
fonc-10-515421 October 15, 2020 Time: 12:22 # 1

ORIGINAL RESEARCH
published: 19 October 2020

doi: 10.3389/fonc.2020.515421

Edited by:
Sercan Aksoy,

Hacettepe University, Turkey

Reviewed by:
Umberto Malapelle,

University of Naples Federico II, Italy
Qing Meng,

University of Texas MD Anderson
Cancer Center, United States

Jiayi Wang,
Shanghai Jiao Tong University, China

*Correspondence:
Lutao Du

lutaodu@sdu.edu.cn
Chuanxin Wang

cxwang@sdu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Women’s Cancer,
a section of the journal

Frontiers in Oncology

Received: 28 November 2019
Accepted: 17 September 2020

Published: 19 October 2020

Citation:
Yang X, Li J, Wang Y, Li P, Zhao Y,

Duan W, Ariston Gabriel AN, Chen Y,
Mao H, Wang Y, Du L and Wang C

(2020) Individualized Prediction
of Survival by a 10-Long Non-coding

RNA-Based Prognostic Model
for Patients With Breast Cancer.

Front. Oncol. 10:515421.
doi: 10.3389/fonc.2020.515421

Individualized Prediction of Survival
by a 10-Long Non-coding
RNA-Based Prognostic Model for
Patients With Breast Cancer
Xuemei Yang1†, Juan Li1†, Yifan Wang1, Peilong Li1, Yinghui Zhao1, Weili Duan1,
Abakundana Nsenga Ariston Gabriel1, Yingjie Chen1, Haiting Mao1, Yunshan Wang1,
Lutao Du1,2* and Chuanxin Wang1,3,4*

1 Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China, 2 Tumor Marker Detection
Engineering Technology Research Center of Shandong Province, Jinan, China, 3 Tumor Marker Detection Engineering
Laboratory of Shandong Province, Jinan, China, 4 The Clinical Research Center of Shandong Province for Clinical
Laboratory, Jinan, China

Deregulations of long non-coding RNAs (lncRNAs) have been implicated in the
progression of breast cancer (BC). However, the prognostic values of those lncRNAs
in BC remain elusive. This study aimed at constructing a lncRNA-based prognostic
model to improve the clinical management of BC. Systematic investigation of lncRNA
expression profiles and clinical data from The Cancer Genome Atlas (TCGA) database
were utilized to establish a 10-lncRNA signature. The prognostic signature efficiently
discriminated patients with significantly different prognosis regardless of intrinsic
molecular subtypes and tumor–node–metastasis (TNM) stage. A combined model was
constructed by multivariate Cox proportional hazards regression (CPHR) analysis, which
combined the lncRNA-based signature with certain clinical risk factors (TNM stage,
age, and human epidermal growth factor receptor 2 status). This model predicted
a survival probability that closely corresponds to the actual survival probability. With
respect to the entire set, the time-dependent receiver-operating characteristic curves
revealed that the area under the curve of this model was the highest than any of
the clinical risk factors. Moreover, functional enrichment analysis indicated that the
molecular signature was mainly involved in DNA replication, which was firmly related to
BC tumorigenesis. Consistent with the discovery, the knockdown of LHX1-DT, one of the
10 prognostic lncRNAs, attenuated the proliferation of BC cells in vitro and in vivo. Taken
together, our study constructed a novel 10-lncRNA signature for prediction prognosis,
and the signature-based model could provide new insight into accurate management of
BC patients.
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Abbreviations: AUC, area under the ROC curve; BC, breast cancer; CI, confidence interval; CPHR, Cox proportional
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INTRODUCTION

Breast cancer (BC) is one of the most commonly diagnosed
malignancies among females, causing 15.4% newly identified
cancers and 7.0% deaths per year in both sexes (1, 2). The overall
5-year survival rate among BC patients has improved in the past
decades (3). This significant survival improvement partly benefits
from the recognition of the intrinsic molecular landscape.
Currently, molecular studies demonstrated that there were at
least four intrinsic molecular subtypes of BC, namely luminal,
human epidermal growth factor receptor 2 (HER2)-enriched,
basal-like, and normal-like. The subtypes mentioned above differ
in their histopathological features, biological phenotypic, and
treatment sensitivities (4, 5). This diversity brings challenges
in the characterization of BC while opening up new horizons
for early diagnosis, therapeutic strategies determination, and
prognosis prediction. Therefore, a better understanding of the
molecular alterations of BC is the most important key to
enhance the performance of prognosis prediction for individual
people harboring BC.

With the development of large-scale sequencing and bio-
information annotation, a new class of longer RNAs (>200 nt)
has been recognized gradually. Such kind of RNAs lack the
evident capacity of coding proteins, defined as long non-coding
RNAs (lncRNAs) (6, 7). To date, lncRNAs have shown more and
more importance in gene regulation at both the transcriptional
and epigenetic levels (8–12). Increasing shreds of evidence have
proven that lncRNAs were implicated in a variety of biological
processes and have shown altered expression patterns in specific
cancer types (13–16). Given the relatively stable local secondary
structures and high cancer specificity, lncRNAs may act as an
ideal class of biomarkers with potential applications in survival
prediction (17–21).

The arrival of the big data era makes many large-scale
gene expression profiles and patients’ survival data publicly
available, such as The Cancer Genome Atlas (TCGA) dataset.
Various useful information from TCGA can be explored with
multiple statistical analyses. In this study, we repurposed the RNA
expression profiles with corresponding clinical information of BC
cases from the TCGA-BRCA project. The 10-lncRNA signature
was identified via multivariate Cox proportional hazards
regression (CPHR) model with forward stepwise regression.
Based on the molecular signature, we further integrated it with
clinical risk factors to establish a composite prognostic model.
Additionally, we explored the potential biological function of
the 10-lncRNA signature in BC. These results indicated that
our multi−lncRNA−based model could be used as a useful
prognostic predictor and guide clinical decision support for
patients with BC.

MATERIALS AND METHODS

Data Curation and Processing
RNA sequencing data including 1,109 BC cases and 113 normal
cases with clinical data were collected from the TCGA-BRCA
project. All data were downloaded from the GDC Data Portal,

which was updated on January 31, 2019. RNA expression profiles
were presented as HT-seq raw read count and annotated with
Ensemble reference databases1. The data concerning lncRNA and
mRNA expression were normalized by the “DESeq2” package in
R. Meanwhile, we used this package to get differently expressed
lncRNAs (DELs) and mRNAs (DEMs), setting the criteria of log2|
fold change| >2 and adjusted P < 0.01.

Definition of Prognostic LncRNAs
Two samples without complete follow-up information were
removed. Univariate CPHR analysis and the Kaplan–Meier
method were performed to generate the prognostic lncRNAs
which were significantly related to the overall survival (OS) of
BC cases. Out of 1,107 BC cases, only 718 cases had defined
clinical characteristics including age, gender, T stage, N stage,
M stage, tumor–node–metastasis (TNM) stage, estrogen receptor
(ER) status, progesterone receptor (PR) status, HER2 status,
and triple-negative breast cancer (TNBC). These 718 BC cases
were randomly distributed to the training set and validation
set by using a computer-generated allocation sequence in R.
A multivariate Cox regression model (forward stepwise) was then
used to adjust prognostic lncRNAs in the training set, which
further validated with the lowest Akaike information criteria by
the “MASS” package in R.

Establishment and Validation of a
LncRNA-Based Signature for Survival
Prediction
The remaining prognostic lncRNAs were fitted in the multivariate
CPHR analysis to calculate the coefficients for each of them in the
training set. A risk score formula was constructed as follows:

Risk Score =
n∑

i=1

(coeffcient(lncRNAi)× expression(lncRNAi))

LncRNAi is the identifier of the inserted lncRNAs. The
medium-risk score from the training set was considered as the
cutoff value to divide cases into high-risk group and low-risk
group. The Kaplan–Meier method and log-rank test were used to
compare the OS of different patient groups. The time-dependent
receiver-operating characteristic (ROC) curves were established
to assess the predictive values of this risk score formula.
Furthermore, stratified analysis was carried out to detect whether
the lncRNA-based classifier could clearly distinguish BC cases at
different risk groups within certain clinical characteristics.

Construction of a Signature-Based
Prognostic Model
Taking clinical risk factors into consideration, we performed
univariate and multivariate CPHR analysis to select the
independent risk factors in the total set. Based on the
independent risk factors, a graphic nomogram was then
constructed to predict the probability at 3- and 5-year OS by
using the “rms” R package. We also integrated the independent

1ftp://ftp.ensembl.org/pub/release-93/gtf/homo_sapiens
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clinical variables (age, TNM stage, HER2 status) into a new
clinical model by using the “rms” R package. The ability of
discrimination was evaluated by the C-index (a concordance
measure analogous to the ROC curve). Calibration plots, plotted
by bootstrap validation with 1,000 resamples, were used to further
test the consistency of survival probability between prediction by
the nomogram and actual observation.

Functional Enrichment Analysis
Pearson correlation coefficients were calculated between the
prognostic lncRNAs and DEMs based on their expression
levels. DEMs with a positive correlation coefficient ≥0.4 were
considered as co-expressed genes and subjected to enrichment
analysis. Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis were
performed by the “ClusterProfiler” package in R. Significant
functional categories were identified, limited to KEGG pathway
categories, and GO biological processes, cellular components,
and molecular functions terms, using the human being whole
genome as reference.

In Situ Hybridization
In situ hybridization (ISH) arrays containing BC tissues
(HBreD140Su05) and normal breast tissues (HBreD077Su01)
were produced from Shanghai Outdo Biotech. In situ detection of
LHX1-DT was performed on paraffin-embedded sections using a
DIG-labeled probe (Exiqon, Denmark). Each hybridization
procedure included the positive controls (U6; Exiqon,
Denmark) and scrambled control RNAs. Slides were examined
independently by two investigators. LHX1-DT expression was
quantified by multiplying the intensity (1–3: 1, weak staining; 2,
moderate staining; 3, strong staining) and extent (the percentage
of positive cells on a scale of 0–4: 0, none; 1, 1–25%; 2, 26–
50%; 3, 51–75%; 4, 76–100%) of staining for each tissue point
using a visual grading system. The study protocol followed the
ethical guidelines of the Declaration of Helsinki. This study
was approved by the Research Ethics Committee of the Second
Hospital of Shandong University.

Cell Culture and Treatments
The human normal epithelial breast cell line MCF-10A and
BC cell lines MCF-7, BT-549, MDA-MB-231, and MDA-MB-
468 were obtained from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China). MCF-7, MDA-MB-231, and
MDA-MB-468 cells were cultured in DMEM (Gibco, CA,
United States) and BT-549 cells were cultured in RPMI-1640
medium (Gibco, CA, United States) supplemented with 10%
fetal bovine serum (Australia Origin, Gibco, Carlsbad, CA,
United States) and 1% penicillin/streptomycin (Solarbio, Beijing,
China), respectively. Meanwhile, MCF-10A cells were cultured
in DMEM/F12 (MACGENE, Beijing, China) with 5% HS (horse
serum; EVERY GREN, Hangzhou, China), 10 µg/ml insulin
(MACGENE, Beijing, China), 20 ng/ml EGF (MACGENE,
Beijing, China), 100 ng/ml cholera toxin (MACGENE, Beijing,
China), and 0.5 µg/ml hydrocortisone (MACGENE, Beijing,
China). The cells were grown in a humidified atmosphere of 5%
CO2 at 37◦C and not contaminated by mycoplasma.

siRNA Transfection and Lentivirus
Transduction
siRNA oligos targeting LHX1-DT (sense: CCUAGGUCAGAGC
ACUAUUTT; antisense: AAUAGUGCUCUGACCUAGGTT)
and negative control siRNA (sense: UUCUCCGAACGUGUCAC
GUTT; antisense: ACGUGACACGUUCGGAGAATT) were
purchased from GenePharma (Shanghai, China). MCF-7 and
BT-549 cells were cultured in 60 mm dishes. Then they were
transfected with 100 nM siRNA and Lipofectamine 2000 (Life
Technologies) following the manufacturer’s instructions. To
establish stable knockdown cell lines, specific LHX1-DT shRNA
based on the corresponding sequences of LHX1-DT siRNA
was produced by GenePharma (Shanghai, China). MCF-7
cells were infected with lentivirus and selected with 1 µg/ml
puromycin. The selection was repeated three to four times
until green fluorescent protein (GFP) was observed in all
cells under a fluorescence microscope (Axio Observer, Zeiss,
Oberkochen, Germany).

RNA Extraction and Quantitative
Real-Time Polymerase Chain Reaction
Total RNA was extracted using RNA fast 2000 Reagent
(Fastagen, Shanghai, China). The concentration and integrity
of RNA were measured by a NanoDrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, United States). Reverse
transcription reactions were carried out using the PrimeScriptTM

RT reagent kit (Takara, Dalian, China), and quantitative real-time
polymerase chain reaction (qRT-PCR) was performed using TB
GreenTM Premix Ex TaqTM (Takara, Dalian, China) in the CFX-
96 real-time PCR System (Bio-Rad, Shanghai, China) (details
referred to the manufacturer’s instructions). The primers were
synthesized as follows: LHX1-DT forward 5′-AAGAGTGACAA
GGCCGTGAA-3′, LHX1-DT reverse 5′-GTAGCAGGGTGTGT
ACTCCG-3′; GAPDH forward 5′-ACCCACTCCTCCACCTTT
GAC-3′, GAPDH reverse 5′-TGTTGCTGTAGCCAAATTCG
TT-3′. Each sample was performed in triplicate. The relative
expression of target genes was calculated using the 2−11CT

method, while GAPDH was viewed as an internal control.

Colony Formation Assays
After the transfection of MCF-7 and BT-549 cells, 1 × 103 cells
were seeded into a six-well plate (Corning, MA, United States).
The clones were washed with phosphate-buffered saline and fixed
in methanol for 30 min, then washed again and stained with 0.1%
crystal violet for 30 min. Finally, the clones were imaged by a
microscope (Axio Observer, Zeiss, Oberkochen, Germany) and
quantified by ImageJ Pro Plus (version 6.0).

5-Ethynyl-2′-Deoxyuridine Incorporation
Assays
MCF-7 and BT-549 cells were transfected with LHX1-DT siRNA
and negative control siRNA. Then, cells were seeded in a
96-well plate with a density of 1 × 104 cells/well. When
cells were at logarithmic phase, the conditioned medium was
replaced by fresh medium containing 50 µM 5-ethynyl-2′-
deoxyuridine (EdU) (RiboBio, Guangzhou, China) and incubated
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for 3 h. The detailed steps were performed according to
the manufacturer’s instructions. Finally, the images were
captured using a fluorescence microscope (Axio Observer, Zeiss,
Oberkochen, Germany).

Cell Impedance Assays With the
Real-Time Cell Analyzer
Cell proliferation in real-time was monitored by the xCELLigence
RTCA DPlus instrument (ACEA Biosciences, San Diego, CA,
United States). After transfection, MCF-7 and BT-549 cells were
seeded into the wells of the E-plate 16 at 4,000 and 5,000
cells/well, respectively. The impedance signals were continuously
measured every 30 min for about 72 h at 37◦C. Data
were recorded and analyzed using the RTCA DPlus Software
(version 1.0, ACEA Biosciences, San Diego, CA, United States)
and GraphPad Prism 5.0 (GraphPad Software, San Diego,
CA, United States).

In vivo Tumorigenesis Assays
Four-week-old female BALB/c nude mice were purchased from
the Beijing Vital River Laboratory Animal Technology and
housed in specific pathogen-free barrier facilities. Ten mice
were randomly assigned to the control group or experimental
group (five mice/group). Mice in the experimental group
were subcutaneously injected with lentivirus-transduced MCF-
7 cells which stably expressed LHX1-DT (7 × 106 cells in
0.1 ml physiological saline) in the right flank. Meanwhile,
mice in the control group were injected with 7 × 106 MCF-
7 cells which stably expressed scrambled. Four weeks post-
injection, mice were imaged using a luminescence imaging
system. At the end of imaging, all mice were euthanized
by CO2 inhalation followed by cervical dislocation. Then,
tumors were surgically dissected and weighted. Tumor volume
(mm3) = 0.5 × width2

× length. All experimental procedures
were conducted in conformity with the ethical standards of
national and international guidelines and policies. This study
was approved by the Research Ethics Committee of the Second
Hospital of Shandong University.

Statistical Analysis
The chi-square test was used to compare the relation of variables
between the training set and the validation set. Univariate
CPHR analysis and the Kaplan–Meier method were used to
identify prognostic lncRNAs. Forward stepwise multivariate
CPHR model was performed for the best-fit OS-related lncRNAs.
A risk score formula was weighted by the regression coefficients
derived from the above multivariate CPHR analysis. Survival
analyses were performed by the Kaplan–Meier method and the
log-rank test. The time-dependent ROC curve was established
to assess predictive values. A composite prognostic model was
constructed by the combination of molecular signature and
clinical risk factors. The C-index and calibration curves were
used to evaluate the discriminatory and calibration abilities of this
model. All quantitative data were presented as the means± SD of
three independent experiments. Differences between two groups
were analyzed by the Student’s t test. All statistical analyses were

conducted and viewed by the R software (version 3.5.2), SPSS
software (version 23.0), and GraphPad Prism 5.0 (GraphPad
Software, San Diego, CA, United States). P < 0.05 was considered
statistically significant.

RESULTS

Screening of Prognostic LncRNAs
The flowchart of this study is shown in Figure 1. On the
basis of the TCGA-BRCA project, 1,103 DELs and 1,841
DEMs were identified between 1,109 BC cases and 113 normal
cases. This was achieved by setting the threshold of log2|
fold change| >2 and adjusted P < 0.01 (Supplementary
Figure 1). To screen the prognostic lncRNAs, we excluded
two BC cases without complete survival data. Univariate
CPHR analysis was performed to test the association of the
expression level of DELs and the OS among 1,107 BC cases.
Additionally, Kaplan–Meier curves were applied to ensure the
reliability and feasibility of these prognostic lncRNAs. As it
was presented in Supplementary Table 1, 71 DELs were found
to be significantly correlated with OS, considered as candidate
prognostic lncRNAs (P < 0.05, log-rank test). Moreover, 50
lncRNA higher expression levels were found to be associated
with shorter survival, whereas 21 lncRNAs appeared to present
an opposite trend.

Determination of a 10-LncRNA Signature
in the Training Set
To define a lncRNA-based prognostic signature, we first
excluded 389 cancer cases which had insufficient clinical
features such as T stage, N stage, M stage, TNM stage,
ER status, PR status, and HER2 status. The remaining 718
BC cases were randomly divided into either the training
set (n = 359) or the validation set (n = 359). The clinical
baseline characteristics of 718 cancer cases are presented in
Table 1. No significant difference was noted in the three sets
of characteristics (all P > 0.05). Subsequently, we explored
a lncRNA-based signature in the training set. Seventy-one
candidate prognostic lncRNAs were filtered in multivariate
CHPR analysis. After the forward stepwise model selection,
we gained 10 lncRNAs (AL138789.1, AL513123.1, LINC00536,
BCAR4, AC079414.1, LHX1-DT, AC006262.3, MIR3150BHG,
AC105398.1, and AL133467.1) with the largest likelihood ratio
and the lowest AIC value (Table 2).

Based on the coefficients of 10 prognostic lncRNAs from
multivariate CPHR analysis, we generated a risk score formula
as follows: Rick Score = (0.634 × ExpressionAL138789.1) +
(0.488 × ExpressionAL513123.1) + (0.254 × ExpressionLINC00536)
+ (0.262× ExpressionBCAR4)+ (0.825× ExpressionAC079414.1)+
(0.253 × ExpressionLHX1−DT) + (1.115 × ExpressionAC006262.3)
+ (−0.779 × ExpressionMIR3150BHG) + (−1.414 ×

ExpressionAC105398.1) + (−0.739 × ExpressionAL133467.1).
The risk score for each case was calculated by corresponding
expression levels of lncRNAs. These scores were ranked, and their
survival statuses were plotted on a dot plot (Figure 2A, upper).
The mortality for cases with a high-risk score was greatly higher
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FIGURE 1 | The flowchart of this study. TCGA, The Cancer Genome Atlas; lncRNA, long non-coding RNA; OS, overall survival; ER, estrogen receptor; PR,
progesterone receptor; HER2, human epidermal growth factor receptor 2; DEMs, different expressed mRNAs; DELs, differently expressed lncRNAs; ROC,
receiver-operating characteristic.

than that with the low-risk score. The heatmap displayed the
expression profiles of these 10 prognostic lncRNAs which were
ranked according to the risk score (Figure 2A, below). Among
the 10 lncRNAs, three lncRNAs (MIR3150BHG, AC105398.1,
AL133467.1) were likely to be the protective factors, as its high
expression value predicted a low risk; however, the other seven
lncRNAs seemed to have the opposite potency. By using the
median of risk score as the cutoff value, this signature classified
BC cases of training set into the high-risk group (n = 179) and
low-risk group (n = 180) (Figure 2D). The median survival
time of the high-risk group was 84 months, far shorter than
that of the low-risk group (median 115 months, P < 0.0001,
log-rank test). To evaluate the predictive performance of the
10-lncRNA signature, we conducted the time-dependent ROC
curves. The area under the ROC curve (AUC) was 0.886 (95%
confidence interval (CI) = 0.792–0.979) at 3 years and 0.911

(95% CI = 0.835–0.987) at 5 years, which indicated a favorable
discrimination performance for BC cases.

Validation of the 10-LncRNA Signature
for Survival Prediction
The molecular signature and cutoff values derived from the
training set were applied to the validation set (n = 359) and the
total set (n = 718). The respective distribution of the lncRNA-
based risk score, OS status, and 10-lncRNA expression profiles
in both sets were consistent with our findings in the training
set (Figures 2B,C). For the validation set, cases in the low-risk
group tended to have better survival than those in the high-risk
group (median 95.1 vs. 122.3 months, P = 0.047, log-rank test,
Figure 2E). As shown in Figure 2F, the 10-lncRNA signature
also effectively picked out the high-risk and low-risk groups
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TABLE 1 | Clinical baseline characteristics of 718 breast cancer cases.

Characteristic Training set Validation set Total set P-value

n = 359 n = 359 n = 718

Age (years) 0.997

<65 247 (68.80%) 246 (68.52%) 493 (68.66%)

≥65 112 (31.20%) 113 (31.48%) 225 (31.34%)

Gender 1.000

Male 4 (1.11%) 4 (1.11%) 8 (1.11%)

Female 355 (98.89%) 355 (98.89%) 710 (98.89%)

TNM stage 0.584

I–II 264 (73.54%) 276 (76.88%) 540 (75.21%)

III–IV 95 (26.46%) 83 (23.12%) 178 (24.79%)

Tumor stage 0.716

T1–T2 306 (85.24%) 298 (71.87%) 604 (84.12%)

T3–T4 53 (14.76%) 61 (28.13%) 114 (15.88%)

Lymph node
metastasis

0.387

Nx 2 (0.56%) 3 (0.83%) 5 (0.69%)

No 162 (45.12%) 188 (52.37%) 350 (48.75%)

Yes 195 (54.32%) 168 (46.80%) 363 (50.56%)

Distant
metastasis

0.139

Mx 57 (15.88%) 35 (9.75%) 92 (12.81%)

No 297 (82.73%) 315 (87.74%) 612 (85.24%)

Yes 5 (1.39%) 9 (2.51%) 14 (1.95%)

ER status 0.560

Negative 86 (23.96%) 74 (20.61%) 160 (22.28%)

Positive 273 (76.04%) 285 (79.39%) 558 (77.72%)

PR status 0.085

Negative 133 (37.05%) 105 (29.25%) 238 (33.15%)

Positive 226 (62.95%) 254 (70.75%) 480 (66.85%)

HER2 status 0.082

Negative 266 (74.09%) 291 (81.06%) 557 (77.58%)

Positive 93 (25.91%) 68 (18.94%) 161 (22.42%)

TNBC 0.530

Yes 62 (17.3%) 51 (14.2%) 113 (15.7%)

No 297 (82.7%) 308 (85.8%) 605 (84.3%)

The criteria of age referred to the World Health Organization (WHO). ER,
estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth
factor receptor 2.

in the total set (median 85 vs.122 months, P < 0.0001, log-
rank test). The AUC of the 10-lncRNA signature at 3 years
was 0.574 (95% CI = 0.400–0.748) and 0.734 (95% CI = 0.618–
0.849), while the AUC of the 10-lncRNA signature at 5 years
was 0.650 (95% CI = 0.482–0.817), and 0.781 (95% CI = 0.688–
0.0.875) for the validation set and the total set, respectively.
Exhilaratingly, the predictive performance of the 10-lncRNA
signature for BC patients remained superior in the validation set
and the total set.

Independence of the 10-LncRNA
Signature From Conventional Clinical
Risk Factors
Further testing was made to check whether the 10-lncRNA
signature could accurately predict OS regardless of conventional

clinical risk factors. Stratified analysis was performed in the
total set. For each subgroup, the cases were classified as
high-risk group or low-risk group according to the same cutoff
value proposed above. Interestingly, the molecular signature
significantly subdivided the cases into those who tend to have
poorer survival or those who tend to have great survival when
it was performed in the TNM stage I subgroup (P = 0.0024),
TNM stage II subgroup (P < 0.0001), TNM stage III subgroup
(P = 0.0053), age ≥65 subgroup (P = 0.0072), age <65 subgroup
(P < 0.0001), ER-negative subgroup (P = 0.0099), ER-positive
subgroup (P < 0.0001), PR-negative subgroup (P = 0.00045),
PR-positive subgroup (P < 0.0001), triple-negative BC subgroup
(P = 0.0034), and non-triple BC subgroup (P < 0.0001)
(Figures 3A–I,L,M). Meanwhile, cases with low-risk scores had
significantly better OS than patients with high-risk scores in
the T1 subgroup, T2 subgroup, T3 subgroup, N0 subgroup,
N1 subgroup, and N2 subgroup (all P < 0.05, log-rank
test) (Supplementary Figure 2). However, as for the HER2
subgroups, this signature was significant only in the HER2-
negative subgroup and did not reach the outstanding threshold
in the HER2-positive subgroup (Figures 3J,K). Taken together,
these results suggested that our 10-lncRNA signature can be used
to identify the poorest survival cases regardless of age, TNM stage,
ER status, and PR status.

Construction of a 10-LncRNA-Based
Prognostic Model to Estimate OS
To assist in clinical decision-making, we tried to construct
a 10-lncRNA-based prognostic model that reduced statistical
predictive model into a numerical estimate of the probability
for OS. The univariable and multivariable CPHR analyses
were performed in the total set. Given the multicollinearity
among covariates, we further excluded tumor stage, lymph
node metastasis, and distant metastasis (22). Table 3 shows
the remaining independent variables, including age, TNM stage,
HER2 status, and the 10-lncRNA signature. Hence, an innovative
prognostic model, integrating both the 10-lncRNA signature
and three clinical risk factors, was constructed to calculate
the probability of OS (Figure 4A). This model illustrated the
10-lncRNA signature as the largest contributor to survival
prediction, followed by age, TNM stage, and HER2 status, which
showed a moderate effect on prediction. According to user-
friendly interfaces, we could easily obtain the 3- and 5-year OS
probabilities corresponding to the total score which sums up the
point for each variable.

Figure 4D shows the calibration plots of the prognostic
model for the 3- and 5-year OS probabilities in the total
set, which exhibited optimal agreement between prediction by
nomogram and actual observation. The ability of discrimination
was assessed by C-index, which quantified the concordance
between predicted OS and observed OS by internal validation
using 1,000 bootstrap resamples. The C-index of the 10-lncRNA
signature-based model was up to 0.851 (95% CI = 0.801–0.901)
in the total set. Additionally, we applied the time-dependent
ROC curves to assess the predictive performance of this model.
As shown in Figure 5C, the AUC vales of the combined model
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TABLE 2 | Ten prognostic lncRNAs significantly associated with overall survival in the training set.

Gene name Coefficient Type Down-/upregulated HR 95% CI P-value

AL138789.1 0.634 Risky Up 1.886 1.273–2.794 0.002

AL513123.1 0.488 Risky Up 1.628 1.182–2.243 0.003

LINC00536 0.254 Risky Up 1.289 1.014–1.639 0.038

BCAR4 0.262 Risky Up 1.299 1.065–1.585 0.010

AC079414.1 0.825 Risky Up 2.282 1.532–3.400 <0.01

LHX1-DT 0.253 Risky Up 1.288 1.020–1.627 0.033

AC006262.3 1.115 Risky Up 3.049 1.747–5.322 <0.01

MIR3150BHG −0.779 Protective Up 0.459 0.312–0.675 <0.01

AC105398.1 −1.414 Protective Down 0.243 0.074–0.800 0.020

AL133467.1 −0.739 Protective Down 0.478 0.290–0.787 0.004

lncRNA, long non-coding RNA; HR, hazard ratio; CI, confidence interval.

FIGURE 2 | Identification and validation of a 10-lncRNA signature. The distribution of risk score, OS status, and the heatmap of the 10-lncRNA signature in the
training set (A), validation set (B), and total set (C). Kaplan–Meier curves of OS between high-risk and low-risk patients in the training set (D), validation set (E), and
total set (F). lncRNA, long non-coding RNA; OS, overall survival.

at 3 and 5 years were 0.829 (95% CI = 0.734–0.923) and
0.804 (95% CI = 0.708–0.900), respectively. The validity of the
prognostic model was further confirmed with calibration plots
and C-index in the training set and validation set. Calibration
plots exhibited that the model also had a good accuracy compared

with the ideal model both in the training set and validation
set (Figures 4B,C). The C-index of the model was 0.891 (95%
CI = 0.843–0.939) and 0.813 (95% CI = 0.719–0.907) in the two
datasets. The AUC values of the model at 3 years were 0.890
(95% CI = 0.801–0.978, the training set) and 0.760 (95% CI =
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FIGURE 3 | Stratified analysis of the 10-lncRNA signature for breast cancer cases by conventional clinical risk factors. Kaplan–Meier curves for breast cancer
patients with TNM stage I (A), II (B), and III (C); age ≥65 (D), age <65 (E); ER-negative status (F), ER-positive status (G), PR-negative status (H), PR-positive status
(I), HER2-negative status (J), HER2-positive status (K); the triple-negative breast cancer subgroup (L) and the non-triple-negative breast cancer subgroup (M). The
ticks marked on the curves represent the censored subjects. The differences between the two risk groups were accessed by the log-rank test. lncRNA, long
non-coding RNA; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.

0.597–0.923, the validation set), which at 5 years were 0.891 (95%
CI = 0.790–0.992, training set) and 0.669 (95% CI = 0.498–0.840,
validation set) (Figures 5A,B).

Comparison With Other Clinical
Prognostic Factors
By using the time-dependent ROC curves, we assessed and
compared the predictive sensitivity and specificity of both

the 10-lncRNA signature with a single lncRNA and the 10-
lncRNA-based prognostic model with other prognostic factors.
As presented in Figure 5D, the AUC of the 10-lncRNA signature
at 5 years was 0.781 (95% CI = 0.688–0.875), which is generally
higher compared with that of single lncRNA. Furthermore,
we found that the 10-lncRNA signature had a significant OS
prediction ability compared to clinical prognostic factors such as
TNM stage (0.781 vs. 0.582, P = 0.013) and HER2 status (0.781
vs. 0.600, P = 0.015) (Figure 5E). In addition, the AUC of the
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TABLE 3 | Univariate and multivariate CPHR analyses of the 10-lncRNA signature and clinical factors with OS in total set.

Characteristic Univariate analysis Multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value

Age (≥65 vs. <65) 2.694 (1.554–4.669) <0.001 2.838 (1.604–5.022) <0.001

Gender (male vs. female) 1.094E-07 (0–inf) 0.997

TNM stage (III–IV vs. I–II) 2.568 (1.452–4.541) 0.001 3.258 (1.768–6.002) <0.001

Tumor stage (T3–T4 vs. T1–T2) 1.700 (0.889–3.252) 0.109

Lymph node metastasis (yes vs. no) 1.743 (0.958–3.172) 0.069

Distant metastasis (yes vs. no) 4.739 (1.685–13.323) 0.003

ER status (positive vs. negative) 0.500 (0.280–0.893) 0.019 0.792 (0.288–2.174) 0.650

PR status (positive vs. negative) 0.554 (0.317–0.970) 0.039 0.457 (0.170–1.231) 0.122

HER2 status (positive vs. negative) 2.125 (1.184–3.816) 0.012 1.982 (1.070–3.669) 0.030

10-LncRNA signature 1.436 (1.274–1.618) <0.001 1.477 (1.291–1.689) <0.001

Bold values indicate statistical significance (P < 0.05). CPHR, Cox proportional hazards regression; lncRNA, long non-coding RNA; OS, overall survival; HR, hazard ratio;
CI, confidence interval; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.

combined prognostic model was equivalent to the 10-lncRNA
signature (0.804 vs. 0.781, P = 0.636), but it was significantly
higher than TNM stage (0.804 vs. 0.582, P < 0.001), HER2 status
(0.804 vs. 0.600, P < 0.001), and age (0.804 vs. 0.614, P = 0.0012)
(Figure 5E). Notably, the AUC of the signature-based prognostic
model was also higher than the three-clinical factors model (0.804
vs. 0.666, P = 0.015) (Figure 5E). Taken together, the 10-lncRNA
signature and the combined prognostic model had significantly
better predictive performance than age, TNM stage, HER2 status,
and even the three-clinical factors model.

Functional Enrichment Analysis of the
10-LncRNA Signature
We explored the potential function of 10 prognostic lncRNAs
in the signature. By using Pearson correlation analysis between
the expression levels of 10 lncRNAs and those of DEMs,
206 DEMs were identified as meaningful co-expressed genes,
which correlated with at least one of the 10 lncRNAs
(Pearson coefficient ≥0.4). Enrichment analysis revealed that
these co-expressed DEMs were significantly enriched in 342
GO terms in biological processes, 57 GO terms in cellular
components, 23 GO terms in molecular functions, and 9 KEGG
pathways (Supplementary Table 2). These GO terms were found
mainly to be associated with DNA replication origin binding
and chromosome centromeric region. The KEGG pathways
analysis showed that the co-expressed genes were involved
in p53 signaling pathway, oocyte meiosis, and homologous
recombination (Figures 6A,B), which were closely associated
with the tumorigenesis and development of BC as described in
previous studies (23–26).

LHX1-DT, One of the 10 Prognostic
LncRNAs, Enhances the Proliferation of
BC Cells
Given the fold change and P-value of the 10 prognostic lncRNAs,
LHX1-DT was selected and subjected to further clinical and
functional assays (Supplementary Table 3). As it was shown in
Figure 7A, LHX1-DT has been seen to be upregulated in BC

cases based on the analyses done on the TCGA dataset. To test
whether LHX1-DT upregulation was related to poor prognosis
of BC patients, the expression level of LHX1-DT was evaluated
by ISH in another cohort (Figure 7B and Supplementary
Table 4). Results showed that the expression level of LHX1-DT
was higher in BC tissues compared with paired normal breast
tissues (Figure 7C and Supplementary Table 5). Meanwhile, high
expression of LHX1-DT was significantly associated with shorter
survival (Figure 7D). Similarly, LHX1-DT was also upregulated
in cultured BC cell lines (MCF-7, BT-549, MDA-MB-231, and
MDA-MB-468) compared to epithelial breast cell line MCF-10A
(Figure 7E). We chose MCF-7 and BT-549 cells for further studies
because of their highest expression compared with MCF-10A.
The knockdown efficiency is shown in Supplementary Figure 3.
The EdU incorporation assay detected a significant decrease in
the proliferation of MCF-7 and BT-549 cells after silencing of
LHX1-DT (Figure 8A). In parallel, both real-time cell impedance
assay with RTCA and colony formation assay were performed in
MCF-7 and BT-549 cells, and the results were consistent with
the results above (Figures 8B,C). Then, we explored the effect
of LHX1-DT in BC tumorigenesis in vivo. Stabled LHX1-DT-
silenced or control MCF-7 cells were subcutaneously injected
into female BALB/c nude mice. After 4 weeks of injection,
suppression of LHX1-DT produced a significant decrease in
the weight and volume of xenograft (Figure 8D). Collectively,
these data strongly suggested that LHXI-DT was required for
the proliferation of BC cells in vitro and targeting LHX1-
DT could inhibit tumorigenesis and tumor growth of BC
cells in vivo.

DISCUSSION

In this study, we presented a brief overview of the distinct
expression patterns of lncRNAs in BC and identified a 10-
lncRNA signature carrying prognostic information for BC
cases. Moreover, integrated with clinical risk factors, a lncRNA
signature-based prognostic model was constructed to predict
individual survival probabilities. Additionally, we sought to
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FIGURE 4 | A 10-lncRNA-based prognostic model to estimate 3- and 5-year OS probability in breast cancer cases. (A) Nomogram to estimate OS for breast cancer
cases. Instruction: Points for each variable are assigned by corresponding values from the “points” axis, and sum of the points values are located on the “total
points” axis. According to a vertical line from the corresponding total points value, the 3- and 5-year OS could be easily calculated. Calibration plots of the
10-lncRNA-based prognostic model in the training set (B), validation set (C), and total set (D). The 45◦ dotted line represents a perfect prediction, and the red lines
represent the predictive performance of the nomogram. lncRNA, long non-coding RNA; HER2, human epidermal growth factor receptor 2; OS, overall survival.

explore the potential function of the molecular signature by
GO and KEGG pathway enrichment analysis and preliminarily
studied their biological functions in vitro and in vivo.

Originally considered as transcriptional noise, lncRNAs are
now viewed as key molecules which contributed to various

mechanisms of cancer biology. With the development of high-
throughput deep sequencing, over 118,770 human lncRNAs that
constitute the human genome have been identified and annotated
and these continue to increase (27). Recent studies have reported
that lncRNAs exhibited highly distinct expression patterns in
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FIGURE 5 | Performance evaluation of the 10-lncRNA-based prognostic model. Time-dependent ROC curves of the 10-lncRNA-based prognostic model in the
training set (A), validation set (B), and total set (C). Comparison of the prognostic accuracy at 5 years by time-dependent ROC curves in the 10-lncRNA signature
with single lncRNA (D) and the 10-lncRNA-based prognostic model with 10-lncRNA signature, 3-clinical factors model, age, HER2 status and TNM stage (E).
lncRNA, long non-coding RNA; ROC, receiver-operating characteristic; AUC, the area under the ROC curve; HER2, human epidermal growth factor receptor 2.

specific diseases and even in their particular developmental
stage. Therefore, lncRNAs are considered as one of the most
promising biomarkers and therapeutic targets (28–32). Notably,
BC is a highly heterogeneous disease with multiple molecular
features. High-throughput genomic analysis is becoming a hit
focus in the clinical management of BC. Increasing multigene
signatures have been developed for predicting outcomes and
assisting therapeutic strategies. The 21-gene Oncotype Dx
assay, the Amsterdam 70-gene MammaPrint signature, and the
PAM50 are most commonly used in clinical practice (33–37).
However, most of these studies only focused on the application
of gene expression profiles, ignoring the value of traditional
clinical factors such as TNM stage, ER status, PR status,
and HER2 status.

Given the genomic heterogeneity of BC, we mined the lncRNA
expression profiles and survival data between BC cases and

normal cases from the TCGA database and further constructed a
10-lncRNA signature for prognosis prediction. This 10-lncRNA
signature could accurately classify BC cases into different risk
groups. Cases in the high-risk group had significantly worse
survival than those in the low-risk group. The application of
reported multiple gene classifiers formerly was often limited
by low reproducibility in clinical use (38–42). Our 10-lncRNA
signature has a robust ability to classify patients, which was
successfully validated in the validation set and total set. Besides,
the AUC of the 10-lncRNA signature was the highest compared
with the one for the TNM stage and age, indicating that the
signature was efficient and sensitive to predict OS.

It has been widely reported that clinical factors, such as
TNM, have been used most frequently and are important for
diagnosis and prognosis evaluation of BC patients (43, 44). Here,
we assessed the prognostic ability of conventional clinical risk
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FIGURE 6 | Functional enrichment analysis for the 10-lncRNA signature. (A) GO enrichment analysis. Blue, brown, and green words represent the GO terms in
molecular functions, cellular components, and biological processes, respectively. (B) KEGG enrichment analysis. The x-axis and y-axis indicate the number of genes
and the GO terms/KEGG pathway names, respectively. The color represents the P-value. lncRNA, long non-coding RNA; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes.

factors. Three clinical factors (TNM stage, age, HER2 status)
and the 10-lncRNA signature showed independence and were
integrated into a combined prognostic model. According to user-
friendly interfaces, clinicians could easily get the probability of
3- and 5-year OS for each BC patient. In brief, the score of
each characteristic could be taken from the “points” axis. The
total scores are tallied and located on the “total points” axis.
The 3- or 5-year survival probabilities could be calculated by
drawing a vertical line down to the corresponding axis. Bootstrap
validation with 1,000 resamples suggested that the 10-lncRNA-
based prognostic model had great accuracy in all of the three sets.
Notably, variables in the model were relatively easily acquired,
indicating that this model has the potential to be widely used in
clinical practice.

One of the most attractive features of biomarkers is accurate
prognosis for patients with malignant disease, which helps to
stratify patients into different risk groups and to choose the
most effective treatment. In the study, our molecular signature
could successfully classify BC patients into different risk groups
regardless of age, TNM stage, and ER and PR status. Additionally,
we found that its classification efficiency was still significant in
the triple-negative BC subgroup (P = 0.0034) and non-triple
BC subgroup (P < 0.0001). Interestingly, the stratification of
the HER2-negative subgroup showed significance in outcome;
nevertheless, no clear and significant separation was observed in

the HER2-positive subgroup. These results suggested that the 10-
lncRNA signature could predict OS regardless of conventional
molecular features and clinical factors; however, it requires
further modifications to optimize its prognostic performance
before adoption into clinical setting.

The newly developed 10-lncRNA signature contained two
known lncRNAs (BCAR4 and LINC00536). BCAR4 (BC
antiestrogen resistance 4) originally was found to participate
in the development of resistance to antiestrogens in BC,
whose expression is associated with proliferation, metastasis,
and invasion of multiple tumors (45–48). LINC00536, a newly
identified lncRNA by Nakajima in 2014, was found to be highly
expressed in bladder cancer and promoted the tumorigenesis
and development of bladder cancer partly by modulating
the Wnt3a/β-catenin signaling (49). However, most of the
10 lncRNAs in our prognostic signature have been poorly
investigated. In terms of potential function, we performed
functional enrichment analysis based on the positively co-
expressed DEMs with these 10 lncRNAs. The results represented
that the 10 prognostic lncRNAs were possible to participate
in cell proliferation. Given the truth of our inference, we
selected LHX1-DT, an upregulated lncRNA with optimal log2|
fold change| and P-value, to be subjected to clinical and
functional assays. The results of ISH proved that LHX1-
DT was upregulated in BC and significantly associated with
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FIGURE 7 | LHX1-DT was upregulated and significantly correlated with the survival of breast cancer patients. (A) Relative expression levels of LHX1-DT in the
TCGA-BRCA project. (B) Representative images of LHX1-DT expression in breast cancer tissues and normal breast tissues using ISH analysis. Paraffin-embedded
tissue sections were stained using specific probe for LHX1-DT in purple–blue. (Positive control, U6 snRNA; negative control, scrambled control). Scale bars, 100 µm
(black). (C) Statistical analysis of LHX1-DT expression in 55 paired breast cancer tissues and normal breast tissues. The y-axis indicates the product of its staining
intensity and extent of LHX1-DT. Paired Student’s t-test. (D) Kaplan–Meier survival curves analysis of OS in breast cancer patients with high or low expression of
LHX1-DT. The median of LHX1-DT expression level was used as the cutoff value. Log-rank test. (E) The expression level of LHX1-DT is detected by qRT-PCR in
MCF-7, BT-549, MDA-MB-231, MDA-MB-468, and MCF-10A cells. Results were presented as the mean ± SD. Three independent experiments, Student’s t-test.
*P < 0.05, **P < 0.01, and ***P < 0.001. TCGA, The Cancer Genome Atlas; ISH, in situ hybridization; OS, overall survival; qRT-PCR, quantitative real-time
polymerase chain reaction.

the survival of BC patients. Downregulation of LHX1-DT
markedly suppresses cell growth in cultured BC cells and
xenograft mouse model which was consistent with the results
of the functional prediction above. We also tried to investigate
how the LHX1-DT participates in the development of BC.
According to cis/trans analysis, we found that AATF and LHX1
are located above or beyond the Flank10kb with LHX1-DT
and might be the target protein-coding RNAs. Unfortunately,
there were none of the target mRNAs in trans. On the
other hand, we searched the StarBase database to analyze
the interaction between LHX1-DT and mRNAs and found
that USP11, RNPEPL1, JPT2, DNASE2, and NR6A1 might
be related to LHX1-DT. We focus on making use of the
special lncRNA expression profiles and conventional clinical risk
factors to predict the prognosis of BC patients. Therefore, more
comprehensive studies about molecular mechanism will remain
to be lucubrated in the future.

Our study has several limitations. First of all, to validate
the performance of the 10-lncRNA signature-based prognostic
model, we mainly performed internal validation with 1,000
bootstrap resamples. Although the model demonstrated a robust

performance in discrimination and calibration, it did not
externally validate other independent cohorts and this might
result in overfitting. So, multicenter and large-scale studies
should be performed to validate this predictive value before
application in routine clinical practice. Second, the present study
is mainly on the foundation of the TCGA-BRCA project, in
which the clinical information of BC is not complete such as
the Ki-67 index and radiotherapy. Third, the generalizability
of the 10-lncRNA signature and signature-based prognostic
model is another limitation of our study. The signature and
prognostic models were generated and evaluated in the TCGA-
BRCA project. BC cases enrolled mainly came from the
Caucasian race, so the prognostic value for other races was
questionable, and further studies with other racial cohorts are still
necessarily needed.

Taken together, this study revealed a powerful 10-lncRNA
signature-based prognostic model by probing and integrating
currently available datasets. The newly developed 10-lncRNAs
signature could accurately predict outcomes for BC patients, as
well as specific characteristics of subgroups. After integrated with
clinical risk factors, a combined 10-lncRNA-based prognostic
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FIGURE 8 | LHX1-DT promotes the cell proliferation of breast cancer cells. (A) EdU incorporation assays of the cell population in the S phase (left) and histogram
analysis of EdU-positive cell counts are shown (right). Blue color represented the nucleus, and red color represented EdU-positive cells. Scale bars, 100 µm (white).
Three independent experiments, Student’s t-test. (B) Cell impedance assays were performed with the xCELLigence RTCA DPlus instrument to monitor the cell
growth dynamics of si-LHX1-DT-transfected or negative control siRNA-transfected breast cancer cells. Three independent experiments, Student’s t test. (C) Colony
formation assays were performed to detect the proliferation of si-LHX1-DT-transfected or negative control siRNA-transfected breast cancer cells. Three independent
experiments, Student’s t test. (D) Effect of LHX1-DT on breast cancer tumorigenesis in vivo. Subcutaneous xenograft assay of stable LHX1-DT knockdown MCF-7
cells or scrambled cells (7 × 106 cells) in nude mice. Representative luminescence images were shown (left) (n = 5, per group). Effect of LHX1-DT on subcutaneous
xenograft growth in mice (right). The curves of volume and weight of tumors were shown (n = 5, per group). Results were presented as the mean ± SD. Student’s
t-test. *P < 0.05, **P < 0.01, and ***P < 0.001. RTCA, real-time cell analyzer.

model was constructed for generating a specific probability of
3- and 5-year OS for BC patients. Furthermore, we inferred
and initially confirmed that the 10 prognostic lncRNAs were
closely associated with the cell proliferation of BC cells.
Further investigations need to be performed with regard to the
validation of our findings and the functional explanation of these
prognostic lncRNAs.
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Supplementary Figure 1 | Volcano plots and heatmaps of 1103 DELs and 1841
DEMs in breast cancer cases. (A,B) Volcano plot and heatmaps of 1103 DELs in
breast cancer cases. (C,D) Volcano plot and heatmaps of 1841 DEMs in breast
cancer cases. Blue color indicates a down-regulated expression, and the red color
represents up-regulated expression. Green nodes are candidate prognostic
lncRNAs. lncRNA, long non-coding RNA; DELs, differently expressed lncRNAs;
DEMs, different expressed mRNAs.

Supplementary Figure 2 | Stratified analysis of the 10-lncRNA signature for
breast cancer cases by clinicopathological risk factors. Kaplan-Meier curves for
breast cancer patients with T1 (A), T2 (B), T3 (C), N0 (D), N1 (E), N2 (F), and N3
(G). The ticks marked on the curves represent the censored subjects. The
differences between the two risk groups were accessed by the log-rank test.

Supplementary Figure 3 | The efficiency knockdown of the expression levels of
LHX1-DT. qRT-PCR detection of LHX1-DT expression in MCF-7 and BT-549 cells
transfected with scrambled or si-LHX1-DT. Three independent experiments,
Student’s test. qRT-PCR, quantitative real-time polymerase chain reaction.

Supplementary Table 1 | Candidate prognostic lncRNAs in the
TCGA-BRCA Project.

Supplementary Table 2 | Enrichment analysis of GO terms for positively
co-expressed DEMs correlated with prognostic lncRNAs.

Supplementary Table 3 | The summary of 10 prognostic lncRNAs.

Supplementary Table 4 | Clinical baseline characteristics of breast cancer
patients in situ hybridization analysis.

Supplementary Table 5 | The quantification results of in situ hybridization
analysis.
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