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The magnetic resonance (MR) images are acknowledged to be inevitably corrupted

by Rician distributed noise, which adversely affected the image quality for diagnosis

purpose. However, the traditional denoising methods may recover the images from

corruptions with severe loss of detailed structure and edge information, which would

affect the lesion detections and diagnostic decision making. In this study, we challenged

improving the Rician noise removal from three-dimensional (3D) MR volumetric data

through a modified higher-order singular value decomposition (MHOSVD) method. The

proposed framework of MHOSVD involved a parameterized logarithmic nonconvex

penalty function for low-rank tensor approximation (LRTA) algorithm optimization to

suppress the image noise in MR dataset. Reference cubes were extracted from the noisy

image volume, and block matching was performed according to nonlocal similarity for a

fourth-order tensor construction. Then the LRTA problem was implemented by tensor

factorization approaches, and the ranks of unfolding matrices along different modes

of the tensor were estimated utilizing an adaptive nonconvex low-rank method. The

denoised MR images were finally restored through aggregating all recovered cubes.

We investigated the proposed algorithm MHOSVD on both the synthetic and real clinic

3D MR images for Rician noise removal, and relative results demonstrated that the

MHOSVD can recover images with fine structures and detailed edge preservation with

heavy noise even as high as 15% of themaximum intensity. The experimental results were

also compared along with several classical denoising methods; the MHOSVD exhibited

a sufficient improvement in noise-removal performance at various noise conditions in

terms of different measurement indices such as peak signal-to-noise ratio and structural

similarity indexmetrics. Based upon the comparison, the proposedMHOSVD has proved

a relative state-of-the-art performance with excellent detailed structure reservation.
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INTRODUCTION

Magnetic resonance imaging (MRI), as a widely accepted
noninvasive imaging modality, was acknowledged as a useful
diagnostic tool with high resolution and excellent contrast
sensitivity to anatomical properties (1). However, despite
the significant improvements in instrument technique during

recent years, the detection or assessment of specific diagnostic
information through referring physicians or computer-aided
analysis still frequently suffered from serious random noise. As
is known, the assessment of medical image quality is usually

described by various physical measures including the contrast
between different tissues, the detailed representation relative to
imaging spatial resolution, and the image noise characteristics.
The introduction of noise into MR images can usually cause
imaging blur or fine structure coverage/distortion that may
severely degrade the image quality and affect the diagnostic
accuracy. As reported, a high level of noise may directly
affect the signals resulting in anatomical inconsistencies that

especially correspond to cardiac and brain images or may
bias the orientations of tensors in functional MRI. Meanwhile,
computer-aided diagnosis (CAD) approaches recently have been

developed as assistive tools to help radiologists to detect and
clarify abnormalities. Typical CAD systems based on medical
images for lesion separation and recognition generally employed
techniques including segmentation, feature extraction, and
classification. However, one key problem that challenges the
accuracy of CAD tasks was sensitivity to artifacts such as
noise. Hence, to improve the performance of CAD approaches,
image preprocessing was necessary wherein proper denoising
algorithms were essential for the reliability and robustness of
computer-aided detection/diagnosis. An ideal denoising method
should restore the images by removing the stochastic corruptions
of noise with preservation of the shapes and detailed structures
of the tissue against abnormities as well. Previous studies have
considered the complex raw data of MRI images be corrupted
by white Gaussian noise with zero mean and same variance in
both the real and imaginary parts; thus, the noise characters were
transformed into Rician distribution in magnitude images (2, 3).
Therefore, an effective denoising algorithm specific for Rician
noise based upon three-dimensional (3D)MR image datasets can
play a fundamental role to improve the diagnostic accuracy for
both the radiologists and the CAD tools.

To date, several techniques have generally been implemented
in commercial MRI devices to improve the signal-to-noise ratio
(SNR) for image quality control (4). Along with the hardware
evolutions such as magnetic field intensity that dramatically
increased, efficient imaging processing algorithms were also
utilized to recover the undesirable random variations that
obscured the diagnostic information. One applicable way of
denoising was to take the average from multiple repeated
acquisitions, with the price of screening time extension, which
was difficult for patients to keep static. Themore popular way was
to involve the reduction of noise power level during post-imaging
processing. As MRI intrinsically posed a paradox between SNR
and resolution, the ideal noise removal procedure should be
able to perform SNR improvements without harming the fine

structures and detailed features in images. Numerous methods
for MR image denoising have been developed based upon
different characters of noise. Filter-based approaches constructed
the noise-reduction schemes with linear or nonlinear filters, such
as anisotropic diffusion and total variation (TV) techniques, to
improve image quality with edge preservation considerations
(5–8). A few other studies utilized the statistics/estimation
of noise properties to conduct denoising; examples included
maximum likelihood (9, 10), linear minimum mean square
error (11, 12), and phase error (13), which were generally
used as estimators for Rician noise. Recently, the transform
approaches were demonstrated to be powerful by exploiting the
different representations of noise against signal either spatially
or spectrally in transform domain (14–16). For example, wavelet
transforms were used to decompose the signal and noise into
multiresolution subspaces, which facilitated the Rician noise
removal while preserving edge and fine details (17). Besides,
curvelet transform and contourlet transforms were also used for
denoising MR images (18, 19). Moreover, deep learning methods
were also involved in the Rician noise removal in MR images. For
example, Jiang et al. (20) developed a multichannel conventional
neural network (CNN) method for noise removal in synthetic
and clinical MR volumetric image. Manjón et al. proposed
a two-step 3D MR image denoising algorithm by combining
CNN with rotation-invariant nonlocal means (NLM) filtering.
The relative results were encouraging, which improve the visual
quality significantly; however, the deep leaning frameworks still
need to meet the high burdens of huge training dataset and
time-consuming computation (21).

More recent studies have intended to combine the strengths
of multiple approaches (e.g., filter and transform approaches) to
better regulate denoising in MRI (22, 23). The well-known NLM
filter that Buades et al. (24) proposed was one classical method
that considered exploiting nonlocal patch similarity for noise
removal (24). The redundancy patterns within images ensured
useful information to be restored by NLM with outstanding
edge sharpness maintained. Kervrann et al. (25) soon extended
the NLM algorithm into variations combined with transform
approaches with the purpose of taking advantage of both
similarity and sparsity. One famous NLM variation was block
matching 3D (BM3D), which constructed its scheme by grouping
image fragments according to similarity, filtering with the
sparse representation in transform domain, and transforming
back by aggregation procedure (26). Maggioni et al. (27) then
modified the BM3D method using NLM and cosine/wavelet
transform into BM4D implementation, and they demonstrated
state-of-the-art in volumetric MRI data recovery. Meanwhile,
the development in tensor factorization, such as the higher-
order singular value decomposition (SVD) (HOSVD) (28),
enabled better sparse representations using learned basis rather
than the fixed orthogonal basis that cosine/wavelet transforms
generally used in BM3D/BM4D. Rajwade et al. (29) derived
the HOSVD denoising algorithm, which manipulated the NLM
filtering with HOSVD transform instead. As the learning basis
was adaptable to image contents, redundant procedures of
patches rearrangements were saved, and further performance
improvements were promising. In Zhang et al. (30) have
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extended the HOSVD algorithm for MRI, and excellent noise-
reduction effectiveness was obtained. However, the HOSVD-
based denoising method generally computed the transform
coefficients using hard threshold function with nonconvex and
nonlinear properties, which was considered to constrain the
denoising performance somehow. Further, the hard threshold
function would also cause additional shock and pseudo-Gibbs
effect, which may limit the retention of image structure.

The present study aimed to improve the performance of
HOSVD application for denoising 3D MR volumetric data. To
address the drawbackmentioned above, wemodified theHOSVD
algorithm [named as modified HOSVD (MHOSVD)] with an
adaptive multilinear tensor rank approximation method utilizing
nonlocal similarity and nonconvex logarithmic regularization.
Image cubes from volumetric data were stacked based on
similarity to construct a fourth-order tensor. Then tensor
factorization was performed. A low-rank tensor was derived
to approximate the sparse representations by exploiting the
image structural redundancy. We estimated the ranks of
unfolding matrices along different modes of the tensor using
an adaptive nonconvex low-rank method. Experiments were
performed based on various MR images, obtained from either
computer synthesis or clinical screening, to investigate denoising
improvements of proposed framework against several advanced
algorithms with the following novelties:

1. Considered the nonlocal similarity in 3D MR datasets and
formulated the grouped similar cubes into a low-rank tensor
approximation (LRTA) problem.

2. Applied a nonconvex low-rank function to adaptively estimate
the rank of unfolding matrices along different modes.

3. Used the proximal operator to obtain the
global closed-form solution for the constructed
low-rank approximation problem.

We structured the rest of this manuscript as follows: Background
reviews necessary backgrounds about the tensor. Proposed Model
describes our algorithm proposed for Rician noise removal based
upon adaptive HOSVD framework. We validated the proposed
schemes to both synthetic and clinical 3D MR images, and the
effectiveness of noise reduction was evaluated and compared with
that of existing denoising algorithms in Experiments and Results.
Last but not the least, we draw our conclusion in Conclusions.

BACKGROUND

A tensor can be considered as a generalization of vector and
matrix for the representation of multidimensional quantities.
Throughout the article, we represented the scalars as lowercase
letters (e.g., x), vectors as bold lowercase letters (e.g., x),
matrices as bold uppercase letters (e.g., X), and tensors as
bold calligraphic letters (e.g., X ). For example, the symbol
X ∈RJ1×J2×...×JN signified an arbitrary Nth-order tensor over the
multidimensional space of size J1 × J2 × . . . × JN . We also used
the subscript lowercase letters to present the element tensor; e.g.,
an arbitrary element of the tensor X can be denoted as Xj1j2...jN

using (j1j2 . . . jN).

Definition 1 (Tensor fiber). A tensor generally consists of
fibers that can be thought as the high-dimensional generalization
of matrix rows and columns. The mode-n fiber of tensor X

is defined by fixing the index in all dimensions but the n-
th dimension.

Definition 2 (Tensor unfolding). Tensor unfolding, also called
tensor matricization, is to rearrange the elements of the tensor
into the matrix format under predefined order. The mode-n
matricization of an Nth-order tensor X ∈RJ1×J2×...×JN would be
represented as X(n) ∈ RJn×(J1×...×Jn−1×Jn+1×...×JN ), which ordered
the mode-n fibers of tensor X into its columns.

Definition 3 (n-mode matrix product). The product of a
tensor X ∈RJ1×J2×...×JN and a matrix V ∈ RK×Jn along the n-
th dimension is a tensor of size J1 × . . . × Jn−1 × K × Jn+1 ×

. . . × JN , denoted as X ×n V, with its element expressed by
following equation:

(X ×n V)j1...jn−1kjn+1...jN =

Jn
∑

jn=1

xj1j2...jN vkjn . (1)

Definition 4 (Multilinear tensor rank). The multilinear tensor
rank of X ∈RJ1×J2×...×JN is defined as the rank of the mode-n
unfolding matrix X(n), denoted as rankn(X ).

PROPOSED MODEL

Low-Rank Matrix Approximation
Low-rank matrix approximation (LRMA) aimed to solve the
minimization problem through optimizing the cost function
between the given data and an approximation with reduced rank.
The method was helpful in various image processing such as 2D
image denoising (31, 32). The LRMA usually applied for image
noise removal following steps, as follows: searching and grouping
nonlocal similar patches, performing collaborative filtering, and
aggregating the recovered patches to restore the denoised images.
Mathematically, the LRMAmethod can be modeled as follows:

min
X

1

2
| |Y− X| |2F + λrank (X) , (2)

where rank(·) represented the rank of matrix, referring to the
number of nonzero singular values of matrix. λ was the trade-
off parameter balancing the contribution between fidelity and
regularization term. However, due to the high nonconvex and
nonlinear properties, problem (Eq. 2) was practically intractable.
Therefore, convex relaxation nuclear norm was used instead,

TABLE 1 | The setting of the cube size p and numbers of similar cubes m at

varying noise levels.

Noise level 1% 3% 5% 7% 9% 11% 13% 15%

p 3 3 4 4 5 5 5 5

m 50 75 75 75 90 90 90 90
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and problem (Eq. 2) can be transformed into the following
LRMA problem:

min
X

1

2
| |Y− X| |2F + λ| |X| |∗ , (3)

where ||X||∗ =
∑

i δi(X) denoted the nuclear norm that was
defined as the sum of a singular value from matrix X. Cai et al.
(33) have proved that the solution of the LRMA problem (Eq. 3)
can be conveniently obtained by singular value thresholding; i.e.,

FIGURE 1 | Peak signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) comparisons across four denoising methods (RSNLMMSE, BM4D,

PRI-NLM3D, HOSVD-R, and MHOSVD) for Rician noise removal in three-dimensional magnetic resonance (3D MR) images synthesized with corruptions under

different noise levels.
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ˆ
X = USλ(6)VT, where Y = UΣVT was the SVD of the noisy
image Y, and Sλ(6) = max(6 − λ, 0).

Low-Rank Tensor Approximation
LRTA can extend the LRMA algorithm for multidimensional
image processing. In this study, we employed the LRTA for

3D MR image denoising. First, reference cube sized of p ×

p × p was extracted from the MR noisy image. Block matching

was performed with a local search window of size k × k × k,

and m similar cubes (including the reference cube) were found

and stacked to a fourth-order tensor Y ∈ Rp×p×p×m. Then

the problem estimating the noise-free version X according to

TABLE 2 | Peak signal-to-noise ratio (PSNR) comparisons across RSNLMMSE, BM4D, PRI-NLM3D, HOSVD-R, and MHOSVD for Rician noise removal in synthetic

three-dimensional magnetic resonance (3D MR) images.

Noise level 1% 3% 5% 7% 9% 11% 13% 15%

T1w

RSNLMMSE 42.3349 36.2450 33.6064 31.8756 30.6574 29.6012 28.6028 27.7378

BM4D 44.0842 38.3433 35.8339 34.1703 32.8852 31.8209 30.8960 30.0623

PRI-NLM3D 43.9625 38.1993 35.3249 33.3687 31.9575 30.7627 29.7537 28.8873

HOSVD-R 45.2072 38.9638 36.3855 34.6173 33.2822 32.2407 31.3391 30.5257

MHOSVD 45.3919 39.2903 36.6157 34.7226 33.4781 32.4122 31.4775 30.6433

T2w

RSNLMMSE 41.5029 33.7452 30.3948 28.3027 26.8397 25.7065 24.7832 24.0270

BM4D 42.4365 35.6338 32.8497 31.0817 29.7697 28.7149 27.8282 27.0561

PRI-NLM3D 42.0810 35.3006 32.4165 30.4594 28.9082 27.6894 26.5963 25.6028

HOSVD-R 43.2601 36.3387 33.5516 31.7446 30.0404 29.0155 28.1549 27.3969

MHOSVD 43.4366 36.7987 33.9049 32.0353 30.3983 29.3149 28.4077 27.6288

PDw

RSNLMMSE 41.5061 34.6722 32.3071 30.7760 29.4088 28.2082 27.2879 26.5824

BM4D 43.7633 37.6312 34.9947 33.2691 31.9738 30.9310 30.0547 29.3031

PRI-NLM3D 43.4725 37.0113 34.0964 32.0319 30.5257 29.2910 28.3261 27.5187

HOSVD-R 44.7386 38.2867 35.5647 33.7573 32.2607 31.2341 30.3690 29.6179

MHOSVD 44.8123 38.4971 35.7897 33.8636 32.4501 31.3949 30.5037 29.7336

The bold values in represented the maximum values across the methods.

TABLE 3 | Structural similarity index measurement (SSIM) comparisons across BM4D, PRI-NLM3D, HOSVD-R, and MHOSVD for Rician noise removal in synthetic

three-dimensional magnetic resonance (3D MR) images.

Noise level 1% 3% 5% 7% 9% 11% 13% 15%

T1w

RSNLMMSE 0.9878 0.9610 0.9352 0.9075 0.8842 0.8577 0.8300 0.8038

BM4D 0.9921 0.9753 0.9596 0.9439 0.9278 0.9113 0.8945 0.8770

PRI-NLM3D 0.9924 0.9755 0.9561 0.9350 0.9139 0.8909 0.8683 0.8469

HOSVD-R 0.9942 0.9791 0.9645 0.9488 0.9333 0.9181 0.9026 0.8864

MHOSVD 0.9944 0.9804 0.9666 0.9508 0.9370 0.9223 0.9069 0.8910

T2w

RSNLMMSE 0.9909 0.9675 0.9408 0.9139 0.8887 0.8617 0.8332 0.8121

BM4D 0.9930 0.9765 0.9615 0.9471 0.9327 0.9175 0.9014 0.8845

PRI-NLM3D 0.9933 0.9766 0.9563 0.9405 0.9209 0.8987 0.8768 0.8544

HOSVD-R 0.9948 0.9811 0.9677 0.9538 0.9379 0.9243 0.9107 0.8969

MHOSVD 0.9947 0.9818 0.9690 0.9550 0.9397 0.9260 0.9120 0.8981

PDw

RSNLMMSE 0.9825 0.9389 0.9153 0.8943 0.8659 0.8315 0.8022 0.7774

BM4D 0.9912 0.9729 0.9559 0.9393 0.9229 0.9066 0.8904 0.8747

PRI-NLM3D 0.9916 0.9714 0.9492 0.9240 0.8974 0.8672 0.8398 0.8167

HOSVD-R 0.9934 0.9768 0.9606 0.9436 0.9279 0.9126 0.8976 0.8829

MHOSVD 0.9934 0.9772 0.9620 0.9437 0.9306 0.9154 0.9001 0.8849

The bold values in represented the maximum values across the methods.
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noisy image Y can be regarded as an LRTA mathematically
modeled as

X
∗ =

argmin
X

1

2
||Y − X ||2F s.t. ranki (X ) ≤ ri (i = 1, 2, 3, 4) ,

(4)

where ranki(X ) denoted the rank of the mode-i unfolding matrix
of the fourth-order tensor X . Based upon the HOSVD (28),
tensor X can be decomposed into the following:

X = S ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4), (5)

where S ∈Rr1×r2×r3×r4 was the core tensor and U(i) ∈

Rp×ri (i = 1, 2, 3, 4) was the factorization matrix. The key for
solving problem (Eq. 5) was to estimate the multilinear tensor
rank parameter ri(i = 1, 2, 3, 4). Therefore, the LRTA problem

(Eq. 4) can be independently decomposed into four relative
minimization problems:

X∗
(n) =

argmin
X(n)

1

2
|
∣

∣Y(n) − X(n)
∣

∣ |
2

F
+ λrank(X(n)) (n = 1, 2, 3, 4) ,

(6)

where rank(X(n)) was the number of nonzero singular values
of the mode-n unfolding matrix X(n), and | |Y − X | |2F =

|
∣

∣Y(n) − X(n)
∣

∣ |
2

F
were the Frobenius norm.

Adaptive Multilinear Tensor Rank Algorithm
As the solution of problem (Eq. 6) was intractable, the nuclear
norm with nonconvex properties have been demonstrated an
effective tool for sparsity of singular values compared with
the convex rank function. Motivated by Selesnick and Bayram
(34), Chen and Selesnick (35), and Parekh and Selesnick (36),

FIGURE 2 | Denoising T1-weighted (T1w) images by different methods (RSNLMMSE, BM4D, PRI-NLM3D, HOSVD-R, and MHOSVD) under 15% Rician noise. First

line: T2w image without noise and with 15% Rician noise. Second line: the denoised images with four different methods. Third line: the corresponding residual images

(the absolute difference between the denoised and noise-free images).
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we propose a parameterized logarithmic nonconvex penalty
function on singular values, formulated as follows:

X∗
(n) =

argmin
X(n)

1

2
|
∣

∣Y(n) − X(n)
∣

∣ |
2

F
+ λ

rn
∑

i=1

1

a
log

(

1+ aδi
(

X(n)
))

,

(7)

where δi(X(n)) was the i-th singular value of the mode-n
unfolding matrix X(n). Although the nonconvex penalty function
was employed, the proposed LRTA problem (Eq. 7) was strictly
convex when 0 ≤ a < 1/λ, which could be proven by Lemma 1,
as follows.

Lemma 1(37): The nonconvex function ψ (x, a) = 1
a log(1 +

ax) satisfied Assumption 1 as mentioned in literature (36). The
function h: R → R represented as h (x, a) = ψ (x, a) − |x|
was continuously differentiable and concave and satisfied −a ≤

h
′′
(x, a) ≤ 0.
Eq. (7), which was considered to be strictly convex when 0 ≤

a < 1/λ, was proved, as follows.

Proof: Define the function J:Rm×n → R as

J(X) = 1
2 ||Y − X||2F + λ

rn
∑

i=1
(h(δi(X), a)+ |δi(X)|)

= 1
2 tr(Y

TY)− tr(XYT)+ 1
2 tr(X

TX)

+λ
rn
∑

i=1
(h(δi(X), a)+ |δi(X)|)

= 1
2 tr(Y

TY)− tr(XYT)+ 1
2 tr(X

TX)

+λ
rn
∑

i=1
h(δi(X), a)+ λ||X||∗

= J1(X)+
1
2 tr(Y

TY)− tr(XYT)+ λ||X||∗,

where J1(X) =
1
2 tr(X

TX)+λ
rn
∑

i=1
h(δi(X), a). Since both the linear

function tr(XYT) and trace norm | |X| |∗ were convex function
and the function tr(YTY) was independent on X, the J(X) was
strictly convex when the function J1(X) was strictly convex.
According to Parekh and Selesnick (36), we can conclude that the
function J1(X) was strictly convex when 0 ≤ a < 1/λ.

FIGURE 3 | Denoising T2-weighted (T2w) images by different methods under 15% Rician noise. First line: T2w image without noise and with 15% Rician noise.

Second line: the denoised images with four different methods. Third line: the corresponding error images.
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According to Selesnick and Bayram (34), the proximal
operator of the proposed penalty function (Eq. 7) was defined as:

θ
(

y; λ, a
)

=
argmin
x∈R

1

2
(y− x)2 + λ

1

a
log (1+ ax), (8)

and the equivalent threshold function of the proximal operator
(8) can be defined as (34, 38)

θ
(

y; λ, a
)

=







|y|
2 − 1

2a +

√

(

|y|
2 + 1

2a

)2
− λ

a

∣

∣y
∣

∣ ≥ λ.

0 |y| < λ

(9)

When the proximal operator θ(•) was applied to matrix X, the
element-wise would need to be treated. Then the proposed LRTA
problem (Eq. 7) can globally solved with optimal solution:

X∗
(n) = U(n)θ

(

6(n); λ, a
) (

V(n)
)T

, (10)

where Y(n) = U(n)6(n)(V(n))
T
. Therefore, the multilinear tensor

rank parameter rn can be adaptively estimated as the number

of the nonzero elements in θ

(

6(n); λ, a
)

, and the estimated

factorization matrix
ˆ
U

(n)

was selected as the first rn columns of
the U(n). Thus, the estimated core tensor can be formulated as:

ˆ
S = Y × 1(

ˆ
U

(1)

)T × 2(
ˆ
U

(2)

)T × 3(
ˆ
U

(3)

)T × 4(
ˆ
U

(4)

)T, (11)

and the restored tensor
ˆ
X can be obtained by:

ˆ
X =

ˆ
S × 1(

ˆ
U

(1)

)T × 2(
ˆ
U

(2)

)T × 3(
ˆ
U

(3)

)T × 4(
ˆ
U

(4)

)T. (12)

Variance-Stabilizing Transform
MR images were mainly contaminated by Rician-distributed
noise (3). For Rician noise removal in 3D MR image,

FIGURE 4 | Denoising proton density-weighted (PDw) images by different methods under 15% Rician noise. First line: T2w image without noise and with 15% Rician

noise. Second line: the denoised images with four different methods. Third line: the corresponding error images.

Frontiers in Oncology | www.frontiersin.org 8 September 2020 | Volume 10 | Article 1640

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Adaptive HOSVD 3D Denoising Algorithm

we implemented the forward and inverse variance-stabilizing
transform (VST) (38) into our proposed denoising framework.
The forward VST was used to convert the 3D MR images
with signal-dependent Rician-distribution noise into the new
volumetric data with homoscedastic Gaussian-distributed noise.
Once the proposed denoising algorithm was applied, the inverse
VST (VST−1) counteracted the recovered data to obtain the
denoised images. Therefore, the whole scheme of the proposed
denoising algorithm in 3D MR images can be formulated as:

ˆ
X = VST−1(Denoising(VST(Y ,σn),σVST),σn), (13)

where Y is the 3D MR images contaminated by Rician-
distributed noise, σn represents the Rician noise level, and σVST
is the standard deviation of noise after VST. We describe the
proposed denoising method in Algorithm 1.

EXPERIMENTS AND RESULTS

In this section, we validated the performance of the proposed
algorithm (refer asMHOSVD) on both the synthetic and clinical
3D MR images. The noise-free MR images for noise synthesis,
including T1-weighted (T1w) data, T2-weighted (T2w) data, and
proton density-weighted (PDw) data, were downloaded from
BrainWeb database (39, 40). The raw data were formatted in a
size of 181 × 217 × 181 with 1 mm3 × 1 mm3 × 1 mm3 voxel
resolution. The noise data were simulated by adding different
levels of spatially invariant Rician noise (from 1% to 15% of the
maximum intensity with an increase of 2%).

The peak SNR (PSNR) and structural similarity index
measurement (SSIM) were calculated to quantitatively evaluate

Algorithm 1 : 3D MR image denoising

Input: 3D MR noise images Ynoise

Output: Denoised MRI image X
Initialization: X=Y
for t= 1,2,. . . T do

Iterative regularization: Y(t) = X (t-1) + β(Y − X (t-1))
Update the noise deviation σVST according to σVST =

γ

√

σVST2 − ||Y − Y(t)||2F
Search for similar patches and group them to form fourth-

order tensor Y for each reference patch;
Decompose each tensor by Eq. (5) and compute

θ

(

6(n); λ, a
)

by Eq. (9);

Update the factorization matrix U(i) (i = 1, 2, 3, 4);
Compute the core tensor S by Eq. (11);

Compute the denoised tensor
ˆ
X by Eq. (12);

Aggregating all
ˆ
X to obtain denoised image;

End for

the denoising performance. PSNR was a metric measuring the
ratio of the maximum possible signal power to the noise power,
which is defined as:

PSNR = 10 log10
MAX2

MSE
, (14)

where MSE is the mean squared error (MSE) between the
denoised image and ground truth and MAX represents the

FIGURE 5 | Performance comparison with enlarged region of interest (ROI) visualization using four different methods under 15% Rician noise. ROIs selected from

above (red rectangles in Figures 2–4). First line: T1-weighted (T1w) images. Second line: T2-weighted (T2w) images. Third line: proton density-weighted (PDw)

images.
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maximum image intensity. According to the definition, a higher
PSNR value would indicate lower noise content that related to a
better image quality.

Meanwhile, the metric of SSIM was defined according to
human eye perception:

SSIM =
(2µxµx∗ + c1)(2σxσx∗ + c2)

(µ2
x + µ

2
x∗ + c1)(σ 2

x + σ 2
x∗ + c2)

, (15)

where µx and σx denote the mean and standard deviation of
the ground truth image, respectively, while the µx∗ and σx∗

denote the mean and standard deviation of the denoised image,
respectively. c1 and c2 are constants. Therefore, the range of
SSIM was from −1 to 1. An SSIM value close to 1 referred
to a perfect similarity comparing the denoised image with
the ground truth, which resulted in a higher performance of
image restoration.

Parameter Sets
The parameters that may determine the denoising performance
of the proposed algorithm (MHOSVD) included the following:
the size of cube p, the number of similar cubes in a group m,
the size of searching volume L, and noise-feedback parameters β
and γ . A large value of p and m tended to benefit the removal
of image data corruption at high-level noise. However, a large
value of parameter m that denoted the number of similar cubes
would also result in intragroup dissimilar cubes as a trade-off.
Efforts were paid to balance the advantages and disadvantages;
the setting of parameters p and m at different noise levels was
chosen and shown in Table 1. Similarly, the increase in searching
volume parameter L can help better in cube grouping according
to image similarity for higher PSNR and also with a cost of the
computational burden. The size of the search window (L) was
set as 13 according to previous studies (27). The noise-feedback
parameters β and γ , which were critical to the feedback of the
residual image and residual noise, were set to 0.65 and 0.2 on
the basis of previous research (30), respectively. In addition, the
parameter a from parameterized logarithmic nonconvex penalty
function (Eq. 7) and threshold τ from the proximal operator (9)
were set as 0.5/τ and 2× log(p3m), respectively.

Denoising on Synthetic Three-Dimensional
Magnetic Resonance Images
The performance of proposed algorithm (MHOSVD) was first
tested on synthetic brain 3D MR images, against several existing
classical algorithms including RSNLMMSE (11), BM4D (27),
PRI-NLM3D (22), and HOSVD-R (30). The corresponding
PSNR performance and SSIM performance on T1w, T2w, and
PDw images were compared across algorithms. As illustrated
by Figure 1, the proposed MHOSVD exhibited encouraging
improvements over the other three methods, which had been
previously verified to be state-of-the-art. Further, we also
tabulated the PSNR (Table 2) and SSIM (Table 3) obtained by
these four denoising algorithms (RSNLMMSE, BM4D, PRI-
NLM3D, HOSVD-R, and MHOSVD) on MR images (T1w,
T2w, and PDw) adding Rician noise under different noise
levels (1, 3, 5, 7, 9, 11, 13, and 15%, respectively). The
proposed MHOSVD outperformed RSNLMMSE (ranged from
1.9337 to 3.8249 dB), PRI-NLM3D (1.091 to 2.2149 dB),
BM4D (0.4305 to 1.3077 dB), and HOSVD-R (0.0737 to
0.46 dB) with regard to PSNR. The same superiority was
also observed according to the metric SSIM, indicating that
the proposed MHOSVD can better remove Rician noise with
structure preservation against corruptions across a board range
of noise level.

Examples of denoising results of all four algorithms on
synthesized MR images (T1w, T2w, and PDw) corrupted
by the Rician noise at level of 15% are visually shown in
Figures 2–4. Through visible observation, the RSNLMMSE
and the PRI-NLM3D exhibited a relatively degraded
performance as undesirable oversmoothing and higher
detailed structure loss were found to be accompanied with
noise reduction, than did the other three methods (BM4D,
HOSVD-R, and MHOSVD). Though all four algorithms
showed intensity oscillations in homogenous regions
according to the results of residual images (Figures 2–4)
and enlarged regions of interest (ROIs) (Figure 5), the
proposed MHOSVD decreased the unpleasant fluctuation
in performance somehow. Nevertheless, the figures illustrate that
our algorithm MHOSVD retained fine textures pretty well in 3D
volumetric images.

FIGURE 6 | The singular value decomposition (SVD) comparison of different mode unfolding matrices about ground truth and denoised image, destroyed by 15%

Rician noise, through the HOSVD-R and the proposed MHOSVD method. (A) Mode 1 matrix; (B) mode 2 matrix; (C) mode 3 matrix.
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Compared with hard threshold function, the proposed
logarithmic penalty function was closer to the rank function.
The singular values on unfolding matrices along different
modes also were compared across ground truth and restored

images (noisy level set as 15%) via HOSVD-R and MHOSVD
method, respectively. As shown in Figure 6, the singular
values extracted from recovered images using our proposed
method were obviously closer to those of the noise-free

FIGURE 7 | Denoising performance based upon synthesized brain images with abnormities acquired via different MRI modes. The ground truth images (1st column)

were downloaded from the open source of BraTS, which included clinical datasets after several image preprocessing approaches. A level of 11% Rician noise was

added into the ground truth to synthesize the noised images (second column). The proposed algorithm (MHOSVD) was applied to remove the corruptions against four

classical denoising methods (RSNLMMSE, PRI-NLM3D, BM4D, and HOSVD-R), and the results were compared. (A) Denoising performances based on T1-weighted

contrast-enhanced images acquired from three different patients, and each row corresponds to one patient. (B) Denoising performances based on MR datasets

acquired by different imaging modes [from top to bottom: T1-weighted contrast-enhanced, T2, and fluid-attenuated inversion recovery (FLAIR)] of the same patient.
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images than HOSVD-R, especially in the small singular
value domain.

In addition, we further applied the proposed algorithm to
verify its reliability and effectiveness on the basis of MR images
with various abnormities. The ground truth was obtained from
the Multimodal Brain Tumor Image Segmentation Challenge
(BraTS) 2013, which provided MRI datasets that have already
been optimized by several image preprocessing approaches for
further application simulations such as CAD segmentations
(41). Figure 7 shows some examples randomly selected from
the BraTS, as Figure 7A focuses on T1w contrast-enhanced
modes from three different patients, while Figure 7B involves
a specific case imaged via different modes including T1w
contrast enhanced, T2w, and fluid-attenuated inversion recovery
(FLAIR). In this study, Rician noise with a level of 11% was
introduced into the BraTS data to synthesize the noisy images.
As illustrated by the second column of Figure 7, the boundary of
lesions can be severely blurred with the impact of noise, and some
small structures were even buried by the stochastic variances

that noise introduced. The proposed algorithm (MHOSVD) was
applied to remove the image corruption and restore the image
qualities, and the relative results were compared with those
of several classical denoising method including RSNLMMSE,
PRI-NLM3D, BM4D, and HOSVD-R. Figure 7 illustrates that
all algorithms can repair images with different noise removal
abilities. Comparing columns 3–7 with column 2, it can be
visibly observed that the blurry images were degraded after the
denoising procedure (Figure 7), the boundary of pathological
context was re-highlighted, and fine structures covered by the
additive noise were restored as a result of noise removal. Further,
compared with other classical methods (RSNLMMSE, PRI-
NLM3D, BM4D, and HOSVD-R), our proposed algorithm can
emphasize the lesion edge more effectively and preserve more
small structures, which may assist the physician in decision
making under complex conditions when images were acquired
with heavy noise and play a key role for accuracy improvements
in computer-aided detection/diagnostic tools such as tumor
segmentation and recognition.

FIGURE 8 | Example of clinical image denoising using the proposed method. First line: clinic noise image. Second line: the denoised images with the proposed

method. Third line: the corresponding error images (the absolute difference between the denoised and noise images). Regions of interest (ROIs) (red rectangle) were

selected and enlarged for better detail representation in this figure.
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FIGURE 9 | Denoising performances comparison based on regions of interest (ROIs) of top images (red rectangle in Figure 8). (A) Enlarged ROI from OAS1_0092.

(B) Enlarged ROI from OAS1_0112. The proposed algorithm (MHOSVD) was compared with existing state-of-the-art methods including RSNLMMSE, BM4D,

PRI-NLM3D, and HOSVD-R.

Denoising on Clinical Three-Dimensional
Magnetic Resonance Images
We also validated the denoising performance of the proposed
algorithm on clinical MR datasets downloaded from the publicly
available Open Access Series of Imaging Studies (OASIS)
database (http://www.oasis-brains.org) (42). The clinical

datasets (brain images, T1w) were of size 256 × 256 × 128

with a resolution of 1.0 mm3 × 1.0 mm3 × 1.25 mm3.

The obtained MR images were originally corrupted by

a certain level of clinical noise through acquisition. The
Rician noise level was investigated according to (38), and

the noise estimates for these MR images (OAS1_0092
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and OAS1_0112) were ∼4.5 and 3% of the maximum
intensity, respectively.

The restored results of our proposedMHOSVD for T1w brain
images in sagittal, coronal, and transverse planes are presented in
Figure 8. Further comparisons across four different algorithms
(RSNLMMSE, BM4D, PRI-NLM3D, HOSVD-R, andMHOSVD)
are shown in Figure 9. According to performance comparison
(Figure 9), the statistical approach RSNLMMSE can restore the
images but also severely erased structural details, and the PRI-
NLM3D also showed some blurry edge and several tiny structures
loss after noise removal. Again, based upon clinical images, the
outstanding noise-reduction performance with excellent detailed
structure reservation was practically observed usingMHOSVD.

CONCLUSIONS

In this study, we proposed an adaptive multilinear tensor rank
approximation algorithm based on parameterized nonconvex
logarithmic function for Rician noise removal in 3D MR images.
The framework extracted 3D cube from noise images and
searched similar cubes according to the Euclidean distance
between cubes to construct the corresponding fourth-order
tensor. The nonconvex logarithmic function was applied for
the rank estimation of unfolding matrices along different
modes of the tensor. Then the fourth-order tensors can be
effectively recovered through the adaptive multilinear tensor
rank approximation. Afterwards, the recovered cubes were
aggregated to obtain the recovered volumetric images. Finally,
we verified our algorithm on synthetic and clinical MR images.
The proposed method exhibited a state-of-the-art performance
in Rician noise removal with excellent fine detail preservation,

which even outperformed several existing classical denoising
methods (RSNLMMSE, BM4D, PRI-NLM3D, and HOSVD-R).
Further, the capability to effectively capture the sparsity of
multidimensional dataset would enable our work to be extended
to several other domains, such as hyperspectral images (43, 44),
color images (45), and video (46).
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