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Purpose: To evaluate the value of multiple machine learning methods in classifying
pathological grades (G1,G2, and G3), and to provide the best machine learning method
for the identification of pathological grades of pancreatic neuroendocrine tumors (PNETs)
based on radiomics.

Materials and Methods: A retrospective study was conducted on 82 patients with
Pancreatic Neuroendocrine tumors. All patients had definite pathological diagnosis and
grading results. Using Lifex software to extract the radiomics features from CT images
manually. The sensitivity, specificity, area under the curve (AUC) and accuracy were used
to evaluate the performance of the classification model.

Result: Our analysis shows that the CT based radiomics features combined with multi
algorithm machine learning method has a strong ability to identify the pathological grades
of pancreatic neuroendocrine tumors. DC + AdaBoost, DC + GBDT, and Xgboost+RF
were very valuable for the differential diagnosis of three pathological grades of PNET. They
showed a strong ability to identify the pathological grade of pancreatic neuroendocrine
tumors. The validation set AUC of DC + AdaBoost is 0.82 (G1 vs G2), 0.70 (G2 vs G3), and
0.85 (G1 vs G3), respectively.

Conclusion: In conclusion, based on enhanced CT radiomics features could differentiate
between different pathological grades of pancreatic neuroendocrine tumors. Feature
selection method Distance Correlation + classifier method Adaptive Boosting show a
good application prospect.

Keywords: CT, pancreatic neuroendocrine tumors, texture analysis, pathological grading, radiomics,
prediction model
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INTRODUCTION

Pancreatic neuroendocrine tumors (PNETs) are tumors that
originate from the neuroendocrine system of the pancreas,
accounting for 2%–10% of pancreatic tumors (1, 2). In recent
years, researches on pancreatic neuroendocrine tumors have
received more and more attention. According to the World
Health Organization’s classification system, PNETs are
classified into three pathological grades according to mitotic
count and Ki-67 index: G1, G2, G3. In PNETs, G1 grade tumors
have a lower degree of malignancy, and G2 and G3 tumors
have a higher degree of malignancy (3, 4). Different treatment
options for different grades of tumors are also different. At
present, the more accepted treatment is surgical resection.
For the unresectable or metastatic PNETs, local treatment,
chemotherapy and targeted therapy can be used as treatment
options (5–7). Of course, tumors with different malignant
grades will also have an impact on the development of
treatment options.

At present, enhanced CT examination has been used as a
common imaging examination method for pancreatic tumors,
and it is an important auxiliary tool for clinicians in evaluating
tumor staging (8–10). However, enhanced CT is not able to
directly determine the malignant grade of PNETs. The confirmed
diagnosis still needs to rely on pathological diagnosis, which
invisibly increases the difficulty of diagnosis and the suffering of
patients. New methods are explored to identify the grade of
carcinoma non-invasively by using the image data with the
development of medical imaging and post-processing. It is
valid to predict Gleason Score of Prostate cancer, malignancy
stage of Colorectal cancer by analyzing image feature (11, 12).
This suggests that radiomics information can predict
pathological information to a certain extent. Compared with
pathological information, there is a huge amount of valuable
information hidden in the image. Notably, as an emerging non-
invasive way, radiomic analysis makes a transformation of
Abbreviations: PNETs, Pancreatic Neuroendocrine Tumors; CT, Computed
Tomography; MRI, Magnetic Resonance Imaging; PET, Positron Emission
Computed Tomography; OS, Overall Survival; ROC, Receiver Operating
Characteristic; ROI, Region Of Interest; AUC, Area Under the Curve; GLCM,
Gray-Level Co-Occurrence Matrix; GLRLM, Gray Level Run Length Matrix; SRE,
Short Run Emphasis; LRE, Long Run Emphasis; LGRE, Low Grey Level Run
Emphasis; HGRE, High Gray Level Run Emphasis; SRLGE, Short-Run Low Grey
Level Emphasis; SRHGE, Short-Run High Grey Level Emphasis; LRLGE, Long-
Run Low Grey Level Emphasis; LRHGE, Long-Run High Grey Level Emphasis;
GLNU, Grey Level Non-Uniformity; RLNU, Run Length Non-Uniformity; RP,
Run Percentage; NGLDM, Neighborhood Grey Level Difference Matrix; GLZLM,
Gray Level Zone Length Matrix; SZE, Short Zone Emphasis; LZE, Long Zone
Emphasis; LGZE, Low Gray Level Zone Emphasis; HGZE, High Grey Level
Zone Emphasis; SZLGE, Short Zone Low Grey Level Emphasis; SZHGE, Short
Zone High Grey Level Emphasis; LZLGE, Long Zone Low Grey Level Emphasis;
LZHGE, Long Zone High Grey Level Emphasis; ZLNU, Zone Length Non-
Uniformity; ZP, Zone Percentage. DC, Distance Correlation; RF, Random
Forest; LASSO, Least absolute shrinkage and selection operator; Xgboost,
eXtreme Gradient Boosting; GBDT, Gradient Boosting Decision Tree; LDA,
linear discriminant analysis; SVM, Support Vector Machines; AdaBoost,
Adaptive Boosting; KNN, K-nearest neighborhood; GaussianNB, Gaussian
Naive Bayes; LR, Logistic Regression; DT, Decision Tree.
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medical images into available data combined with other
clinical information of patients, playing a crucial role in
diagnosis of multiple tumors (13).

Texture analysis, one type of radiomics analysis, is a
method of quantifying texture parameters by post-processing
conventional images, mathematically analyzing and calculating
the intensity and spatial distribution characteristics of image
pixels (14). Themain image sources are CT,MRI, PET, and some
post-processing images. Enhanced CT texture analysis can
reflect the uneven distribution of contrast agent inside and
outside the blood vessel (15). In recent years, CT texture
analysis also has been applied to the diagnosis, grading, and
prognostic evaluation of various tumors, such as colorectal
cancer (16–18).

It has been reported that preoperative texture analysis of
PNETs patients provides a novel and feasible method for the
diagnosis and prognosis of PNETs patients (19–23). However, as
far as we know, although some studies have found that several
texture parameters have potential application value in PNETs
diagnosis and grading, the explored parameters are still
incomplete and need further investigation. To show the full
picture of the ability of texture parameters based on enhanced
CT to differentiate pathological grading of PNETs, we conducted
this retrospective study. This is the first time that five feature
selection methods and nine classifiers have been used to help
identify pancreatic neuroendocrine tumors with different
pathological grades. The purpose of this study was to evaluate
the ability of CT based radiomic combined with machine
learning to identify pathological grade of pancreatic
neuroendocrine tumor, and to compare the performance of
five feature selection methods and nine classifiers.
MATERIALS AND METHODS

Study Population
We retrospectively reviewed a computer database of PNETs
patients treated at our hospital from March 2011 to November
2019, yielded 201 patients who had treated for PNETs with their
clinical records and CT images. Clinical data including age, sex,
location, tumor size, pathological typing, date of baseline CT,
condition of secretory function and dates of surgery were
recorded in our computer medical system. All CT images were
exported through the hospital’s PACS (Picture Archiving and
Communication System). One hundred nineteen patients were
excluded after the initial evaluation on images and patient
profiles, the reasons are as follows: Patients who did not
undergo an enhanced abdominal CT scan within 2 months
prior to surgery (n=38); The patient did not had a definite
pathological results (n=36); Relevant tumor treatment history
in other hospitals (n=41); the image quality does not meet the
requirements (n=4). A total number of 82 patients were
introduced in our study, finally. This study was approved by
the Ethics Administration Office of the West China Hospital,
Sichuan University, and the requirement for informed consent
was waived.
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CT Acquisition
Before the treatment, all patients underwent contrast-enhanced
abdomen CT examinations by a single 64-detector row scanner
(Brilliance 64, Philips Medical Systems, Eindhoven, the
Netherlands) with the following uniform scan parameters:
beam pitch, 0.891; tube voltage,120 kVp; tube current, 200
mAs; detector collimation, 0.75 mm; slice thickness, 1.0 mm;
reconstruction increment, 5.0 mm; rotation time, 0.42 s; and
matrix, 512 x 512.

Images were obtained after intravenous administration of
contrast agent (iohexol, 300 mg iodine/ml; Bayer Schering
Pharma AG, Leverkusen, Germany) dosed to weight (1.5 ml/
kg) at a rate of 2.5–3.0 ml/s through a power injector (Stellant D
Dual Syringe, Medrad, Indianola, PA, USA). Computed
tomography scanning was performed with 30–35 s for arterial-
phase and 60–70 s for portal venous phase (24–26).

Texture Features Extraction
We retrieved and extracted the digital imaging and
communication medical data (400-bit gray scale) of the
enhanced CT of the study patient from the image archiving
system. In order to quantify the lesion segmentation and
automatic quality characteristics, these data were loaded into a
personal computer-based partial image feature extraction
software (LIFEx v3.74, CEA-SHFJ, Orsay, France) for
segmentation and texture analysis. In enhanced CT fusion
images, regions of interest (ROIs) were drawn by hand around
tumor lesions (27, 28). All CT data were selected for arterial
phase. The drawing process of ROIs was done independently by
two radiologists. The radiogist contoured along the tumor tissue
slice by slice to draw the region of interest (ROI), and the three
dimensional texture features were automatically generated with
default setting (29).

The cystic, calcified and vascular shadows of the tumors were
removed during the process. To ensure objectivity, we
implemented mutual blindness for two radiologists. A third
radiologist evaluated the ROIs sketched by the previous two
radiologists and selected the more accurate ROIs to generate
texture features. Texture features of all image data are then
automatically calculated and extracted by computer software
Lifex. A total of 40 subdivided texture features were extracted,
including features from the first order (minimum value,
maximum value, average value and standard deviation value,
histogram-based matrix and shape-based matrix) and features
from second or higher order [gray-level co-occurrence matrix
(GLCM), gray-level zone length matrix (GLZLM), neighborhood
gray-level dependence matrix (NGLDM), and gray-level run
length matrix (GLRLM)].

Machine Learning
The establishment of machine learning model includes two key
points: feature selection by algorithm and modeling. The patients
were randomly separated into two sets in the ratio of 3:1 as the
training set and the validation set. Considering that there are so
many features, over fitting will occur, which will affect the
prediction performance of the model (30).
Frontiers in Oncology | www.frontiersin.org 3
The purpose of feature selection is to reduce the effect of
overfitting. Considering that there are many different selection
methods at present, we evaluated five selection methods: Distance
Correlation(DC), Random Forest (RF), Least Absolute Shrinkage
And Selection Operator (LASSO), Extreme Gradient Boosting
(Xgboost) and Gradient Boosting Decision Tree (GBDT). We
apply all radiomics features selected to the classification algorithm
to establish the discrimination model of different algorithm
combinations for pathological grading of PNETs. The nine
machine learning classifiers were: linear discriminant analysis
(LDA), Support Vector Machines (SVM), Random Forest (RF),
Adaptive Boosting (AdaBoost), K-nearest neighborhood (KNN),
Gaussian Naive Bayes (GaussianNB), Logistic Regression (LR),
Gradient Boosting Decision Tree(GBDT) and Decision Tree
(DT). For each model, we repeated 10 times machine learning
process to obtain the real distribution of classification. In analysis
of diagnostic grading, we made receiver operating characteristic
(ROC) curves of every diagnostic models. The discriminating
power of the model was measured by the area under the curve
(AUC) of the ROC curve. The predicted targets were pathological
grade(G1, G2, and G3). Sensitivity is defined as the proportion of
positive samples judged to be positive. Specificity is defined as the
proportion of negative samples judged to be negative. The
accuracy was defined as the percentage of the sum of true
positive and true negative in the number of subjects. The
association between texture parameters was evaluated using
Pearson correlation coefficient test.

A P value < 0.05 was considered to indicate statistical
significance and all P values were based on two-sided testing.
All regular statistical analyses were performed using the SPSS
software (Version 20.0, IBM Corporation, Armonk, NY, USA).
The machine learning algorithms were programmed using were
performed on Python software (sklearn package). The study-
process diagram is shown in Figure 1.
RESULT

Patient Population
Among the 82 patients (mean age, 52.6 years old; range: 24–77
years old) included in the present study, 52 patients were male
and 30 patients were female. The pathological type of all patients
was PNET. The median OS for this cohort was 58.2 months. As
for the pathological results, there are 20 patients confirmed as
G1, 33 patients were G2, and 29 patients were G3. There were 21
patients with tumor secretory function. Seven patients died and
the remaining 75 patients survived.

We found that the gender, age and survival status of the
patients had no significant relationship with the pathological
grade of the tumor. (P > 0.05). At the same time, tumor location,
tumor secretory function, vascular invasion, peripancreatic
permeation, pancreatic duct dilatation, boundary form,
calcification, pancreatic atrophy, and the maximum diameter
of the tumor are not related to the pathological grade of
the tumor.
February 2021 | Volume 10 | Article 521831
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The baseline characteristics of all patients and lesions were
summarized in Table 1.

Texture Features
According to the Pearson correlation coefficient of the extracted
features, most texture features were independent or weakly
correlated. There were also a few features showing strong positive
correlation and strong negative correlation. The correlation of all
texture features was shown in Figure 2 in the form of heatmap. In
different comparisons, each selection method had selected different
radiomics features. In terms of feature selection, RF and lasso select
the most number of radiomics features, while Xgboost selects the
least number of features. The feature selection results of each
method were shown in Table 2.

Model Performance
We made three comparisons: G1 vs G2, G2 vs G3, and G1 vs G3.
Each comparison established 45 diagnostic models and the best
diagnostic model of each comparison was to select the one of the
highest validation set AUC values in all models and in the three
comparisons, there was no over-fitting or under-fitting in the
model constructed by the algorithm combination. And once the
diagnosis performance of the model appears overfitting or
underfitting, the combination of algorithms used in the model
was not considered to be the best model.

About the comparison of G1 and G2, the AUC values of most
models were between 0.60 and 0.82. There was also a few model
with high AUC values in comparison with G1 and G2, but
showed overfitting in G2 and G3 comparisons (AUC of
validation set is much lower than AUC of training set). Like
RF + AdaBoost, Xgboost + AdaBoost, Xgboost + GBDT, GBDT +
RF, GBDT + AdaBoost, and GBDT + GBDT, although they had
high AUC values in the comparison of G1 and G2, they all
showed over-fitting in the comparison of G2 and G3 (Figure 3).
These models were not included in the selection of the best
model. The highest value was 0.82 observed in DC+AdaBoost. In
the validation set, the sensitivity, specificity, accuracy, and AUC
of the model were 0.65, 0.84, 0.82, and 0.75. For the comparison
Frontiers in Oncology | www.frontiersin.org 4
of G2 and G3, the AUC values of most models were between 0.50
and 0.73. The highest value was 0.73 observed in DC+GBDT. In
the validation set, the sensitivity, specificity, accuracy, and AUC
of the model were 0.75, 0.64, 0.73, and 0.68, respectively. For the
comparison of G1 and G3, the AUC values of most models were
between 0.62 and 0.86. The highest value was 0.73 observed in
Xgboost+RF. For the model (Xgboost+RF) in the validation set,
the sensitivity, specificity, accuracy, and AUC of the model were
0.65, 0.87, 0.86, and 0.78, respectively.

We found that the model constructed by the combination of
DC + AdaBoost, DC + GBDT and Xgboost+RF was very valuable
for the differential diagnosis of three pathological grades of
PNET, and these models did not show over-fitting and under-
fitting. The model performance of the combination of these three
algorithms was shown in Table 3. DC + AdaBoost has the best
performance in the three comparisons G1 vs G2, G2 vs G3, and
G1 vs G3). The ROC curves of the DC + AdaBoost models was
shown in Figure 4.

The detailed AUC values for all models were shown in
Supplementary Material 1.
DISCUSSION

In this study, we construct diagnostic models through cross
combination of five feature selection methods and nine
classification methods based on radiomics features. We evaluated
the ability of themodel to identify the pathological grade of PNETs,
and explored the potential application value of machine learning
combined with radiomics in the diagnosis of PNETs.

One of the main findings of this study was that the model
constructed by feature selection method Distance Correlation +
classifier method Adaptive Boosting had a strong ability to
predict the pathological grade of PNETs. The validation set
AUC of DC + AdaBoost is 0.82 (G1 vs G2), 0.70 (G2 vs G3),
and 0.85 (G1 vs G3), respectively. As the result shows, these
models had satisfactory results to indicate the pathological
FIGURE 1 | Study-process diagram.
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grade of PNETs (G1,G2, and G3). Models of DC + GBDT and
Xgboost + RF also showed good diagnostic performance.

At present, CThas beenwidely used in the diagnosis,monitoring
and prognosis evaluation of pancreatic neuroendocrine tumors.
Enhanced CT can further differentiate tumors from normal tissues
by using contrast media, especially for the detection of vascular
proliferation and small lesions. It can improve the accuracy of
clinical staging of cancer patients and help formulate treatment
strategies. Especially, enhanced CT is suitable for breast and
abdominal tumors and has certain diagnostic advantages (31–33).
Textureanalysis usesmathematicallydefinedparameters to estimate
the distribution of gray scale, roughness, and regularity within the
lesion. Sowe canquantify someof the image featuresof the tumorby
analyzing theseparameters.The significant role of texture analysis in
diagnosis and prognosis in combination with ultrasound, CT,MRI,
and PET/CT has been confirmed. In some previous studies, it has
been reported the value of texture analysis for the diagnosis and
prognosis of various types of cancers, including lung, stomach,
breast and rectal tumor (34–37). Heterogeneity is recognized as a
Frontiers in Oncology | www.frontiersin.org 5
characteristic of malignant tumors (38). Heterogeneity may be
related to gene changes, tumor microenvironment and other
factors that are different from normal tissues. Previous studies
have also confirmed that CT texture features can also reflect the
microenvironment of tumor vessels (39).

A negative finding is that indicators such as pancreatic duct
dilatation, peripancreatic infiltration, vascular invasion,
pancreatic atrophy and clear pancreatic boundaries do not
indicate the pathological grading of tumors. It’s contrary to
some previous studies (20, 21, 40). We do not deny that
because of its higher malignancy. High-grade PNETs should
grow faster and be more invasive than low-grade PNETs.
Although many studies have found some correlation between
pathological grade and imaging features of PNETs, there is not
enough clear evidence that the morphology of tumors, like
pancreatic duct dilatation, vascular invasion and other factors
can clearly indicate the pathological grade of PNETs. However,
previous studies have found that G1/G2 patients have clearer
tumor boundaries than G3 patients. Larger tumor diameter,
TABLE 1 | Characteristics of patients and lesions.

Low-grade High-grade Total

G1 G2 G3

No. of patients 20 33 29 82
Patient sex, no. (%)
Male 13(65.0%) 20(60.6%) 19(65.5%) 52(63.4%)
Female 7(35.0%) 13(39.4%) 10(34.5%) 30(36.6%)
Age(range)
Mean 49.2(28-70) 53.0(29-75) 54.6(24-77) 52.6(24-77)
Location, no. (%)
Head 8(40.0%) 14(42.4%) 20(69.0%) 42(51.2%)
Neck
Body
Tail

4(20.0%)
3(15.0%)
5(25.0%)

8(24.2%)
5(15.2%)
6(18.2%)

2(6.9%)
3(10.3%)
4(13.8%)

14(17.1%)
11(13.4%)
15(18.3%)

Function, no. (%)
Yes 2(10.0%) 10(30.3%) 9(31.0%) 21(25.6%)
No 18(90.0%) 23(69.7%) 20(69.0%) 61(74.4%)
Blood vessel is invasion, no. (%)
Yes
No

2(10.0%)
18(90.0%)

5(15.2%)
28(84.8%)

7(24.1%)
22(75.9%)

14(17.1%)
68(82.9%)

Peripancreatic permeation, no. (%)
Yes
No

0(0%)
20(100.0%)

4(12.1%)
29(87.9%)

4(13.8%)
25(86.2%)

8(9.8%)
74(90.2%)

Pancreatic duct dilatation, no. (%)
Yes
No

2(10.0%)
18(90.0%)

10(30.3%)
23(69.7%)

6(20.7%)
23(79.3%)

18(22.0%)
64(78.0%)

Border, no. (%)
Clear
Unclear

10(50.0%)
10(50.0%)

6(18.2%)
27(81.8%)

8(27.6%)
21(72.4%)

24(29.3%)
58(70.7%)

Calcification, no. (%)
Yes
No

2(50.0%)
18(50.0%)

3(9.1%)
30(90.9%)

6(20.7%)
23(79.3%)

11(13.4%)
71(86.6%)

Pancreatic atrophy, no. (%)
Yes
No

4(20.0%)
16(80.0%)

4(12.1%)
29(87.9%)

7(24.1%)
22(75.9%)

15(18.3%)
67(81.7%)

Maximum diameter(cm) 3.1(0.8–6.0) 4.9(1.0–12.0) 6.2(0.8–12.0) 4.9(0.8–12.0)
Survival Status, no. (%)
Alive
Dead

19(95.0%)
1(5.0%)

31(93.9%)
2(6.1%)

25(86.2%)
4(13.8%)

75(91.5%)
7(8.5%)

Median Overall Survival
(month)

57.0 52.2 62.4 58.2
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pancreatic duct dilatation, vascular invasion and other
manifestations were more common in G2/G3 patients, and had
statistical correlation (19, 41). This may be due to the limited
sample size of this study, and more evidence from similar studies
is needed to support these views. At present, pathological grading
of PNETs still requires pathological sections to determine its
grading. It is difficult but necessary to find the best radiomics
feature of machine learning algorithm.

Appropriate selection method plays an important role in the
performance of classifier. Previous studies on radiomics used
many methods for feature selection, such as Mann Whitney U
test with AUC of ROC, random forest and student’s t-test with
recursive feature extraction, etc (42, 43). For our research, the
number of extracted features is large, which increases the chance to
select the optimal feature, but also increases the difficulty of
selection. We consider using five different artificial intelligence
methods for feature selection, which is better than using a single
selection method in previous studies. In fact, three feature selection
methods, Lasso, DC, and GBDT have been used in previous
studies (44). On this basis, we add RF and Xgboost methods.
Frontiers in Oncology | www.frontiersin.org 6
The algorithm used in Xgboost is the improvement of GBDT,
which can be used for classification and regression problems (45).

From our feature selection results, we can find that the
features selected by different selection algorithms are not
identical. Some algorithms select a lot features, such as LASSO,
RF, and some algorithms select few features, such as Xgboost, but
some features can be selected by most algorithms. Maxvalue is a
feature describing the maximum value of a tumor image. This is
a parameter based on the overall evaluation. In theory, high-
grade tumors have more angiogenesis, and their overall
characteristics are relatively more complex, which partly
explains why maxvalue can describe high-grade PNETs
features (23). In fact, we also find that maxvalue is chosen by
almost all the selection algorithms. Many previous studies have
found that the pathological grading of PNETs is closely related to
the parameters of HISTO (Skewness, Kurtosis, Entropy and
Energy) (21, 23, 40, 46). However, in our study, only skewness
and kurtosis are selected by algorithms, indicating that they are
related to pathological grade. We also found SHAPE_Volume
(# ml), which is the same first-order parameter, has an indicative
FIGURE 2 | The heat map of Pearson correlation coefficients among radiomics features.
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TABLE 2 | Selected features using Distance Correlation (DC), Random Forest (RF), Least Absolute Shrinkage and Selection Operator (LASSO), Extreme Gradient
Boosting (Xgboost), and Gradient Boosting Decision Tree (GBDT).

Selection method Selected features

G1 vs G2 G2 vs G3 G1 vs G3

DC maxValue
SHAPE_Volume (ml)
GLCM_Correlation
GLRLM_GLNU
GLRLM_RLNU
GLRLM_LRLGE
GLZLM_ZLNU
GLZLM_GLNU

HISTO_Kurtosis
HISTO_Skewness
SHAPE_Volume (ml)
GLRLM_LGRE
GLRLM_SRHGE
GLRLM_LRLGE
GLRLM_HGRE
GLZLM_HGZE

stdValue
maxValue
HISTO_Skewness
GLCM_Correlation
GLRLM_HGRE
GLRLM_SRHGE
GLZLM_SZLGE
GLZLM_HGZE

RF minValue
maxValue
HISTO_Skewness
SHAPE_Volume (ml)
GLCM_Homogeneity
GLCM_Contrast
GLCM_Correlation
GLCM_Entropy_log10
GLRLM_LGRE
GLRLM_LRLGE
GLRLM_LRHGE
GLRLM_GLNU
GLRLM_RLNU
GLZLM_LZE
GLZLM_LGZE
GLZLM_LGZE
GLZLM_SZLGE
GLZLM_LZHGE

meanValue
maxValue
HISTO_Skewness
HISTO_Kurtosis
SHAPE_Volume (ml)
GLCM_Contrast
GLRLM_LRE
GLRLM_LGRE
GLRLM_HGRE
GLRLM_LRLGE
GLRLM_GLNU
GLRLM_RP
NGLDM_Coarseness
GLZLM_LZE
GLZLM_HGZE
GLZLM_SZLGE
GLZLM_SZHGE
GLZLM_LZHG
GLZLM_ZLNU

meanValue
stdValue
maxValue
HISTO_Skewness
GLCM_Homogeneity
GLCM_Entropy_log10
GLRLM_SRE
GLRLM_SRLGE
GLRLM_SRHGE
GLRLM_LRLGE
GLRLM_LRHGE
GLRLM_RLNU
GLRLM_RP
NGLDM_Contrast
GLZLM_LZE
GLZLM_LGZE
GLZLM_HGZE
GLZLM_LZHGE

LASSO minValue
maxValue
HISTO_Kurtosis
SHAPE_Volume (ml)
GLRLM_HGRE
GLRLM_SRHGE
GLRLM_LRHGE
GLRLM_GLNU
GLRLM_RLNU
GLZLM_LZE
GLZLM_HGZE
GLZLM_SZHGE
GLZLM_LZHGE
GLZLM_ZLNU

minValue
meanValue
stdValue
maxValue
SHAPE_Volume (ml)
GLRLM_HGRE
GLRLM_SRHGE
GLRLM_LRHGE
GLRLM_GLNU
GLRLM_RLNU
GLZLM_LZE
GLZLM_HGZE
GLZLM_SZHGE
GLZLM_LZHGE
GLZLM_GLNU
GLZLM_ZLNU

minValue
meanValue
maxValue
HISTO_Kurtosis
GLRLM_HGRE
GLRLM_LRHGE
GLRLM_GLNU
GLRLM_RLNU
GLZLM_LZE
GLZLM_HGZE
GLZLM_SZHGE
GLZLM_LZHGE
GLZLM_GLNU
GLZLM_ZLNU

Xgboost maxValue
GLCM_Correlation
GLZLM_LGZE
GLZLM_SZLGE
GLZLM_ZP

minValue
GLRLM_SRE
GLRLM_LRLGE
NGLDM_Coarseness
GLZLM_LZE
GLZLM_ZP

meanValue
maxValue
GLZLM_LGZE
GLZLM_SZLGE

GBDT minValue
maxValue
HISTO_Kurtosis
SHAPE_Volume (ml)
GLCM_Correlation
GLRLM_RLNU
NGLDM_Contrast
NGLDM_Busyness
GLZLM_LGZE
GLZLM_SZLGE
GLZLM_ZP

minValue
stdValue
maxValue
HISTO_Skewness
HISTO_Kurtosis
SHAPE_Volume (ml)
GLCM_Correlation
GLRLM_LGRE
GLRLM_SRLGE
GLRLM_LRLGE
GLRLM_RLNU

meanValue
maxValue
GLCM_Correlation
NGLDM_Contrast
GLZLM_HGZE
GLZLM_SZLGE
GLZLM_LZHGE

(Continued)
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value for the pathological grading of PENTs. SHAPE_Volume
(# ml) is the Volume of Interest. This reflects the shape
characteristics of malignant tumors. The grey level co-occurrence
matrix (GLCM) takes into account the arrangements of pairs
of voxels to calculate textural indices. GLCM_Correlation is the
linear dependency of grey-levels in GLCM. The grey-level run
Frontiers in Oncology | www.frontiersin.org 8
length matrix (GLRLM) gives the size of homogeneous runs for
each grey level. GLRLM_RLNU is the length of the homogeneous
runs. GLZLM-ZLNU is the length of the homogeneous zones. The
neighborhood grey-level different matrix (NGLDM) corresponds to
the difference of grey-level between one voxel and its 26 neighbors
in three dimensions (eight in 2D). NGLDM_Coarseness is the level
TABLE 2 | Continued

Selection method Selected features

G1 vs G2 G2 vs G3 G1 vs G3

NGLDM_Coarseness
NGLDM_Contrast
GLZLM_HGZE
GLZLM_SZHGE
GLZLM_GLNU
February 2021 | Volum
GLCM, Gray-Level Co-Occurrence Matrix; GLRLM, Gray Level Run Length Matrix; SRE, Short Run Emphasis; LRE, Long Run Emphasis; LGRE, Low Grey Level Run Emphasis; HGRE,
High Gray Level Run Emphasis; SRLGE, Short-Run Low Grey Level Emphasis; SRHGE, Short-Run High Grey Level Emphasis; LRLGE, Long-Run Low Grey Level Emphasis; LRHGE,
Long-Run High Grey Level Emphasis; GLNU, Grey Level Non-Uniformity; RLNU, Run Length Non-Uniformity; RP, Run Percentage; NGLDM, Neighborhood Grey Level Difference Matrix;
GLZLM, Gray Level Zone Length Matrix; SZE, Short Zone Emphasis; LZE, Long Zone Emphasis; LGZE, Low Gray Level Zone Emphasis; HGZE, High Grey Level Zone Emphasis; SZLGE,
Short Zone Low Grey Level Emphasis; SZHGE, Short Zone High Grey Level Emphasis; LZLGE, Long Zone Low Grey Level Emphasis; LZHGE, Long Zone High Grey Level Emphasis;
ZLNU, Zone Length Non-Uniformity; ZP, Zone Percentage.
TABLE 3 | Diagnostic performance of the optimal discriminative model in validation set.

Model G1 vs G2 G2 vs G3 G1 vs G3

DC + AdaBoost DC + GBDT Xgboost+RF DC + AdaBoost DC + GBDT Xgboost+RF DC + AdaBoost DC + GBDT Xgboost+RF

Sensitivity 0.56 0.57 0.50 0.67 0.75 0.63 0.60 0.59 0.65
Specificity 0.84 0.76 0.84 0.66 0.64 0.60 0.88 0.86 0.87
AUC 0.82 0.75 0.78 0.70 0.73 0.57 0.85 0.82 0.86
Accuracy 0.75 0.71 0.72 0.65 0.68 0.61 0.77 0.76 0.78
e 10 |
A

B D F

C E

FIGURE 3 | Heat map of AUC results of all algorithms. Training set of G1 vs G2 (A); Validation set of G1 vs G2 (B); Training set of G2 vs G3 (C); Validation set of
G2 vs G3 (D); Training set of G1 vs G3 (E); Validation set of G1 vs G3 (F).
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of spatial rate of change in intensity (27). These parameters reflect
the differences in gray scale and voxel manifestations of tumors
with different pathological grades. The imaging manifestations of
malignant tumors are analyzed in a more detailed way.

In addition to finding the best diagnostic model, we also
found that some of the models performed poorly. A previous
study used LDA and SVM classifier machine learning methods to
identify glioblastoma (GBM) and anaplastic oligodendrocytoma
(AO), and found that the AUC of testing set was all above 0.90
Frontiers in Oncology | www.frontiersin.org 9
(47). However, in our study, these two classification algorithms
do not show good diagnostic performance. In particular, the
models using SVM algorithm often show over-fitting or under-
fitting. We find that the models using the rest of the classification
algorithms perform better than all SVM based models, and the
improvement of the models using different selection algorithms
is limited. SVM algorithm is usually used to solve machine
learning problems with small samples. This seems to be a good
fit for the small sample size of this study, but in fact it shows a
A

B

C

FIGURE 4 | The ROC and AUC results of 10 fold of “DC+AdaBoost” in training set and validation set. G1 vs G2 (A); G2 vs G3 (B); G1 vs G3 (C).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics in Pancreatic Neuroendocrine Tumors
disappointing diagnostic performance. Compared with SVM,
AdaBoost algorithm is a modified boosting algorithm, which
can adaptively adjust the errors of classifiers. Through
continuous training, AdaBoost can improve the ability of data
classification. AdaBoost has low generalization error rate and can
be applied to most classifiers.

Our research uses three-dimensional texture analysis, which
can provide more information than the two-dimensional
analysis. Compared with previous studies, based on image
parameters and imaging parameters, this study introduces
more comprehensive parameters such as GLCM, GLRLM, and
GLZLM. Many previous studies only studied some parameters of
HISTO and morphological characteristics of tumors. We use
almost all the machine learning methods involved in the current
research to analyze. This can intuitively compare the
performance of various algorithm combinations and indicate
the best combination. Another advantage of our study is that we
have complete preoperative imaging, clinical and pathological
data for reference. And the software used to extract texture
parameters and execute machine learning to build prediction
models in this study is free and open, which is conducive to
replicate our research for other researchers.

There are still some shortcomings in this study. First,
retrospective design may lead to selection bias. Then the
sample size of this study is small and only included in patients
undergoing abdominal enhanced CT examination, and the
number of pathological grades is different, which may have
certain selection bias. Future research needs a larger sample
size to evaluate the application value of machine learning and
radiomics in describing tumor pathological grading. Secondly,
we only roughly defined the time points for performing
enhanced CT examination before treatment, which resulted in
different time points for enhanced CT examination, which led to
deviations in the evaluation of texture features. Then, only the
texture features extracted from the arterial phase CT images are
used to establish the prediction model, while CT images of other
phases are not explored. Finally, due to the lack of external
validation, we cannot ensure that our model will have the same
diagnostic performance when dealing with external data sets.
Frontiers in Oncology | www.frontiersin.org 10
CONCLUSION

The preoperative enhanced CT image texture analysis to predict
the pathological grade of PNETs patients has a potential
application. Radiomics analysis is expected to assist radiologists
in obtaining more information from images.
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PNETs Pancreatic Neuroendocrine Tumors
CT Computed Tomography
MRI Magnetic Resonance Imaging
PET Positron Emission Computed Tomography
OS Overall Survival
ROC Receiver Operating Characteristic
ROI Region Of Interest
AUC Area Under the Curve
GLCM Gray-Level Co-Occurrence Matrix
GLRLM Gray Level Run Length Matrix
SRE Short Run Emphasis
LRE Long Run Emphasis
LGRE Low Grey Level Run Emphasis
HGRE High Gray Level Run Emphasis
SRLGE Short-Run Low Grey Level Emphasis
SRHGE Short-Run High Grey Level Emphasis
LRLGE Long-Run Low Grey Level Emphasis
LRHGE Long-Run High Grey Level Emphasis
GLNU Grey Level Non-Uniformity
RLNU Run Length Non-Uniformity
RP Run Percentage
NGLDM Neighborhood Grey Level Difference Matrix
GLZLM Gray Level Zone Length Matrix
SZE Short Zone Emphasis
LZE Long Zone Emphasis
LGZE Low Gray Level Zone Emphasis
HGZE High Grey Level Zone Emphasis
SZLGE Short Zone Low Grey Level Emphasis
SZHGE Short Zone High Grey Level Emphasis
LZLGE Long Zone Low Grey Level Emphasis
LZHGE Long Zone High Grey Level Emphasis
ZLNU Zone Length Non-Uniformity
ZP Zone Percentage
DC Distance Correlation
RF Random Forest
LASSO Least absolute shrinkage and selection operator
Xgboost eXtreme Gradient Boosting
GBDT Gradient Boosting Decision Tree
LDA linear discriminant analysis
SVM Support Vector Machines
AdaBoost Adaptive Boosting
KNN K-nearest neighborhood
GaussianNB Gaussian Naive Bayes
LR Logistic Regression
DT Decision Tree
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