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Pediatric osteosarcoma outcomes have improved over the last decades; however,

patients who do not achieve a full resection of the tumor, even after aggressive

chemotherapy, have the worst prognosis. At a genetic level, osteosarcoma presents

many alterations, but there is scarce information on alterations at metabolomic levels.

Therefore, an untargeted nuclear magnetic resonance metabonomic approach was used

to reveal blood serum alterations, when samples were taken from 21 patients with

osteosarcoma aged from 12–20 (18, 86%) to 43 (3, 14%) years before any anticancer

therapy were collected. The results showed that metabolites differed greatly between

osteosarcoma and healthy control serum samples, especially in lipids, aromatic amino

acids (phenylalanine and tyrosine), and histidine concentrations. Besides, most of the

loading plots point to protons of the fatty acyls (-CH3 and -CH2-) from very-low- and

low-density lipoproteins and cholesterol, as crucial metabolites for discrimination of the

patients with osteosarcoma from the healthy samples. The relevance of blood lipids

in osteosarcoma was highlighted when analyzed together with the somatic mutations

disclosed in tumor samples from the same cohort of patients, where six genes linked to

the cholesterol metabolism were found being altered too. The high consistency of the

discrimination between osteosarcoma and healthy control blood serum suggests that

nuclear magnetic resonance could be successfully applied for osteosarcoma diagnostic

and prognostic purposes, which could ameliorate the clinical efficacy of therapy.

Keywords: lipid alterations, NMR, metabonomics, osteosarcoma, bone cancer, pediatric cancers

INTRODUCTION

Despite being rare, cancer is the disease that causes the most death in children and adolescents in
developed countries. However, with early treatment, it is highly curable (1). Among the pediatric
cancers, osteosarcoma is the commonest primarymalignant bone tumor developing during periods
of rapid growth (2), with an event-free survival of 60 to 70% in 3 years. Between 10 and 20% of
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the patients have metastases at diagnosis, whereas ∼40% will
develop metastasis during treatment (3). Currently, the diagnosis
is dependent on the clinical signs, radiographic assessment,
and pathological stage, and surgery and intensive multi-agent
chemotherapy are commonly used for treatment (4). Although
there were many advances in the field, which contributed to
reduced morbidities associated with treatment and management
of osteosarcoma over the past few decades (5), no substantial
improvement has been achieved in survival rate (6). Patients with
metastatic disease and/or recurrence after treatment continue
to have a poor prognosis, with a relapse rate of up to
35% (7, 8).

Osteosarcomas present several genomic alterations including
chromosomal rearrangements, amplifications, point mutations,
loss of heterozygosity, as well as epigenetic abnormalities,
such as hypermethylation of tumor suppressor genes (9–11).
Genomic analyses pointed out that osteosarcoma genesis
mostly resides in early chromosomal changes. Yet, it is still
unclear how these events start (5). These reports detailed
the patterns of DNA copy number alterations, suggesting
that these chromosomal rearrangements could amplify the
oncogenes and cause loss of tumor suppressors, leading to
tumor progression (5). In this scenario, the metabonomic
analysis can provide a better understanding of the global
biochemical dysregulation of osteosarcomas (that could
ameliorate the clinical efficacy of therapy) and reveal qualitative
and quantitative final products of cellular regulatory pathways
(12). In osteosarcoma, changes in gene expression of ENO1,
TPI1, PKG1, and LDHC compared with normal osteoblastic
cell lines pointed to alterations in the glycolysis pathway (7).
Additionally, alterations in arginine, glutathione, fatty acids
(FAs), and myo-inositol were reported (13), as well as changes
in the metastatic phenotype associated with modifications in
cellular respiration, lactate production, and oxygen consumption
(14, 15). Although these data contribute to the understanding
of the biochemical pathways’ alterations in osteosarcoma,
molecular basis and metabonomics information are still
scarce. Therefore, our research brings nuclear magnetic
resonance (NMR) metabonomics on blood serum samples
from mostly young patients with osteosarcoma and aims
to potentially disclose biomarkers that might be useful in
clinical applications.

METHODS

Characteristics of the Osteosarcoma
Cohort
Twenty-one blood serum samples of patients with osteosarcoma
stored in the biobank of Barretos Cancer Hospital (SP, Brazil)
were selected. The patients were diagnosed with osteosarcoma
between 2008 and 2014. Eighteen patients presented the complete
clinical and pathological information, as depicted in Table 1.

Blood samples collected from eight healthy individuals were
used as a control group (five females and three males), six
of them from 4 to 9 years old and two adults with 32 and
36 years old, respectively. The serum samples were centrifuged

at 3,939 g for 15min at 4◦C and stored at −80◦C until
NMR analysis.

Nuclear Magnetic Resonance
Spectroscopy Analyses
For NMR analyses, 250 µl of each serum sample and 250
µl of deuterium oxide solvent (99.9% deuterium oxide with
0.03% of trimethylsilyl propanoic acid, Sigma Aldrich) were
transferred to 5-mm NMR tubes. All the samples were
duplicated, except two controls, and treated like different
samples. The 1H-NMR spectra were acquired at 25◦C
using a 600-MHz NMR spectrometer Bruker AVANCE III
(Bruker Biospin, Karlsruhe, Germany), 600.13 MHz for 1H
frequency, equipped with a triple resonance broadband inverse
probe. One-dimensional proton NMR spectra with water
suppression were recorded using the water suppression by
gradient tailored excitation (WATERGATE) pulse sequence—
p3919g—with 128 scans. 1H-NMR spectra with T2 filters
were acquired using the Carr–Purcell–Meiboom–Gill (CPMG)
pulse sequence (cpmgpr1d), also with 128 scans. The two-
dimensional total correlation spectroscopy (mlevphpr.2)
experiments were performed, with 256 scans, to randomly
selected samples.

Data Analysis: Nuclear Magnetic
Resonance Data Processing and Statistics
All serum 1H-NMR spectra were manually processed (phase
and baseline corrections) using MestReNova software (9.0.1-
13254). Trimethylsilyl propanoic acid (0.00 ppm) was the
chemical shift reference. The spectra were divided into regions
with equal width of 0.005 ppm, called bins, and used to
construct the matrix for multivariate analysis. The picks of
HDO (δ 4.70–5.00), ethylenediaminetetraacetic acid (δ 2.53–
2.73, δ 3.06–3.28, and δ 3.6–3.65), and ethanol (δ 1.16–1.22
and δ 3.58–3.68, from antiseptic swabbing at sample collection)
were excluded from analysis (Supplementary Figures S1, S2).
Samples were normalized to a constant sum (100) of all
spectra intensity to reduce the concentration differences. The
metabolites were assigned based on chemical shifts, coupling
constants, and databases—Human Metabolome Database and
BioMagResBank (16, 17).

Multivariate Data Analyses
The multivariate analyses were performed using the MATLAB
software (v. R2015a, Mathworks Inc) and the MetaboAnalyst
platform (18). The matrices were constructed with 56 spectra
(2 × 21 = 42 for patients with osteosarcoma, and 2 × 6
+ 2 = 14 healthy controls) and 1,567 or 1,489 variables for
CPMG and WATERGATE spectra, respectively. Two principal
component analyses (PCAs) were conducted. The first one
using all spectra to identify outliers and explore natural
grouping within samples. The second was applied to patients’
spectra to investigate the influence of clinical characteristics on
their metabolome.

Partial least squares discriminant analysis (PLS-DA)
models were constructed to classify the samples from
patients with osteosarcoma or healthy controls, using
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TABLE 1 | Clinical summary of patients with osteosarcoma.

Case no. Sex Age (years) Histologic type Huvos grade Meta (diag) Status Weight at diagnosis

(kg)

1 M 17 Telangectatic NR NR Alive without disease 57

2 F 18 Osteoblastic II Absent Death due to cancer 36

3 M 35 Osteoblastic I Present Death due to cancer 74.1

4 M 20 Osteoblastic I Absent Death due to cancer 65

5 M 14 Chondroblastic I Absent Death due to cancer 57.2

6 F 15 Osteoblastic I Present Death due to another

disease (sepsis)

52.0

7 M 17 Osteoblastic II Absent Death due to cancer 65.3

8 M 43 Osteoblastic II Absent Death due to cancer 69.9

9 M 17 Osteoblastic I Present Death due to cancer 67.5

10 F 17 Fibroblastic I Absent Alive without disease 50.7

11 F 18 Osteoblastic II Present Death due to cancer 55.5

12 F 12 Osteoblastic II Present Death due to cancer 39.1

13 M 13 NR NR Present Alive without disease 72.6

14 F 19 Osteoblastic II Present Death due to cancer 73.7

15 F 16 Telangectatic I Present Death due to another

disease (sepsis)

51.5

16 F 29 Osteoblastic I Absent Death due to cancer NR

17 F 19 Parosteal NR Absent Alive without disease 45.5

18 M 12 Osteoblastic I Absent Alive without disease 62.8

19 M 4 NI NI NI NI NI

20 M 9 NI NI NI NI NI

21 F 4 NI NI NI NI NI

Number: all samples were duplicated and were treated like different samples. NR, non-reported data; NI, not informed or without written consent to disclose data.

the classification toolbox for MATLAB functions (19).
The models were validated using leave-one-out cross-
validation (LOOCV). Variable importance in projection
(VIP) was analyzed to depict the most different chemical
shifts among analyzed samples. Confusion matrices were
constructed. Accuracy, specificity, and sensitivity values were
computed (20).

The different metabolites between the two groups were
identified by the assignment of the spectral bins with the
highest VIP values in the PLS-DA model. A receiver operating
characteristic curve analysis was performed based on linear
support vectormachines and usingMonte Carlo cross-validation,
in which two-thirds of the samples were used to build the
classification models followed by validation on the one-third that
was previously left out, to evaluate the predictive capacity of the
picked metabolites.

As previously described (21), PCA and PLS-DA were applied
to the aromatic region of the 1H-NMR CPMG spectra, δ

6.50–9.00 (56 samples and 501 variables), to evaluate the
influence of some metabolites that are present in serum in
low concentrations.

Univariate statistical analysis was also performed to evaluate
the difference of the discriminant metabolites, identified by the
PLS-DA analyses, between osteosarcoma patients and healthy
controls. T-test was applied using MetaboAnalyst, and P < 0.05
was considered a statistically significant difference.

RESULTS

Proton Nuclear Magnetic Resonance Data
of Serum Samples in Osteosarcoma
Patients
The 1H-NMR mean spectra revealed some differences between
patients with osteosarcoma and healthy controls, in the regions
of δ 0.85–0.89 (m), δ 1.24–1.37 (m), δ 1.55–1.65 (m), δ 1.98–
2.09 (m), and δ 5.29–5.43 (m). These regions refer to fatty acyls’
methyl group hydrogens -CH3,–fatty acyls’ -CH2-, hydrogens as
in CH3(CH2)n-, fatty acyls’ from -CH2- group next to carboxyl
group as in CH2CH2C(O), fatty acyls’ CH2CH=, and fatty acyls’
CH=CH-. Also, the peaks from the region δ 6.00–δ 8.00 ppm
were also altered in patients with osteosarcoma and attributed to
aromatic amino acids—tyrosine (Tyr), phenylalanine (Phe), and
histidine (His) (Figure 1, Supplementary Table S1).

Multivariate Statistical Analysis
An exploratory analysis based on principal components (PCs)
revealed five and three outliers on CMPG and WATERGATE
spectral data, respectively (Supplementary Figures S3, S4). The
outliers were removed from the dataset before further analyses.
Supplementary Figures S5, S6 show the scores’ plots of the first
three PCs of the CPMG andWATERGATE spectra PCA models.
In the CPMG spectra model, a tendency of sample clustering
related to patients with osteosarcoma and healthy controls was

Frontiers in Oncology | www.frontiersin.org 3 October 2020 | Volume 10 | Article 506959

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Quintero Escobar et al. 1H-NMR Metabonomics in Osteosarcoma

FIGURE 1 | 1H-NMR mean spectra of osteosarcoma patients (in red) and healthy controls (in blue) acquired using CPMG (cpmgpr1d) pulse sequence. Main signals

have been assigned: 1. Fatty acyls’ -CH3; 2. Valine (Val); 3. Fatty acyls’ -CH2- hydrogens as in CH3(CH2)n; 4. Lactate (Lac); 5. Alanine (Ala); 6. Fatty acyls’ from -CH2-

group next to carboxyl group as in CH2CH2C(O); 7. Fatty acyls’ CH2CH=; 8. Glutamine (Gln); 9. Glucose (Glc); (*glucose resonance hydrogens); 10. Fatty acyls’

-CH=CH-; 11. tyrosine (Tyr); 12. histidine (His); 13. phenylalanine (Phe); 14. formate (For). Excluded spectral regions are indicated with the dotted lines.

observed on the PCs 2, 3, and 4, explaining 27.4% of the
samples’ variance (Figure 2A). For the WATERGATE spectra
model, clustering in cancer and control groups was seen on PCs
1, 4, and 7, which explain 40.6% of the variance (Figure 2B).
Supplementary Figures S7, S8 contain their corresponding
loading plots.

Additionally, the built PLS-DA model separated cancer
patients from healthy controls (Figures 3, 4), and, by LOOCV,
the 1H-NMR CPMG, andWATERGATE spectra models reached
92.2 and 94.3% of accuracy applying four and six latent variables,
respectively (Supplementary Table S2).

Lactate, FAs, and glucose were altered in the serum
of patients (Figure 5), contributing to the separation
between osteosarcoma samples and healthy controls.
These metabolites also presented statistically significant
differences between osteosarcoma patients and healthy
controls in univariate analysis (Supplementary Figure S9). The
metabolite assignments are shown in Supplementary Table S1

and Supplementary Figure S10. The receiver operating
characteristic curve presented an area under the curve of 0.98,
95% CI: 0.90–1 (Supplementary Figure S11).

Regarding the evaluation of the 1H-NMR aromatic region
of the CPMG spectra, the samples were clustered within
osteosarcoma or healthy control in the PCs 1, 2, and 5, which
explained 24.5% of the variance (Supplementary Figure S12).
The PLS-DA model classified the samples achieving 94.5,
97.6, and 84.6% of accuracy, sensitivity, and specificity,

respectively, by LOOCV (Supplementary Figure S13). The
metabolites with higher contributions to the discrimination
were histidine, phenylalanine, and tyrosine (Figure 5,
Supplementary Table S1 and Supplementary Figure S10).
In the univariate analysis, only phenylalanine was statistically
different (Supplementary Figure S9).

An exploratory analysis only in patients with osteosarcoma
indicated a clustering tendency of samples according to the
presence or absence of metastasis and according to the
age (Supplementary Figure S14). The metastasis clusters are
observed on PC 1 scores, which explained 31.8% of the
variance of the samples, and the loadings indicated a relation
with the samples’ lipids amounts (Supplementary Figure S15).
The differences related to the diagnosis age may be related
to several metabolites, including glucose, alanine, and lactate
(Supplementary Figure S15), in PC 9, explaining 2.54% of the
samples’ variance. However, the small number of cases and the
mismatches of the classes preclude any conclusions.

DISCUSSION

An untargeted metabonomics analysis by 1H-NMR on blood
serum samples from patients with osteosarcoma without any
prior anticancer treatment showed that the disease resulted in
metabolic alterations compared with healthy individuals. The
high values of accuracy, sensitivity, and specificity validate
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FIGURE 2 | PCA score plots. (A) PCs 2, 3, and 4 of the 1H-NMR CPMG spectra model. (B) PCs 1, 4, and 7 of the 1H-NMR WATERGATE spectra model. Patients

with osteosarcoma are shown in red circles, and healthy controls are shown in blue diamonds.

FIGURE 3 | PLS-DA scores’ plot and Y calculated for each sample, by LOOCV, of the 1H-NMR serum samples in the CPMG spectra model. Patients with

osteosarcoma are shown in red circles and healthy controls in blue diamonds.

the predictive capacity of the models. Based on these models,
several discriminatory metabolites were identified, many of
which are linked to energy metabolism [lipids, amino acids,
and tricarboxylic acid (TCA) cycle]. Amino acids such as Gln,
Ala, and Leu were identified too, and these compounds were
already reported as altered in cancer metabolism. Amino acids,
FAs, and glucose are used for energy balance and can change
dynamically throughout tumorigenesis (8). These metabolites

are linked to multiple pathways in cancer metabolisms, such as
anaplerotic reactions for the TCA cycle providing an alternative
energy source for cancer cells, which predominantly use energy
produced by glycolysis rather than the TCA cycle and oxidative
phosphorylation (22). Valine also contributes to bioenergetics
and, besides having a role in protein synthesis, is one of the major
nitrogen donors for Ala andGln syntheses; in addition, substrates
for the TCA cycle are obtained from valine degradation (23).
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FIGURE 4 | PLS-DA scores plot and Y calculated for each sample, by LOOCV, of the 1H-NMR serum samples recorded with Watergate. Patients with osteosarcoma

are shown in red circles and healthy controls in blue diamonds.

FIGURE 5 | Predicted perturbed energy metabolism pathways in osteosarcoma. Red indicates the metabolites identified by 1H-NMR. Underlined are the key

metabolites that discriminated against the patients with osteosarcoma from healthy controls in the PLS-DA model, identified by the higher VIP scores. Dotted box

represents mitochondria, and orange arrows indicate the metabolite flux between the inside and outside of the mitochondria.
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Interestingly, aromatic amino acids, such as Phe, Tyr, and His,
were also increased in patients with osteosarcoma. An increased
need for specific amino acids is observed in several cancers,
requiring exogenous supply or causing upregulated de novo
synthesis. In human osteosarcoma cancer stem cells, the amino
acid demand is usually higher to counterbalance the decrease in
the TCA cycle and undergo other physiological activities (24).
These changes could be related to the alterations observed in
the lipid metabolism, considering that they are essential for cell
proliferation and energy source.

Lipoproteins (LPs) constitute a means of transport and
recirculating reservoir for lipids (25, 26); these lipids are mainly
triglycerides and cholesterol (Cho) or Cho esters. Due to the
esters’ reduced mobility, 1H-NMR signals of their methyl (-
CH3), at 0.80 ppm, and methylene (-CH2-) hydrogen atoms, at
1.20 ppm, are broadened, which were found more elevated in
osteosarcoma patients. The methyl (-CH3) hydrogen atoms of
larger LP particles and with lower density [i.e., very-low-density
lipoprotein (VLDL) and low-density lipoprotein (LDL)] present
signals in higher frequency than smaller LPs (i.e., high-density
lipoprotein) (26).

Cho is an important constituent of LP fractions, including
LDL and VLDL, but 75% of total Cho is transported as LDL.
The cells can catch and maintain this type of Cho; however, this
fraction of Cho is more susceptible to oxidation by ROS, resulting
in lipid peroxidation. To obtain enough Cho, proliferating
cells can increase the rate of Cho biosynthesis by activating
oncogenes that can transform the cells and activate anabolic and
biosynthetic pathways (27), normally increasing the glycolytic
pathway to produce energy, and transporting citrate for lipid
biosynthesis (28). Associations between Cho and FAs such as
elaidic acid, octadecanoic acid, and docosahexaenoic acid were
already reported for lung metastasis in mouse models (29).

Elevated concentrations of LPs in the blood (hyperlipidemia)
could be used as a marker of increased risk of relapse or tumor
progression. In tumors like leukemia, it was already reported an
association of hyperlipidemia with the accumulation of Cho (30),
which were noted through histological examination and lipid
droplet staining (31).

Exploring targeted sequencing data of osteosarcoma tumor
samples from the same cohort of patients here studied (data
not shown/published; methodology in Supplemental Material),
we looked for variants mapped to 40 out 50 Cho genes
(according to the Kyoto Encyclopedia of Genes and Genome;
Supplementary Figure S16) that were represented in the gene
panel. Mutations were detected in six genes (PLTP, ABCB11,
APOB, SORT1, LRP2, and ABCG8), all of them missense variants
(Supplementary Table S3); mutations in LRP2, ABCG8, and
PLTP were not considered for further discussion because they
exhibited low allelic frequency (<10% of the reads). APOB
codifies for a protein component of LDL and VLDL-Cho;
the quantity of APOB indicates the amount of Cho and,
consequently, of potentially atherogenic LPs (32). Actually,
the LPs are used, such as nanotechnology-based drug delivery
vehicles or imaging agents to desired sites (33). Additionally,
studies indicated that PLTP promotes the transfer of several lipid
molecules (34, 35), influencing lipid and LP metabolism. Serum

lipids and LP levels exhibit a notable rise until the age of 2 years
and during sexual maturation. Also, the same goes for LDL-Cho
in puberty (36).

Therefore, we hypothesized that osteosarcomas, similar
to clear-cell carcinoma cells (37), may use the triglycerides
for energy consumption, accumulating cholesteryl esters by
increased acyl-CoA/Cho acyltransferase (ACAT) activity. These
might point to lipid accumulation that partially depends on
an increase in the uptake of plasma LPs, possibly by hypoxia-
inducible factor (HIF1A) mediation that induced overexpression
of very-low-density receptor VLDLR (37) or through an
alternative receptor. In agreement with this hypothesis, several
osteosarcoma cell lines present a high expression of ACAT,
HIF1A, and VLDLR (Supplementary Table S4).

The cohort used in this study was selected according to the
study design and samples’ availability, and it called attention
because 44% of the patients had metastasis at diagnosis. This
higher number of metastasis at diagnosis was previously reported
for Brazilian patients with osteosarcoma, which also present
a more aggressive pattern (38). In general, patients treated in
the Barretos Cancer Hospital (Hospital de Câncer de Barretos)
may not reflect the Brazilian population because it is a highly
specialized cancer center with patients who are referred from
many regions that lack resources, which hinders early detection
and appropriate diagnosis (39); at the moment of hospitalization
when the medical care was asked for the first time and nor rarely,
months can pass before a diagnosis of osteosarcoma.

As our study presents some limitations, such as the small
number of investigated patients as well as age and sex
mismatched controls, additional proof-of-concept studies must
be carried out. Still, in an untargeted 1H-NMR metabonomic
approach, blood serum osteosarcoma patients were investigated
with great success. Increases in metabolites linked with lipid
metabolism pathways and amino acid biosynthesis were detected.
Therefore, the reported findings raise the possibility of using
blood biomarkers as a tool that could add-in to accurate diagnosis
of osteosarcoma, as well as, a better follow-up of the disease.
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