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Pulmonary complications are common following hematopoietic cell transplantation (HCT)

and contribute significantly to its morbidity and mortality. Diffuse alveolar hemorrhage is

a devastating non-infectious complication that occurs in up to 5% of patients post-HCT.

Historically, it carries a high mortality burden of 60–100%. The etiology remains ill-defined

but is thought to be due to lung injury from conditioning regimens, total body irradiation,

occult infections, and other comorbidities such as graft vs. host disease, thrombotic

microangiopathy, and subsequent cytokine release and inflammation. Clinically, patients

present with hypoxemia, dyspnea, and diffuse opacities consistent with an alveolar

disease process on chest radiography. Diagnosis is most commonly confirmed with

bronchoscopy findings of progressively bloodier bronchoalveolar lavage or the presence

of hemosiderin-laden macrophages on microscopy. Treatment with glucocorticoids is

common though dosing and duration of therapy remains variable. Other agents, such

as aminocaproic acid, tranexamic acid, and activated recombinant factor VIIa have also

been tried with mixed results. We present a review of diffuse alveolar hemorrhage with a

focus on its pathogenesis and treatment options.

Keywords: diffuse alveolar hemorrhage, hematopoietic cell transplant (HCT) complications, pediatric oncology,

glucocorticoids, thrombotic microangiopathy, graft vs. host disease, pulmonary hemorrhage, extracorporeal

membrane oxygenation (ECMO)

INTRODUCTION

Hematopoietic cell transplant (HCT) is increasingly used as a treatment for various malignant
and non-malignant disease processes. Post-transplant, pulmonary complications are common,
occurring in up to 40–60% of transplant recipients, and contribute to significant morbidity and
mortality (1). Diffuse alveolar hemorrhage (DAH) is a clinical syndrome characterized by dyspnea,
pulmonary infiltrates on chest radiography, and progressively bloodier bronchoalveolar lavage on
bronchoscopy (2). DAH was first described by Robbins et al. in adults following autologous HCT
for various oncologic processes (3, 4). Since then, there have been several case series examining
DAH in patients who have received autologous and allogeneic HCT for both malignant and non-
malignant diseases (4, 5). The incidence of DAH is typically reported between 2.5 and 5% of
patients undergoing allogeneic HCT (4–7); however, incidence has been reported to occur in up
to 40% of HCT recipients in some series (1). DAH historically yielded a high overall mortality rate
between 64 and 100%, most commonly due to respiratory failure, multiorgan failure, and sepsis
(2, 4, 6, 8, 9). While more recent case series describing the use of newer treatment agents, such
as activated human recombinant factor VII, have reported improved mortality rates below 50%,
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(10–13), there remains a great need for improved understanding
of this disease process in order to develop precision
treatment modalities.

PATHOPHYSIOLOGY

Alveolar hemorrhage results from damage of the pulmonary
microcirculation, loss of integrity in the alveolar-capillary
basement membrane, and accumulation of red blood cells in
the alveolar space (14). It presents with a spectrum of histologic
findings, including pulmonary capillaritis, bland pulmonary
hemorrhage, and diffuse alveolar damage (DAD) (14). Of these,
pulmonary capillaritis is themost commonly described histologic
subtype overall and is frequently seen in the setting of systemic
vasculitis or connective tissue disorders (14). However, there is
significant overlap of DAD and DAH on post-mortem exam in
HCT patients, suggesting that not only is DAD themost common
histologic subtype of DAH in this patient population, but that
DAD likely contributes to the development and progression of
DAH (14–16).

The exact pathogenesis of DAH in the post-HCT population
has not been well-understood but is thought to result from a
direct insult to the lungs followed by significant inflammation
and cytokine release leading to damage of the alveolar capillaries
(2, 8, 14) (Figure 1).

Direct injury to the lung results from underlying systemic
diseases such as occult infections, graft vs. host disease (GVHD),
thrombotic microangiopathy, and the use of conditioning
regimens including high-dose chemotherapy agents, thoracic
irradiation, and total body irradiation (2, 7, 8, 17). The alveolar-
capillary complex is especially sensitive to damage resulting from
thoracic and total body irradiation, which causes injury through
generation of reactive oxygen and nitrogen species that results in
damage to the alveolar epithelium, loss of endothelial integrity
of the pulmonary capillaries leading to loss of barrier function,
and reduction of lung perfusion promoting the development of
hypoxia (18, 19).

Diffuse alveolar damage is a common finding in both DAH
and idiopathic pneumonia syndrome (IPS), suggesting that
DAH could possibly be a distinct subset of IPS which involves
alveolar injury resulting from exposure to intensive conditioning
regimens, radiation therapy, and occult infections (2, 20). While
IPS and DAH share many similar clinical features, DAH is
distinguished from IPS in that it maintains a pro-inflammatory
cytokine environment with very little fibrotic effect (2). On
the other hand in IPS, as leukocyte activation progresses, there
is dysregulated wound healing and a shift in the cytokine
environment to one that promotes pulmonary fibrosis (21). This
was demonstrated by a small study conducted by Vusse et al.
in which the authors showed that patients with DAH in the
context of IPS had different cytokine concentrations on BAL
when compared to that of patients with IPS but no DAH.
However, there was no significant differences in serum cytokine
concentrations between the two groups suggesting that there is a
local pathobiological process (22). While the evidence is limited,
this study suggests that intrapulmonary cytokine levels may be

a helpful biomarker in diagnosis and development of precise
immunomodulatory therapies for DAH.

Exposure to these factors leads to activation of the
endothelium in the pulmonary microvasculature and release
of various inflammatory mediators. Dysregulated production
of cytokines including both Th1 (IFN-γ, IL-2) and Th2 (IL-
9, IL-10, IL-15) cytokines as well as an increase in IL-6,
IFN-γ-inducible protein 10 and TNF-α (23). Lymphocytic and
neutrophilic infiltration into the lungs from cytokine action
and engraftment/bone marrow recovery, respectively, further
potentiates pulmonary tissue damage (3, 21, 24). Neutrophils and
neutrophilic products can be found in the lower respiratory tract
even in the setting of peripheral neutropenia (24). Damage to the
alveolar-capillary complex allows for leakages of red blood cells
into the alveolar space and further potentiates the inflammatory
response. (2, 8, 25). In the setting of acute GVHD, alloreactivity
of the donor cytotoxic T-cells contribute to endothelial damage
in the lungs (17, 25). In human and murine models, there is
an increase in neutrophils and microthrombi in the alveolar
capillaries, and alterations in the type 2 pneumocytes are also
seen (26).

Aside from the direct pulmonary effects, the release of
cytokines such as TNF-α can lead to myocardial depression
(27). The inevitable transfusion of blood products to correct
coagulopathy/thrombocytopenia in the peri-HCT period can
result in transfusion-related circulatory overload (TACO) (28).
The combination of fluid overload and depressed myocardial
function worsen leakage of blood and fluid through the already
damaged alveolar capillary endothelium (29).

RISK FACTORS

Prior to its description as a complication following HSCT,
alveolar hemorrhage was described in various systemic disease
processes associated with direct injury or secondary to indirect
inflammatory damage to the pulmonary vasculature. Among
these were systemic vasculitides, collagen vascular diseases,
mitral valve disease, infections, and medications such as
penicillamine, abciximab, nitrofurantoin, propylthiouracil, and
amiodarone (2, 8, 30). Since then, several factors have been
implicated in the development of DAH post-HCT. Initial
reports of DAH were described in patients > 40 years old
who underwent autologous HCT for an underlying solid
malignancy. The onset of symptoms was at time the time of
engraftment and associated with fever and severe mucositis (3).
Intensive pre-transplant conditioning with total body irradiation
or thoracic radiation, severe graft-vs.-host disease (GVHD),
second transplant, dimethyl sulfoxide used as a cryopreservative,
and acquisition of neutrophil, T cell, and B cell immunologic
deficits secondary to the underlying disease process or primary
treatment have subsequently been identified as risk factors for
the development of alveolar hemorrhage (7, 16, 17, 20, 31–33).
Additionally, the use of certainmedications such as sirolimus and
defibrotide to treat GVHD and sinusoid obstruction syndrome,
respectively, have also been associated with the development
of pulmonary/diffuse alveolar hemorrhage post-HCT (34, 35).
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FIGURE 1 | Pathogenesis cycle of DAH. (A) The initial injury to the lung alveoli is caused by condition regimens or other disease processes such as infection, TMA, or

GVHD leading to (B) influx of inflammatory cells and molecules into the alveoli and (C) a dysregulated pattern of cytokine release. This response leads to (D) damage

of the capillary endothelium, which can be worsened by supportive therapies, such as TRALI and TACO. Disruption of the capillary endothelium, and thus the

alveolar-capillary complex, furthers lung injury and leads back into a vicious cycle. GVHD, graft vs. host disease; TMA, thrombotic microangiopathy; Th1, type 1 helper

T-cell; Th2, type 2 helper T-cell; IFN-γ, interferon-gamma; IL, interleukin; TNF-α, tumor necrosis factor-alpha; CTL, cytotoxic T-lymphocyte; ROS, reactive oxygen

species; RNS, reactive nitrogen species; NISHOT, non-infectious serious hazards of transfusions; TRALI, transfusion-related acute lung injury; TACO,

transfusion-associated circulatory overload.

The overall incidence of DAH is similar between autologous
and allogeneic HCT (2) with reported incidence of 0.9–21%
and 2.3–12.2% following autologous (3, 6, 36) and allogeneic
(4–6, 32, 33, 37) transplantation, respectively. Use of umbilical
cord blood graft was associated with a higher incidence of DAH
compared to use of peripheral blood or bone marrow grafts
(32, 37). In patients transplanted with peripheral blood or bone
marrow grafts, delayed neutrophil engraftment and graft failure
were identified as risk factors for development of DAH (32).

Renal insufficiency is associated with the development of
DAH. The association was thought to be secondary to uremia-
induced platelet dysfunction or fluid overload (3). However,
as more is understood about transplant associated thrombotic
microangiopathy (TMA), it is thought TMA is more likely the
link between DAH and renal failure.

In pediatrics, there is a trend toward increased DAH in
patients who received allogeneic HCT for non-malignant diseases
rather than malignancies (4). In these patients, age< 1 year, early
WBC recovery and fever are associated with the development of
DAH (4, 37). The role of thrombocytopenia in the development

of DAH is unclear. Most patients are thrombocytopenic at
the onset of DAH and prolonged thrombocytopenia may be
associated with development of DAH (4, 5, 32). However,
neither the platelet nadir nor platelet transfusions appears to
affect disease outcome (3, 4, 17, 38). As thrombocytopenia is a
component of thrombotic microangiopathy (TMA), which can
lead to DAH, it could be the link in certain cases. Coagulopathy
in uncommon and does not appear to play a significant role in
DAH (32, 33, 39).

CLINICAL PRESENTATION AND
DIAGNOSIS

While the onset of DAH is typically within the first 30 days post-
HCT, it has been reported after the first month of transplant
(2, 4, 8, 40). There are no standardized clinical, radiographic,
or laboratory markers to make the diagnosis. Due to the
lack of standardization, there is significant heterogeneity in
diagnostic criteria. Historically, various clinical criteria have
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been used to diagnose alveolar hemorrhage, including a high
percentage(≥ 20%) of hemosiderin-laden alveolar macrophages,
Golde score > 100, indicating a high hemosiderin content
within macrophages, and progressively bloodier BAL fluid on
bronchoscopy (8, 41). It is now classically characterized as a
constellation of findings including dyspnea, hypoxemia, diffuse
pulmonary infiltrates on chest radiography, and progressively
bloodier bronchoalveolar lavage return on bronchoscopy (2, 4,
5, 8, 14, 31). There should be evidence of widespread alveolar
injury and abnormal pulmonary physiology associated with an
increased alveolar to arterial oxygen gradient and restrictive
ventilatory defect (2). While patients often present with fever,
cough, and dyspnea, hemoptysis is surprisingly uncommon in
adults (5, 8, 20) but is more commonly reported in children
(4). Abnormalities in chest radiography can be seen prior to
the clinical symptoms of DAH (36). Radiographic findings
are initially non-specific and often characterized by diffuse
pulmonary infiltrates, most pronounced in the bilateral perihilar
areas and lower lobes (4, 20, 36, 42). As the disease progresses,
worsening of the chest radiograph to a diffuse, severe reticular
alveolar pattern is appreciated (36). Findings on computed
tomography are similar to those seen on plain radiography, with
predominately ground glass opacities and/or a reticular pattern
of injury, consistent with acute alveolar/interstitial disease (42).
Oftentimes, respiratory compromise or a new infiltrate on
chest radiography leads to bronchoscopy (6), which is used
in these patients to establish the diagnosis and exclude other
causes for these symptoms such as infection or recurrence of
malignancy. During bronchoscopy, there should be progressively
bloodier fluid returned or hemosiderin-laden macrophages on
bronchoalveolar lavage samples with sequential instillation of
saline (4, 14, 43). However, an early study called into question the
utility of BAL in the diagnosis of DAH (15), demonstrating that
7/13 patients with hemorrhagic BAL fluid did not have histologic
evidence of DAH on post-mortem exam while 4/8 with DAH
did not have hemorrhagic BAL fluid. Agusti et al. hypothesized
that these findings may be explained by processes that cause
hemorrhagic exudates in the alveolar spaces such as CMV
pneumonitis or pulmonary aspergillosis and that bronchoscopy
may not have explored the area of DAH, respectively (15).
While pulmonary infections can lead to alveolar hemorrhage,
the diagnosis of diffuse alveolar hemorrhage in the post-HCT
period is reserved for alveolar hemorrhage from a non-infectious
etiology (2, 8). As such, many studies exclude those with signs of
infection such as with a recent positive bronchoalveolar lavage
culture or localized pulmonary hemorrhage from other causes
such as chronic bronchitis, bronchiectasis, or tumors (2, 5, 8, 31).

OUTCOMES

Outcomes of DAH following HCT have historically been dismal,
with most with in-hospital mortality commonly cited between 64
and 100% (3, 4, 9, 36, 44, 45). Most, if not all, patients require
intensive care and mechanical ventilatory support (4–8, 31, 32,
43, 45, 46). Poor prognostic factors include allogeneic transplant,
umbilical cord blood as the graft source, infection-related alveolar

hemorrhage, and need for mechanical ventilation (1, 8, 32).
Factors associated with improved outcomes include early onset
(<30 days after HCT) of DAH, which is also associated with
an improved response to systemic glucocorticoids, and DAH
occurring during the periengraftment period (+/– 5 days from
neutrophil engraftment) (8, 31). The improvement in survival
periengraftment is hypothesized to be secondary to the transient
nature of engraftment and potential for improvement following
the resolution of the periengraftment cytokine storm (31).

MANAGEMENT

Supportive Measures
The approach to management of DAH should reflect this
entity’s diverse and complex pathogenesis. Most patients with
DAH require care in an intensive care unit and invasive
mechanical ventilation (8). Mechanical ventilation strategies
include maintaining a high positive end-expiratory pressure
(PEEP) in effort to tamponade capillary bleeding and on
occasion escalation to high frequency oscillatory ventilation
(HFOV) (13, 39). Supportive measures such as optimization of
fluid and electrolyte balance, correction of coagulopathies and
prophylactic antibiotics are a mainstay of treatment for DAH (6).

Transfusion of Blood Products
Most patients are thrombocytopenic at time of DAH onset.
However, outcomes have not been shown to be affected by either
the nadir platelet count or its correction by platelet transfusions
(3, 4, 38). Coagulopathy associated with abnormalities in
prothrombin time (PT), international normalized ratio (INR),
and activated partial thromboplastin time (aPTT) is uncommon
in patients with DAH (32, 33, 39). While transfusion of blood
products, particularly platelets, is common in the management
of DAH, the unrestrained use of platelet transfusions is not
without risks. Platelet and red blood cell (RBC) transfusions
are independently associated with a higher risk of venous
thromboembolisms, arterial thromboembolisms, and in-hospital
mortality in hospitalized oncology patients (47). Platelet
transfusions have been implicated in transfusion reactions such
as allergic reactions, febrile non-hemolytic reactions, transfusion-
associated sepsis, and transfusion-related acute lung injury
(TRALI) (48). The potential for injury is further elevated in these
patients as HCT has been identified as risk factor for developing
TRALI, and; during periods of inflammation, such as is seen in
DAH, platelet transfusions may increase vascular permeability
and thereby worsening capillary leak (48–50).

As traditional transfusion practices have not shown to
impact outcomes in DAH, thromboelastography (TEG) and
rotational thromboelastometry (ROTEM) TEG/ROTEM-guided
transfusion may be considered and is an area for future
research. They have been used to assess global clotting function
in various bleeding disorders, during cardiac surgery, liver
transplantation, and traumas (51). In patients with hemophilia,
TEG/ROTEM assay results correlated well with phenotypic
disease severity. They are useful for monitoring response to
bypassing agents, such as recombinant activated FVII (51).
Furthermore, a Cochrane Review of TEG/ROTEM use in cardiac
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surgery showed a trend toward improved mortality and an
overall significant reduction in pooled red blood cell, fresh frozen
plasma, and platelet requirements using TEG/ROTEM-guided
transfusions (52).

Anemia is also a common finding in the critically-ill
pediatric population, occurring in 74% of these patients with
49% receiving one or more RBC transfusions during their
PICU course (53). While RBC transfusions can correct severe
anemia, thus increasing the oxygen content of blood, it does
not necessarily increase tissue oxygen delivery and oxygen
consumption (54). Furthermore, they have been associated with
non-infectious serious hazards of transfusions (NISHOTs) such
as TRALI/TACO, and mortality (53–55). In 2007, Lacroix et al.
showed that in hemodynamically stable patients, a restrictive
strategy of RBC transfusions, defined as a hemoglobin threshold
of 7 gram/deciliter, did not result in an increase in new
or progressive multiple-organ dysfunction syndrome and that
patients received 44% fewer transfusions than those in the
liberal-transfusion, defined as a hemoglobin threshold of 9.5
gram/deciliter, group (56). In 2018, the Pediatric Critical Care
Transfusion and Anemia expertise Initiative (TAXI) published
good practice guidelines and recommendations for the use of
RBC transfusions. The guidelines supported Lacroix’s restrictive
transfusion threshold of 7 g/dl in hemodynamically stable
patients and urged clinicians to regard the need for transfusion
in the context of the patient’s broader clinical picture rather than
simply looking at a threshold number (54, 56, 57).

Glucocorticoids
Glucocorticoids (GC) have been used for many years in various
inflammatory and autoimmune disorders. Cases of DAH which
coincide with marrow recovery are thought to be due to an
inflammatory diffuse alveolar damage potentially responsive to
glucocorticoids. This has made glucocorticoids the mainstay of
treatment (2, 4, 8, 24). First demonstrated by Metcalf et al.
patients treated with high dose steroids, defined as a daily dose
of methylprednisolone 30mg or equivalent, had an increase
in overall survival and decreased need for invasive mechanical
ventilation without an increase in rates of systemic bacterial
or fungal infections when compared to patients treated with
low-dose steroids or supportive care alone (24).

The mechanism by which glucocorticoids modulate
inflammation occurs through genomic and non-genomic
pathways (Table 1). Within the cytoplasm, glucocorticoid
receptors (GCR) bind to free glucocorticoids with high affinity
(58). The glucocorticoid-glucocorticoid receptor complex enters
the nucleus and binds to specific DNA sequences known as
either positive or negative glucocorticoid-responsive elements
(GREs). When bound to positive GREs, the glucocorticoid-GCR
complexes exerts a direct genomic effect through activating
the transcription of anti-inflammatory proteins such as IL-
10, Annexin-1, mitogen-activated protein kinase (MAPK)
phosphatase-1, and inhibitors of nuclear factor NF-kB (59, 60).
Annexin-1 blocks the release of arachidonic acid and its
conversion to various eicosanoids such as prostaglandins,
thromboxanes, prostacyclins, and leukotrienes (58). The
glucocorticoid-GCR complex induces indirect genomic effects

TABLE 1 | Comparison between genomic and non-genomic effects of

glucocorticoids.

Genomic Non-genomic

Dose Low dose resulting in

saturation of the cytoplasmic

GC receptors

>100mg, up to 1 g

Duration of

onset

>30min Seconds to minutes

Actions Direct: forms GC/GCR

complexes in cytoplasm

which enter the nucleus and

binds to/regulates

transcription of GRE’s

Indirect: suppress expression

of pro-inflammatory molecules

through competitive

binding/protein-

protein interactions

Reduce intracellular free

calcium through inhibition of

calcium/sodium cycling, thereby

inhibiting neutrophil

degranulation

Increase proton leak and inhibit

oxidative phosphorylation in

mitochondria thereby

decreasing ATP production

Promote integrity of

alveolar-capillary complex

through activation of eNOS,

decrease exudative leakage into

the airways

GC, glucocorticoid; GCR, glucocorticoid receptor; GRE, glucocorticoid-responsive

elements, ATP, adenosine triphosphate, eNOS, endothelial nitric oxide synthase.

by competitive binding with (NF)-kB and activator protein 1
(AP-1) thereby suppressing the expression of pro-inflammatory
molecules (COX-2, cytokines such as IL-2, TNF-α, IFN-γ,
chemokines, cell adhesion molecules, complement factors, and
their receptors) (58–62). It is thought that most of the desired
anti-inflammatory effects are secondary to the suppressive effects
on gene transcription (60). Another genomic effect by which
glucocorticoids inhibit inflammation is through decreasing
mRNA stability for inflammatory proteins such as vascular
endothelial growth factor and cyclooxygenase 2 (63). The
genomic effects of glucocorticoids can be appreciated at lower
doses but require a longer onset of action, at least 30min but
sometimes taking up to hours or days, than the non-genomic
effects (58, 60, 63, 64). The non-genomic effects occur quickly,
within seconds to minutes following administration of a
glucocorticoid (58, 63, 65).

Glucocorticoids inhibit the cycling of sodium and calcium
across the plasma membrane, reducing the availability
of intracellular free calcium, which inhibits neutrophil
degranulation (58, 60, 66). Within the mitochondria, they
increase proton leak and inhibit oxidative phosphorylation,
decreasing production of ATP, an essential energy source of
cytokine synthesis and antigen processing/presentation by
macrophages (60). Additionally, glucocorticoids contribute to
the integrity of the alveolar-capillary complex through activation
of the phosphatidylinositol-3-hydroxykinase (PI3K/Akt)
signaling pathway which leads to the production of nitric oxide
(NO), a mediator of vascular integrity with anti-inflammatory
properties (58, 67, 68). Glucocorticoids promote vasoconstriction
of the airway vasculature via alpha adrenergic effects and by
potentiating angiotensin II (58) and inhibits platelet activating
factor and in turn decreases exudative leakage in the airways
(69, 70).
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TABLE 2 | Glucocorticoid use in adult patients with DAH.

Author/year Number of

transplants

Cases of

DAH, N (%)

Age in years,

median (range)

HCT reason, N Type/source,

N

DAH onset after

HCT, median

(range), in days

Infectious

agenta, N

Glucocorticoid regimen, (N) Adjunctive

directed

therapies, (N)

Mortality, N

(%)

Cause of

death, (N)

Complications

of therapies

Adults

Afessa et al.

(8)

1,215 48 (4) Mean: 47.7

SD: 12

Malignancy (hematologic):

42

Malignancy

(non-hematologic): 1

Non-malignant: 5

Allo: 23

Auto: 25

BM: 16

PBSC: 32

23.5 (4–1,330) None b Initial dose (44): IV MP 60mg –

2 g/day X 1-14 days, median

3d

Total treatment duration 2–117

days, median 22d

None Hosp: 23 (48) RF (15)

Sepsis (4)

MOF (1)

Other c (3)

None noted

Chao et al. (7) 77 4 (5.2) (28–50) Malignancy (hematologic):

4

Malignancy

(non-hematologic): 0

Non-malignant: 0

Allo: 0

Auto: 4

Source UNS

(14–20) None Initial dose (4): IV MP 1

gram/day X 3 days

Dose reduced by 50% every 3

days until 60mg daily dose;

then, transitioned to a

prednisone taper over

2 months

None Hosp: 0 (0) N/A No infectious

Gupta et al.

(1)

UNS 87 48 (22–76) Malignancy (hematologic):

79

Malignancy

(non-hematologic): 1

Non-malignant: 7

Allo: 74

Auto: 13

BM: 29

PBSC: 54

UCB: 2

3 (0–105) +BAL, total: 34

Fungal: 18

Bacterial: 6

Viral: 7

Parasitic: 3

Initial dose (87): IV MP ≥ 250

mg/day (or equivalent),

unspecified duration of

treatment

rFVIIa (24)

Desmopressin

(4)

ACA (3)

6-month: (62.2) RF (28)

MOF (14)

Other d (16)

None noted

Keklik et al.

(32)

1,228 59 (4.8) 32 Malignancy (unspecified):

50

Non-malignant: 9

Allo: 59

Auto: 0

BM: 9

PBSC: 10

UCB: 40

30 (3–168) Systemic

infection: 27%

+BAL: 19%

Initial dose (52):

-Adults: IV MP 1 gram/day,

divided BID, X 3 days

-Pediatrics: 500 mg/m2/day,

divided BID, X 3 days

Dose reduced by 50% every 3

days until 60mg daily dose;

then, tapered over 2 months.

Pediatrics similar taper to

adults

Anti-TNF (7) e

-Etanercept (6)

-Infliximab (1)

60-day: (55.8) UNS None noted

Lewis et al. (6) 922 23 (2.5) 36 (24-62) Malignancy (hematologic):

23

Allo: 19

Auto: 4

BM: 18

PBSC: 5

19 (5–34) None Initial dose (15): IV MP 250mg

- 2 g/day, unspecified duration

of treatment

None 60 day: 17

(73.9)

RF (3)

Sepsis (3)

MOF (11)

None noted

Majhail et al.

(31)

1,919 116 (6) 40 (0.6–71) Malignancy (hematologic):

100

Non-malignant: 16

Allo: 103

Auto: 13

BM: 48

PBSC: 42

UCB: 26

28 (3–785) Total: 71

+BAL: 50

+BCX: 12

+BAL& BCX: 9

Initial dose (96): IV MP 1

gram/day X 3 days

Dose reduced by 50% every 3

days until 60mg daily dose;

then, tapered over 2 months

None 60-day: 86

(74.1)

UNS None noted

Metcalf et al.

(24)

603 65 f Adults > 18

years

Malignancy (hematologic):

38

Malignancy

(non-hematologic): 24

Non-malignant: 3

Allo: 8

Auto: 57

BM: 65

UNS None Low dose (10): < 30mg MP

equivalent/day

High dose (43): > 30mg MP

equivalent /day

Typical initial high dose: IV MP

500-1,000 mg/day (divided

q6h) X 4–5 days, tapered over

2–4 weeks

None Hosp:

-No GC: 11

(91.7)

-Low dose: 9

(90)

-High dose: 29

(67.4)

UNS for 60

day mortality

High dose

without increase

in development

of infections

Raptis et al.

(33)

74 4 (5.4) (23–43) Malignancy (hematologic):

4 Allo: 4

Auto: 0

BM: 2

PBSC: 2

(0–23) None
Initial dose (4): IV MP 500mg –

2,000 gday X 1–5 days

Subsequently tapered,

unspecified duration

of treatment

None 60 day: 2 (50) RF&MOF (2) CMV + on

repeat BAL (1)

(Continued)
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Glucocorticoid dosing varies widely and can range up to
a 200-fold difference depending on the indication for use
(64, 71, 72). The genomic effects of glucocorticoids can be
elicited with usage of relatively lower doses, as low as 7.5–
100mg prednisone equivalent a day used in maintenance
therapy for rheumatologic conditions saturating <50% of the
glucocorticoid receptors (64). However, in order for them to
have maximal genomic and non-genomic anti-inflammatory
effects, very high doses, defined as over 250mg prednisone
equivalent a day, are required (64). Even higher doses of up
to 1,000–2,000mg of methylprednisolone equivalent per day,
referred to as pulse dosing, are used in treatment of acute
rheumatologic disease exacerbations in adults (73). This dosing
in adults translates to ∼15–30 mg/kg/day methylprednisolone
equivalents in children (73). While methylprednisolone is
most often used for pulse-dosing and has the advantage of
faster penetration into the cellular membrane and thus onset
of action, dexamethasone, another corticosteroid with high
glucocorticoid effects, has been used in a pulse-dose manner
(73, 74). When administered at 4–5 mg/kg up to 20 mg/dose,
dexamethasone is a more potent anti-inflammatory agent due
to its increased affinity for glucocorticoid receptors and non-
genomic effects when compared to methylprednisolone (73–
75). At these doses, not only is there 100% saturation of the
cytosolic glucocorticoid receptors, thus exerting full genomic
effects, there is also full elicitation of the more immediate, non-
genomic effects (64). It is likely that the addition of the non-
genomic effects of glucocorticoids contribute significantly to
the termination of acute exacerbations in these inflammatory
processes (64).

Many adverse effects of glucocorticoid therapy have been
described including hemodynamic changes (hypertension,
bradycardia) associated with intravenous infusions, loss
of bone mass, suppression of the HPA axis, weight gain,
hyperglycemia/diabetes mellitus, cardiovascular disease,
myopathy, cataracts, psychiatric disturbances, growth
suppression in children, and increased infection risk (73, 76). The
dosing over which these adverse effects develop have not been
defined but appear to be related to both average and cumulative
dose (76, 77). The rationale for pulse dosing is to maximize the
immediate non-genomic effects leading to faster recovery of
clinical symptoms, minimize the inflammatory damage from
disease, and limit the adverse effects associated with long term
glucocorticoid use (73). Treatment at these doses are limited in
duration of therapy and require either discontinuation or rapid
decreases after a maximum of 5 days (64, 73, 76).

Glucocorticoid dosing in the treatment of adult DAH patients
has not been standardized (Table 2). While the initial report
by Metcalf et al. supported the use of over 30mg of MP
equivalent per day, there is a paucity of studies comparing
different treatment doses. Rathi et al. compared low, medium,
and high dose, defined as <250, 250–1,000, and >1,000
mg/day of MP, respectively, and found a significantly lower
ICU and hospital mortality in patients treated with lower
dose steroids compared to those treated with medium or high
doses (45). However, this study was limited by its retrospective
nature. Furthermore, while there was no significant difference
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in mortality predictive indices between the treatment groups
at time of admission, the sicker patients at time of DAH
diagnosis may have been placed on higher doses of steroids,
thereby confounding the results (45). In other case series
and reports, high doses of glucocorticoids have been used-
methylprednisolone 30 mg/kg/day to a max of 2 gram day is
used for 3–5 days which is followed by a slow taper over 2–4
weeks (2, 6, 8).

Reports of glucocorticoid use of DAH following HCT in the
pediatric population are limited to small, retrospective reports
(Table 3). Ben-Abraham et al. reported a series of 6 children
who were treated with moderate glucocorticoid doses (6 mg/kg
methylprednisolone) in which only 1 survived the initial injury
(4). Heggen et al. reported better overall survival (4/7) but
no significant difference between patients treated with 1,000
mg/day (3/4) and <500 mg/day (1/3) of methylprednisolone
(5). While one cannot draw definite conclusions between
these two studies, it appears that there is a trend toward
improved survival with use of higher glucocorticoid doses.
Prospective studies are greatly needed to develop treatment
regimens as mortality for DAH remains high. At this time,
in cases of DAH thought to be caused by inflammation-
induced alveolar damage, we advocate for the use of high dose
glucocorticoid therapy to achieve maximal genomic and non-
genomic effects and minimize side effects. In circumstances
where underlying infection is suspected, we recommend weaning
over 4–8 weeks.

Aminocaproic Acid
Aminocaproic acid (ACA) is an antifibrinolytic agent that
has been used with mixed results in the treatment of DAH
following HSCT (43, 45). In the original study conducted by
Wanko et al. in 2006, there was a significant decrease in
100 day DAH mortality from 83 to 44% in those patients
who were treated with a combination of methylprednisolone
(250mg q6h followed by taper of 50% every 3 days) and
aminocaproic acid (1,000mg IV q6h) compared to those who
were treated with methylprednisolone alone. There was no
major clinically apparent side effect from the addition of
aminocaproic acid. Notably, 6/14 patients in this series had an
infectious organism identified with bronchoscopy. The authors
acknowledge that classically, DAH occurs in the absence of
infectious agents, though question the clinical significance of
detection of these agents on the development and progression
of DAH (43). However, a follow-up study performed by Rathi
et al. in 2015, found no significant difference in mortality (30,
60, 100 day, ICU, hospital), number of ventilator days, ICU
length of stay, or hospital length of stay between groups who
received a combination of steroid and aminocaproic acid (4
gram IV bolus followed by 1 gram/h infusion) or steroids
alone. Again, there was no increase in side effects attributed
to aminocaproic acid in the cohort of patients who received
combination therapy. The authors argue that the discrepancy
in efficacy of ACA may be due to a higher severity of
illness in this study as compared to the previous one (69%
requiring ICU care as opposed to 28% classified as critically
ill) (45). T
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TABLE 4 | Activated human recombinant factor VII use in adult patients with DAH.

Author/Year Cases

of DAH

Cases of DAH

post-HCT, N (%

total cases)

Age range, median

(range), in years

HCT

type/source

Infectious agent

identified, N

rFVIIa regimen Adjunctive therapies,

(N)

Cessation of

bleeding, N

(%)

Mortality, N

(%)

Cause of

death, (N)

Thromboembolic

complications

Adults

Baker et al.

(10)

6 2 (33.3) (23–84) Allo: 1

Auto: 1

Source UNS

None Intrapulmonary rFVIIa

30-60 mcg/kg daily X

1-2 dose(s)

All received systemic

glucocorticoids

ACA (3)

Other a (1)

5 (83.3) DAH episode:

1 (16.7)

RF (1) None

Estella et al.

(46)

2 0 (0) (39–46) N/A None Intrapulmonary rFVIIa

50 mcg/kg X 1 dose

None 2 (100) ICU: 0 (0) N/A None

Gupta et al.

(1)

87 87 (100) 48 (22–76) Allo: 74

Auto: 13

BM: 29

PBSC: 54

UCB: 2

Total: +BAL: 34

Fungal: 18

Bacterial: 6

Viral: 7

Parasitic: 3

rFVIIa dosing UNSb All received systemic

glucocorticoids

Desmopressin (4)

ACA (3)

UNS 6-monthc:

(62.2) out of all

AH

RF (28)

MOF (14)

Otherd (16)

None

Henke et al.

(85)

3 1 (33.3) (23–53) Allo: 1

BM: 1

None rFVIIa (unspecified

route) 120 mcg/kg q3h

X 3 doses

rFVIIa (unspecified

route) 90 mcg/kg X 2

days

rFVIIa (unspecified

route) 120 mcg/kg X 1,

180 mcg/kg 6 h later;

90 mcg/kg for rebleed 5

days later

All received MP

Plasmapheresis (2)

Othere (1)

3 (100) DAH episode:

0 (0)

N/A None

Heslet et al.

(38)

6 2 (33.3) (34–63) Allo: 2

Source UNS

+BAL: 1 (bacterial)

UNS pulmonary

infection: 1

Systemic CMV: 1

Intrapulmonary/

nebulized rFVIIa 50

mcg/kg X 1–3 dose(s)

Standard care including

IV/endotracheal TXA and

aprotinin infusion

IV rFVIIa (1)

IV desmopressin (1)

IV MP (1)

6 (100) Overall: 3 (50) Sepsis (3) None

Hicks et al.

(86)

1 1 (100) 35 Allo: 1

BM: 1

None Initial: Intravenous rFVIIa

90 mcg/kg q3h X 8

doses

Recurrence:

Intravenous rFVIIa 90

mcg/kg IV q6h X

16 doses

IV MP/desmopressin/ACA

(1)

1 (100) DAH episode:

0 (0)

N/A None

Patores et al.

(87)

1 1 (100) 48 Allo: 1

Source UNS

None Intravenous rFVIIa 90

mcg/kg q2h X 2 doses

Systemic GC (1) 1 (100) Hosp: 0 (0) N/A None

Pathak et al.

(11)

23 7 (30.4) Mean 47

SD 19

Type: UNS

BM: 7

Not noted Intravenous rFVIIa

35-120 mcg/kg q2h (4

doses/day) until

hemostasis achieved or

inadequate response

All received IV MP

Plasmapheresis (15)

IVIG (1)

Cytotoxic drugsf (13)

22 (95.7) Overall: 8 (34.9) Sepsis,

MOF,

progression

of

underlying

disease

None

DAH, diffuse alveolar hemorrhage; HCT, hematopoietic stem cell transplant; rFVIIa, activated human recombinant factor VII; allo, allogeneic; auto, autologous; UNS, unspecified; ACA, aminocaproic acid; RF, respiratory failure; BM, bone

marrow; PBSC, peripheral blood stem cell; UCB, umbilical cord blood; BAL, bronchoalveolar lavage; CMV, cytomegalovirus; MP, methylprednisolone; MOF, multiple organ failure; TXA, tranexamic acid; ETT, endotracheal tube; IVIG,

intravenous immunoglobulin; VZV, varicella zoster virus; a Intravenous immunoglobulin/ Cyclophosphamide/ Rituximab/ Plasmapheresis; b 24 cases treated with rFVIIa; c Mortality percent of all 87 cases; d Disease progression (8), graft

vs. host disease (2), unspecified (4); e Mycophenolate mofetil/ Cyclophosphamide; f Rituximab or Cyclophosphamide.
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Nebulized Tranexamic Acid
Tranexamic acid (TXA), also a antifibrinolytic agent acts by
binding to plasminogen and inhibits its binding to fibrin and
activation to plasmin (78). It has been used in the treatment
or prevention of bleeding in hemophilia, ITP, and in operative
procedures (79). In patients requiring systemic anticoagulation
undergoing dental procedures, the local application of TXA
through use of a mouthwash resulted in significantly less post-
procedural bleeding without elevated levels of TXA in the serum
(80). In a case series reported by Solomonov et al. of six patients
with pulmonary hemorrhage of varying etiology treated with
direct delivery of TXA either through direct instillation during
bronchoscopy or nebulized showed cessation of bleeding in
all patients (79). In a cohort of pediatric patients who were
diagnosed with DAH, Nebulized TXA alone led to complete
or near cessation of bleeding in 10/18 and the addition of
nebulized rFVIIa led to hemostasis in an additional 6 patients
(12). In this series, a documented respiratory infection was
negatively associated with response to nebulized TXA, suggesting
that nebulized TXA may not target pulmonary hemorrhage
secondary infectious processes (12). O’Neil et al. recently
published a case series of 19 pediatric patients with pulmonary
hemorrhage who were treated with inhaled or endotracheally
instilled TXA in which 18/19 patients had cessation of bleeding
(81). No adverse effects related to nebulized TXAs were reported
in these series (12, 79, 81).

Recombinant Activated Factor VII
Intravenous (IV) recombinant activated factor VII (rFVIIa) was
initially developed for use in patients with hemophilia A/B with
presence of an inhibitor. Under these conditions, an increase
in concentration of activated factor VII (FVIIa) produced an
increase in the rate of thrombin generation, suggesting that FVIIa
is able to bypass the intrinsic coagulation pathway to directly
generate thrombin (82, 83). It has since been used in various
situations in the pediatric population outside of hemophilia, such
as congenital factor VII deficiency, hepatic dysfunction, post-
operative bleeding following cardiac surgery, qualitative platelet
disorders, and traumatic hemorrhage (84). In recent years,
rFVIIa has been used in the treatment of DAH, both in adults
(Table 4) and pediatrics (Table 5). It is hypothesized that there
are inhibitors of tissue factor, tissue factor pathway inhibitors
(TFPI) in inflamed alveoli. These inhibitors prevent FVIIa-tissue
factor formation and factor X activation, making the inflamed
lungs more susceptible to bleeding (10). Local administration of
rFVIIa overcomes the TFPI and restores thrombin generation
(10). Few case reports on the use of intravenous rFVIIa have
demonstrated cessation of hemorrhage in DAH; however, it often
requires higher and more frequent dosing (86, 87).

In effort to decrease systemic effects of rFVIIa, most
notably thromboembolic complications, rFVIIa has been
delivered directly to the lungs during bronchoscopy or through
nebulization (10, 12, 13, 38, 46, 88, 89). Treatment regimens
including rFVIIa and dosing are very variable. It has been used
as initial therapy in combination with systemic corticosteroids
+/− aminocaproic acid or as rescue therapy in cases that
are refractory to treatment with other therapies such as T
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corticosteroids, tranexamic acid, aprotinin, aminocaproic acid,
plasmapheresis, or desmopressin (10, 38, 85, 86). Heslet et al.
first reported the successful intrapulmonary use of rFVIIa in
a case series of six patients who developed DAH and failed
to respond to other therapies. They received one to three
doses of either intrapulmonary or nebulized rFVIIa with all
achieving hemostasis and improvement in hypoxia (38). Baker
et al. subsequently reported a series of 6 patients treated with
intrapulmonary rFVIIa in which 5 patients achieved hemostasis
(10). In a trial using rFVIIa for DAH refractory to treatment
with nebulized TXA, 6/8 patients showed clinical response to
nebulized rFVIIa (12). Park et al. reported a series of 6 pediatric
patients with DAH treated with rFVIIa in conjunction with
glucocorticoids in which all patients had cessation of bleeding
with no adverse events due to medication administration (13).
Our institution has used intrapulmonary rFVIIa to treated 13
patients diagnosed with DAH, of which 6 survived the acute
event (90). In these cohorts of patients who had cessation of
DAH, there were no reported treatment related complications
such as thromboembolic events or recurrence of DAH following
treatment (10, 12, 38). While use of intrapulmonary rFVIIa to
achieve hemostasis in DAH is encouraging, further prospective
studies to evaluate its use and standardize dosing are needed.

Extracorporeal Membrane Oxygenation
(ECMO)
The presence of severe bleeding is often considered a
contraindication for use of extracorporeal membrane
oxygenation (ECMO) due to the need for systemic
anticoagulation; however, there have been several reported
cases of its successful use in DAH due to systemic vasculitides
as a rescue therapy (91). Morris et al. reported a case of the
successful use of VA ECMO for DAH following HCT in a
patient with Hurler Syndrome. The patient was systemically
heparinized and was also treated with methylprednisolone and
aminocaproic acid without further hemorrhage. He was able
to be decannulated and survived to hospital discharge (92). In
our institution, we also had a case of pulmonary hemorrhage
following HSCT that was successfully supported on ECMO (93).
Given reports of the successful use of ECMO for DAH as well
as our experience, we advocate for its consideration in certain
patients and propose that pulmonary hemorrhage and HSCT are
not absolute contraindications for ECMO support.

SPECIAL CONSIDERATIONS

Thrombotic Microangiopathy
While uncommon, DAH has been reported in association with
transplant-associated thrombotic microangiopathy (TA-TMA)
(94). TA-TMA is as subset of the thrombotic microangiopathies
characterized by Coombs negative hemolysis, proteinuria,
increase in serum LDH, renal and/or neurologic dysfunction, and
systemic serositis (95). Treatment options for TA-TMA include
plasma exchange, the anti-CD20monoclonal antibody rituximab,
and the complement inhibitor eculizumab (96). Etanercept, a
TNF-α antagonist, has also been suggested as a therapy option for
TA-TMA (97). TA-TMA carries a significant mortality up to 75%

alone, or higher when present with DAH (94, 96). Thus, in cases
of suspected TA-TMA associated with DAH, the careful addition
of one of these therapies should be considered.

Idiopathic Pneumonia Syndrome
Idiopathic pneumonia syndrome (IPS) is a non-infectious
pulmonary complication of HCT which shares many clinical
similarities with DAH, albeit without hemorrhage. It presents
with findings of diffuse alveolar injury in the absence of lower
respiratory tract infection, cardiac dysfunction, acute renal
failure, or iatrogenic fluid overload (98). IPS is characterized
by elevated levels of cytokines including IL-6, IL-8, Ang-2, and
TNFR1, a surrogatemarker for TNF-α (99). Etanercept, a TNF-α-
binding protein, has been successfully used in combination with
glucocorticoids (2 mg/kg/day MP equivalent) for the treatment
of IPS in the pediatric population (99). In the DAH subset of IPS,
higher doses of glucocorticoids may be considered.

Infection
While DAH is classically considered a non-infectious
complication of HSCT, the presence of an occult infection
must be considered in cases of recurrent hemorrhage or lack
of response to treatment. Agusti et al. reported a high rate
(6/11) of concurrent infections on post-mortem exam in areas
separate from hemorrhage, including herpes pneumonia, CMV
pneumonitis, bacterial pneumonia, and aspergillosis, though
BAL studies were negative for infectious etiologies in the 7
patients who had a bronchoscopy within 7 days of death (15).
In a report by Heggen et al. post-mortem exam of one patient
who died from DAH-associated progressive respiratory failure
showed lung cultures positive for both yeast and bacteria
despite BAL culture negative for infectious organism at time
of DAH diagnosis (5). Thus, we recommend a low threshold
for antimicrobial coverage of occult infections in cases of DAH
even when BAL studies do not identify an infectious etiology.
In cases of diagnostic dilemma despite less invasive means such
as CT and bronchoscopy, we recommend early consideration of
lung biopsy.

Myelogenous Leukemia
Nanjappa et al. reported a case series of 5 patients with
AML, two of whom had undergone allo-HCT, who developed
DAH (100). While respiratory compromise in leukemia patients
is recognized, it is likely that pulmonary hemorrhage is
underestimated. On post-mortem exam of patients with
leukemia, pulmonary hemorrhage was present in 74% of cases
(101). Additionally, in patients with AML and acute respiratory
failure of unknown etiology, pathologic findings of DAD/DAH
were present in ∼22% of cases (102). In a series of patients
initially hospitalized for respiratory failure and subsequently
diagnosed with M5 AML, BAL fluid was hemorrhagic in 7/15
patients undergoing bronchoscopy (103). In acute and chronic
myelogenous leukemia, a pattern of DAD characterized by
endothelial cell hyperplasia, interstitial edema, and the presence
of interstitial lymphocytes, has been described following the
initiation of chemotherapy. Lung injury occurs from lysis of
leukemic cells and release of intracellular enzymes such as

Frontiers in Oncology | www.frontiersin.org 11 September 2020 | Volume 10 | Article 1757

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Fan et al. Diffuse Alveolar Hemorrhage

collagenases, cathepsin G, and lysozymes (104). In the setting of
acutemyelogenous leukemia, this mechanismmay be responsible
for the initial lung injury seen in the development of DAH.

CONCLUSIONS

Diffuse alveolar hemorrhage continues to be a recognized
complication of HCT which has historically carried significant
morbidity and mortality. While survival has seemingly improved
with newer therapeutic options, there remains ample opportunity
for optimization in the holistic care of these patients. In
our institution, early recognition, a standard approach to
diagnosis and treatment, and protection against additional
organ dysfunction/endothelial damage are cornerstone to our
treatment approach. Further research is needed to better
understand the pathogenesis of this complex disease process,

evaluate current treatment options, and develop new therapies
in order to continue to improve outcomes.
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