET/CT image
volumes were registered to the pre-RT PET/CT image volumes
using deformable multi-pass registration algorithm and Velocity
software (Varian Medical System, Palo Alto, CA, United States).

DDD-PIOP Evaluation
The accuracy of image outcome prediction was evaluated using
the 5 independent test patients. The predicted intra-RT PET
images were first compared with the ground truth intra-RT PET
images by qualitative visual checks. Quantitative accuracy was
evaluated by regional mean SUV value comparisons. Specifically,
mean SUV values inside GTV/CTV were compared with the
corresponding ground truth values. In addition, mean SUV
value in high 18FDG uptake region were also evaluated. Such
high uptake region was determined by the Otsu’s method as a
histogram-based segmentation method within GTV (23, 24).

In addition to regional mean SUV comparison, SUV
distribution accuracy was evaluated by SUV value gamma test
passing rates with different criteria. As defined in equation (2),
gamma test incorporates both SUV value differences and SUV
distribution shifts into considerations (25).

γ = min(

√(
1SUV
1SUVt

)2
+

(
1d
1dt

)2
) (2)

where 1SUV is SUV difference and 1d is the SUV distribution
shift. 1SUVt is the acceptance criteria for SUV uptake and
1dt is the acceptance criteria for distance to agreement (DTA).
The passing criterion of γ value at each pixel is set to 1, and
the percentage of voxels that pass gamma test were reported
as indicators of prediction accuracy. Different gamma passing
criteria were evaluated to study the differences of GTV/CTV and
whole body results. Both 2D and 3D gamma tests were reported.
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FIGURE 2 | DDD-PIOP training workflow.

RESULTS

Figure 3 presents three independent test patients’ results. The left
column shows pre-RT PET images, and corresponding ground
truth intra-RT PET images are shown in the middle column. As
indicated by yellow arrows, treatment response can be observed
with reduced SUV hotspot sizes and decreased SUV intensities
after IMRT delivery. The right column shows the predicted
intra-RT PET images from DDD-PIOP. The predicted images
captured overall PET image appearance successfully without
noticeable artificial manipulation marks. The hotspots within
the radiation treatment region (indicated by blue arrows) of
the predicted intra-RT PET images demonstrate similar spatial
patterns and comparable SUV intensity ranges in reference
to the ground truth intra-RT PET images. Subtle variations
in SUV hotspots are predicted by the DDD-DIOP. As an
example, in patient 1, a residual hotspot (indicated by the
white arrows) after radiotherapy is accurately predicted in
terms of spatial location. SUV distributions other than hotspot
regions were also successfully predicted with observable and yet
minor discrepancies.

Table 1 shows the quantitative comparison of mean SUV
values. In GTV and CTV regions, the values from the
predicted image volumes were close to the corresponding
ground truth values, and the absolute SUV differences were
0.10 or less. These small differences would not lead to clinically
significant differences in metabolic volume definition based
on SUV thresholding. In the identified high 18FDG uptake
regions, the predicted value was also close to the ground truth
value, and the prediction tended to underestimate the SUV
results. No statistical tests were included due to limited test
case number (=5).

Figure 4 and Table 2 summarize the 2D gamma test results
with different gamma test criteria (1SUV/DTA). As shown,
the passing rates were improved with more generous test
criteria. When whole body area was evaluated, the average
gamma test passing rate was 74.5% using the strictest criterion
(5%/5 mm). This result is acceptable and yet less optimal. With
the 5%/5 mm criterion, the passing rates were improved in
GTV and CTV regions with higher SUV intensities. This trend
also occurs in the tests with other criteria and thus serves
during DDD-PIOP training. The best result was obtained with
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FIGURE 3 | DDD-DIOP results of three test patients. Left column: pre-RT PET; middle column: ground truth intra-RT PET; right column: predicted intra-RT PET.
Yellow arrows: SUV reduction after 20 Gy as treatment response; Blue and white arrows: DDD-PIOP predictions captured ground-truth results.

the 10%/10 mm criterion, where the passing rate in the GTV
region was 97.0%. As gamma test criteria became looser from
5%/5 mm to 10%/10 mm, the difference between CTV/GTV and
BODY results were stable, and BODY results demonstrated more
obvious improvements.

Figure 5 and Table 3 summarize the 3D gamma test passing
rate results. In general, 3D gamma test results were better than
2D gamma test results. At the strictest criterion (5%/5 mm),
the 3D gamma test result reported a passing rate of 92.9% in
whole body evaluation. A similar trend was also presented in
3D gamma test evaluation: higher gamma test passing rates in
the lesion region. When using the 10%/10 mm criterion, the
DDD-PIOP achieved the best 3D gamma pass rate of 99.9% in
the GTV region. Like the 2D gamma test results, BODY results
showed more obvious improvements when using looser gamma
test criteria.

TABLE 1 | The mean SUV value prediction results inside GTV region, CTV region,
and high-uptake region in comparison with the ground truth.

GTV-
region

CTV-
region

High-uptake
region

Predicted mean SUV value 3.50 1.41 4.63

Ground truth mean SUV value 3.57 1.51 4.92

DISCUSSION

In this work, we developed an AI agent DDD-PIOP for
OPC IMRT treatment outcome prediction. The goal of the
DDD-PIOP is to predict an interim treatment PET image
using pre-treatment PET/CT images and the spatial dose
distribution. Image-based outcome predictions by DDD-PIOP
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FIGURE 4 | 2D gamma test passing rate evaluation results using different acceptance criteria with 20–80% whiskers. (A) 5%/5 mm; (B) 10%/5 mm; (C) 5%/10 mm;
(D) 10%/10 mm.

TABLE 2 | The average 2D gamma test passing rate results using different
acceptance criteria and evaluation ranges.

Gamma test criteria Whole body
(%)

CTV region
(%)

GTV region
(%)

5%/5 mm 74.5 76.4 79.2

10%/5 mm 80.4 82.0 83.2

5%/10 mm 92.1 93.2 95.9

10%/10 mm 94.3 95.2 97.0

are promising with acceptable quantitative results. Specifically,
DDD-PIOP achieved high accuracy in predicting GTV/CTV
volumes and their sub-volumes with high SUV values. The
improved results in GTV/CTV could be attributed to the contour
information as plan-specific annotations in DDD-PIOP inputs.

Since high SUV regions are commonly used for treatment target
definition, the current DDD-PIOP design enables its suitability
for adaptive planning (and possible IMRT dose painting with
future development) based on target definition. In future works,
it will be of great interest to investigate normal tissue toxicity
reduction in DDD-PIOP.

A good training design and validation implementation
is crucial for optimal CNN performance. In the current
version of DDD-PIOP, the loss function for CNN training is
MMSE that emphasizes GTV/CTV region results. MMSE did
not encounter the common non-convergence problem during
the CNN training. The evaluation of DDD-PIOP needs to
consider many factors, including PET’s intrinsic uncertainty, PET
image acquisition resolution, PET-CT QA protocol, deformable
registration uncertainty (26), and the clinical use of SUV in
metabolic volume definition. The adopted gamma test criteria
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FIGURE 5 | 3D gamma test passing rate evaluation results using different acceptance criteria with 20–80% whiskers. (A) 5 %/5 mm; (B) 10%/5 mm; (C)
5%/10 mm; (D) 10%/10 mm.

TABLE 3 | The average 3D gamma test passing rate results using different
acceptance criteria and evaluation ranges.

Gamma test criteria Whole body
(%)

CTV region
(%)

GTV region
(%)

5%/5 mm 92.9 94.2 97.2

10%/5 mm 94.8 96.1 97.9

5%/10 mm 98.7 99.4 99.8

10%/10 mm 99.1 99.6 99.9

were designed with the considerations of the aforementioned
aspects. More stringent scrutiny should be conducted on future
iterations of DDD-PIOP that utilize larger patient cohort sizes.
To our knowledge, the current 66 patients in this work is one
of the largest cohorts in PET-based image outcome studies. The

cohort was assigned into training group, validation group and
independent test group following the classic group assignment
conventions in most deep-learning works. In this work, the
training/validation ratio was optimized to ensure the best
performance of DDD-PIOP, and the independent test assignment
ensures the most robust tests of the DDD-PIOP. Ideally, a larger
cohort size will be favored to include more independent tests;
however, like most other similar works, limited resources and
the retrospective nature make it challenging to find a sufficiently
large patient cohort size. Although no statistical tests were
reported due to the limited statistical power with five sample
size, the presented results could serve as the feasibility support
of DDD-PIOP concept and overall workflow design. We expect
to investigate DDD-PIOP at other potential anatomical sites with
active adaptive PET imaging protocols: based on the current
DDD-PIOP framework, PET image predictions by DDD-PIOP
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TABLE 4 | 2D gamma test results w/ and w/o dose inclusion using different acceptance criteria and evaluation ranges.

5%/5 mm 10%/5 mm 5%/10 mm 10%/10 mm

w/ dose (%) w/o dose (%) w/ dose (%) w/o dose (%) w/ dose (%) w/o dose (%) w/ dose (%) w/o dose (%)

Body 74.5 73.2 80.4 78.7 92.1 92.0 94.3 93.8

GTV 79.2 80.5 83.2 84.8 95.9 97.6 97.0 98.4

CTV 76.4 77.5 82.0 82.4 93.2 97.1 95.2 98.1

would be compared against the actual intra-RT scans to verify
the effectiveness of pre-RT plan optimization; at the same time,
newer versions of DDD-PIOP with larger training cohort sizes
would be in progress.

The most prominent innovation that distinguishes DDD-
PIOP from other image-based outcome prediction work is
the inclusion of spatial dose distribution as input. The
spatial dose distribution includes patient-specific treatment
information; to predict patient-specific treatment outcome,
the inclusion of patient-specific treatment information is
conceptually appealing. Compared to the commonly adopted
prescription dose level, the use of spatial dose distribution
can potentially capture radiation-induced response with spatial
heterogeneity. To further study the role of spatial dose
distribution and its impact on DDD-PIOP performance, a
comparison study was added. In this study, DDD-PIOP was
modified to exclude spatial dose distribution and use PET/CT
images only as input, while all other designs, including
major CNN architecture and loss function formula, remain
unchanged. The comparison results of 2D gamma test passing
rates are presented in Table 4. As can be seen, when
gamma tests were performed within whole body area, the
inclusion of dose information (as in DDD-PIOP) led to
improved passing rate results. However, when gamma tests
focused on GTV/CTV regions, slightly improved gamma test
passing rate results were found when dose information was
omitted. Nevertheless, the numerical differences were small,
and they did not provide substantial support for either
approach. The observed results in Table 4 may be contributed
by dose calculation and dose map resampling uncertainties;
however, these uncertainties should be small as the same
dose calculation setting was used in all 66 cases. A probable
theory that may better explain Table 4 results would be the
consistency in our current clinical practice. The planned spatial
dose distributions that were used for training DDD-PIOP
were obtained from clinical plans. These plans followed our
institutional planning guidelines that emphasize dose uniformity
within the target regions, particularly the primary PTV/CTV
regions with large volumes. In other words, all CTVs can
be assumed with a uniform 24-Gy dose distribution as the
optimal clinical practice. Thus, the pattern variation within
the GTV/CTV regions may not be prominent enough to
contribute to target region prediction results. On the other
hand, dose variations outside GTV/CTV regions were more
prominent, and the inclusion of dose distribution brought in
additional information for image outcome prediction. Since

the body areas contain more voxels than GTV/CTV regions,
the slight improvement of gamma test passing rates can
be interpreted as the fact that dose inclusion improved
prediction accuracy in non GTV/CTV voxels. Generally, the
current results did not discourage the conceptually appealing
approach of spatial dose distribution inclusion in DDD-
PIOP.

To concur with the discussion in the last paragraph, it will
be of great interest to extend the DDD-PIOP study to other
treatment sites for which PET imaging is involved. In particular,
stereotactic body radiotherapy (SBRT) applications of DDD-
PIOP will be promising as SBRT usually has heterogeneous
dose distributions within the target regions (27). Preclinical
studies using small animal experiments will be essential
to fully understand DDD-PIOP’s rationale and robustness.
One unavoidable limitation of using clinical cases for AI
training is the rather limited diversity of training cases:
clinical cases should follow current practice guidelines
and thus should have overall high quality. On the other
hand, an AI should “see all kinds of cases,” including
both good cases and suboptimal cases. Otherwise, an AI
agent trained by only good cases will be less likely to
perform well when encountering an unprecedented “bad”
input (28). As a result, small animal experiments which
simulate radiotherapy treatments with both “good” and
“bad” qualities can increase the robustness of DDD-PIOP
towards common clinical application. In addition, like
many other deep learning applications in medicine, the
implementation of CNN is still a “black box” execution:
the function/effect of each convolutional operation has
yet to be understood without direct interpretation within
the medical study framework. In other words, the actual
intelligibility in the developed AI agent remains unclear.
Small animal experiments with a larger amount of sample
cases provide opportunities to study CNN intelligibility in an
analytical manner.

CONCLUSION

In this work, an AI agent, DDD-PIOP, was successfully developed
for PET image-based outcome prediction of oropharyngeal
IMRT using pre-treatment information. DDD-PIOP innovatively
includes planned spatial dose distribution and implements
a deep learning approach. Preliminary results demonstrated
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that DDD-PIOP could successfully predict post-radiotherapy
PET images with promising quantitative accuracy. DDD-PIOP
would be a powerful tool for IMRT dose escalation/reduction
during treatment planning to maximize individual IMRT
outcome. Future developments of DDD-PIOP will be important
before its large-scale clinical application.
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