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Clear cell renal cell carcinoma represents the most common type of kidney cancer.
Precision medicine approach to ccRCC requires an accurate stratification of patients that
can predict prognosis and guide therapeutic decision. Transcription factors are implicated
in the initiation and progression of human carcinogenesis. However, no comprehensive
analysis of transcription factor activity has been proposed so far to realize patient
stratification. Here we propose a novel approach to determine the subtypes of ccRCC
patients based on global transcription factor activity landscape. Using the TCGA cohort
dataset, we identified different subtypes that have distinct up-regulated biomarkers and
altered biological pathways. More important, this subtype information can be used to
predict the overall survival of ccRCC patients. Our results suggest that transcription factor
activity can be harnessed to perform patient stratification.

Keywords: ccRCC, RNA-Seq, transcription factor, Systems Biology, personalized oncology
INTRODUCTION

Kidney cancer is one major solid cancer, with an estimated 403,262 new cases and 175,098 deaths in
2018 (1). Renal cell carcinoma accounts for around 90% of kidney cancer, with clear cell renal cell
carcinoma being one of the most frequent subtypes. Despite recent advances in targeted therapy and
immunotherapy, there is still a large gap to be filled for the clinical management of patients
diagnosed with clear cell renal cell carcinoma.

Transcription factors are implicated in the initiation and progression of human carcinogenesis.
The c-myc oncogene encodes a transcription factor that regulates the transcription of hundreds of
genes. It has been well established that transcription factors are situated in the hubs of a complex
network shaping the hallmarks of human cancer. Thus, it is intriguing to develop strategies to target
transcription factors, especially a combination targeting strategy designed to destroy cancer cell
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dependency (2). Small molecules with the capacity to reactivate
mutant p53 are now being evaluated in clinical trials (3).
Furthermore, transcription factors can be harnessed to develop
combination strategy aiming to defeat the intratumor
heterogeneity. For example, combination treatments with
STAT3 and BCL6 inhibitors were shown to reduce the growth
of xenografted tumors (4).

An accurate determination of the subtypes of clear cell renal
cell carcinoma is essential to develop personalized therapy for
ccRCC patients. ccRCC has been stratified previously with
genomic and transcriptomic information (5, 6). However, no
studies have focused on transcription factor. Considering the fact
that various transcription factors play an important role in
metabolic rewiring (7), growth and metastasis (8) of ccRCC
cells, it is tempting to approach the molecular stratification of
ccRCC using the landscape of transcription factor activity. Here
we construct a comprehensive atlas of transcription factor
profiles using dataset available in the TCGA cohort comprising
of 602 samples.
MATERIALS AND METHODS

Download TCGA Level 3 Data
TCGA level 3 expression data were downloaded from the Pan-
Cancer Atlas datasets hosted at Genomic Data Commons
(https://gdc.cancer.gov/node/905/). In total, gene expression
profiles for 530 ccRCC primary cancer tissues and 72 solid
normal tissues were extracted from the Pan-Cancer Atlas.

Transcription Factor Scoring
For each transcription factor, the target genes with known
regulation modes were extracted from TTRUST database (9),
resulting in a list of genes activated by the transcription factor
and a list of genes repressed by the transcription factor. The ratio
between the median expression level of activated target gene and
the median expression level of repressed target gene was
calculated for each transcription factor and log2 transformed
to obtain a final transcription factor score.

k-Means Clustering
k-means clustering was performed to unbiasedly analyze the
structures in the dataset. Only those transcription factors which
have no NAs were included in the clustering analysis. In total,
238 transcription factors were analyzed. Subpopulations of
patients were estimated using only the transcription factor
score matrix. The optimal number of k was determined by gap
statistic using clusGap function in package “cluster”. For each
number of clusters k, it compares log(W(k)) with E*[log(W(k))]
where the latter is defined via bootstrapping. The parameter for
bootstrapping is 100.

Differentially Expressed Genes
The unique biomarkers characterizing one cluster were
determined by statistical test comparing samples within that
Frontiers in Oncology | www.frontiersin.org 2
particular cluster and the rest of all other samples. Two-sided t
test was implemented with t.test function in package “stats”
using default parameters. “Bonferroni” correction was employed
to reduce false hits in multiple comparisons. Adjusted p-value
less than 0.05 was considered as statistically significant. Genes
with fold change greater than 1.5 were selected as candidate
genes for downstream analysis.

Gene List Analysis
Gene list analysis was performed using metascape as previously
described (10). Multiple gene lists were analyzed by the
online tool metascape (https://metascape.org/) using default
parameters to obtain pathway enrichment result. Four major
steps were included in the pipeline: ID conversion, Annotation,
Membership determination and Enrichment analysis. Differentially
expressed gene list was input into the online tool and analyzed
using default parameters. Statistically enriched terms were
identified and filtered. The remaining significant terms were
then hierarchically clustered into a tree based on Kappa-
statistical similarities among their gene memberships. A subset
of representative terms was selected from the full cluster and
converted into a network layout. More specifically, each term is
represented by a circle node, where its size is proportional to the
number of input genes that fall into that term, and its color
represent its cluster identity. Terms with a similarity score > 0.3
are linked by an edge (the thickness of the edge represents the
similarity score). The network is visualized with Cytoscape
(v3.1.2) with “force-directed” layout and with edge bundled for
clarity. One term from each cluster is selected to have its term
description shown as label.

Protein–Protein Interaction
All protein–protein interactions (PPI) among each input gene
list were extracted from PPI databases and formed a PPI
network. GO enrichment analysis was applied to the original
PPI network and its MCODE network components to assign
biological “meanings”, where top three best p-value terms were
retained. All input gene lists were also merged into one list and
resulted in a PPI network. MCODE components were identified
from the merged network. Each MCODE network is assigned a
unique color. Network nodes are also displayed as pies. Color
code for pie sector represents a gene list.

Survival Analysis
Kaplan–Meier analysis was used for survival curve analysis. It
measures the percent of patients surviving with time. The
analysis is implemented with R package “survival”. Patients
were stratified using cluster assignment from k-means
clustering. Log-rank test was performed to measure statistical
difference between survival curves. p-value < 0.05 was considered
as statistically different.

Statistical Method
All statistical analyses were performed using R (version 3.5.1),
including basic packages “stats,” “graphics,” “grDevices,” “utils,”
December 2020 | Volume 10 | Article 526577
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“datasets,” “methods,” “base,” as well as additional packages
“factoextra” (version 1.0.7), “ggplot2” (version 3.2.1), “gplots”
(3.0.1.1), “survival” (3.1.11). p-value < 0.05 was considered
statistically significant. All plots were generated with R.
RESULTS

Establishment of an Analytical Framework
to Quantify the Global Transcription Factor
Activity
One typical transcription factor regulates the expression of
hundreds of downstream gene either positively or negatively.
We established an analytical framework to quantify the global
Frontiers in Oncology | www.frontiersin.org 3
transcription factor activity by transforming the gene expression
matrix into a transcription factor activity matrix (Supplementary
Figure 1). In a nutshell, the ratio between the median expression
level of activated target gene and the median expression level of
repressed target gene was calculated for each transcription
factor and log2 transformed to obtain a final transcription factor
score, enabling the construction of a comprehensive landscape
of transcription factor activity (Figure 1A). Globally, all
transcription factors were grouped into “activated” and
“repressed” states. To further gain insights into the patterns in
the transcription factor landscape, the correlation matrix was
visualized with a heatmap. It was shown that all samples fell
into two apparent groups, and the larger group harbored finer
structures (Figure 1B).
A B

FIGURE 1 | (A) Each row represents one transcription factor, and each column stands for one individual. The transcription factor score is plotted. (B) The sample–
sample correlation matrix is visualized as a heatmap.
A B

FIGURE 2 | (A) Gap statistic was shown up to 10 clusters to determine the optimal k for k means clustering. (B) The result of k means clustering was plotted for
k = 4, using all individuals.
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Patient Stratification Based on Global
Transcription Factor Activity
To estimate the number of clusters in the samples, gap statistic
was employed. It was found that four clusters could contain more
than 88% of the information in the TCGA dataset (Figure 2A).
Thus, we decided to use k = 4 in subsequent k-means clustering
arbitrarily considering the tradeoff between sufficiently few
clusters and information retained. To identify the clusters, k-
means clustering was performed using all the samples in the
TCGA dataset, which included 530 cancer samples and 72
normal tissues (Figure 2B). Of note, all normal samples were
grouped together as Subtype_3. No normal samples were in the
other clusters, while there were also some cancer samples in
Subtype_3. Those cancer samples were normal like in the
transcription factor activity.

Next, differential gene expression analysis was performed
using statistical test. Each subtype identified previously was
compared with the rest of all subtypes, resulting a list of genes
whose expression is characteristic for that subtype. The top 10
up-regulated genes for each subtype were visualized with
heatmap (Figure 3A). The up-regulated genes with the
Subtype_3 included genes essential for the normal
functionality of kidney cells, while the other three subtypes
over-expressed genes with known roles in carcinogenesis.
Frontiers in Oncology | www.frontiersin.org 4
Alteration of angiogenesis is common in ccRCC, and this
typically involves the VEGF (Figure 3B). Not surprisingly,
cancer clusters expressed significantly higher level of VEGF.
Besides an up-regulated angiogenesis, expression of PD-1 on
cancer cells was correlated with the ability of cancer cells to evade
the immune systems. Consistent with previous observations,
cancer clusters up-regulated the expression of PD-1(Figure 3B).

Different Patient Groups Have Distinct
Pathway Alterations
To investigate what pathways or biological processes were
uniquely altered for the different subtypes, GO analysis was
performed. Interestingly, the Subtype_3 stood out while the
other three subtypes were grouped together after hierarchical
clustering of the enriched GO terms (Figure 4A). GO terms
uniquely enriched in the Subtype_3 included lipid biosynthetic
process, TCA cycle, monovalent inorganic cation homeostasis,
mitochondrion organization, metabolism of vitamins and
cofactors, suggesting the downregulation of the normal kidney
functions in the other subtypes. The fact that only a few cancer
samples were in Subtype_3 indicates that most ccRCC cancer
cells tune down normal processes exerted by normal kidney cells
during carcinogenesis. Subtype_1 and Subtype_2 have altered T
cell signaling pathways, such as adaptive immune response,
A B

FIGURE 3 | (A) The top 10 biomarkers up-regulated in each subtype were shown as heatmap. Each row represents one gene, and each column stands for one
sample. The column side color bar labels the information about the sample. In Subtype bar, Subtype_1, Subtype_2, Subtype_3 and Subtype_4 are colored as black,
red, green, and blue, respectively. In normal vs cancer bar, cancer tissue is labeled as black and normal tissue is labeled as green. (B) The expression of VEGFA and
PD-1 was shown for the four subtypes: Subtype_1, Subtype_2, Subtype_3, and Subtype_4.
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cytokine production, cell activation in the immune system and T
cell selection. It was consistent with some previous reports
showing that cancer rewired the tumor microenvironment to
become immune suppressive environment. Subtype_4 preserved
some of the functionality of normal kidney cells, such as
regulation of ion transport. Of note, Subtype_2 has
significantly altered cell division, mitotic nuclear division and
cellular response to lipids, unlike any other subtypes. Globally,
Frontiers in Oncology | www.frontiersin.org 5
regulation of cell adhesion was altered in Subtype_1 and
Subtype_2 (Figure 4B).

Immunity-Related Networks Are Up-
Regulated in Subtype_1 and Subtype_2
Using public databases with protein–protein interaction
information, MCODE motifs in the regulated genes were
extracted (Figure 5A). Subtype_1 and Subtype_2 shared
A B

FIGURE 4 | (A) Statistically enriched terms were identified and then hierarchically clustered into a tree based on Kappa-statistical similarities among their gene
memberships. The heatmap cells are colored by their p-values; white cells indicate the lack of enrichment for that term in the corresponding gene list. (B) A subset of
representative terms from the full cluster was selected and converted into a network layout. Each term is represented by a circle node, where its size is proportional
to the number of genes satisfying that term and its color represents its cluster identity. Terms with a similarity score > 0.3 are linked by an edge where the thickness
of the edge indicates the magnitude of similarity. The same enrichment network has its nodes displayed as pies. Each pie sector is proportional to the number of hits
originated from a gene list.
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MCODE networks in T cell signaling pathways, suggesting an
important role played by the immune systems. To consider the
contribution of genes for the identified MCODE, it was found
that Subtype_2 was the only cluster that contributes to all
identified MCODE (Figure 5B). Besides two MCODE related
to immunity, there was one MCODE consisting of three players:
NOTCH1, NOTCH3, and SMARCD3. SMARCD3 is an essential
component of the SWI/SNF chromatin-remodeling complex,
which epigenetically modulates the expression of downstream
genes. Based on the altered pathways, a potential list of drugs
approved or under clinical development was assembled for the
distinct subtypes identified based on the global transcription
factor activity (Table 1).

Prognostic Value of the Proposed
Transcription Factor Stratification
The transcription factor landscape is sufficient to divide the cancer
patients into subtypes, with distinct biomarker and altered
pathways. We then ask whether different subtypes have different
overall survival. The survival information was downloaded to
devise the survival curves for different subtypes (Figure 6). Here
we used only the cancer samples in the dataset. For the three
cancer only subtypes, Subtype_2 has the worse OS as compared
with all the other subtypes. To confirm whether a patient who
belongs to Subtype_2 is suggestive of prognosis, we undertook a
multivariable cox regression analysis (Supplementary Figure 2).
As shown, the artificial variable “Subtype_2” had a hazard ratio of
1.67 (95% CI: 1.06–2.6), and stood out as an independent
prognostic indicator as known clinical variables, including nodal
status (HR:1.84, 95% CI: 0.92–3.7), metastasis status (HR:2.07,
95% CI: 0.97–4.4) and stage (HR: 1.34, 95% CI: 0.82–2.2).
Frontiers in Oncology | www.frontiersin.org 6
Subtype_4 has the longest OS in the three cancer only subtypes.
Interestingly, the normal like Subtype_3 did not have significantly
better OS compared with Subtype_1 and Subtype_4.
A

B

FIGURE 5 | (A) The MCODE components were identified from the merged protein–protein interaction network. Each MCODE network is assigned a unique color.
(B) The same MCODE networks were displayed as in (A), where network nodes shown as pies. Color within pie sector indicates the subtype origin.
TABLE 1 | Potential drugs approved or under clinical development.

Subtype Target Drug

Subtype_1 VEGFA Sorafenib
Sunitinib
Pazopanib
Bevacizumab

PD-1 Pembrolizumab
Nivolumab

CXCR3 AMG487
Subtype_2 VEGFA Sorafenib

Sunitinib
Pazopanib
Bevacizumab

PD-1 Pembrolizumab
Nivolumab

NOTCH signaling Brontictuzumab
Tarextumab

CDK4/CDK6 Abemaciclib
Palbociclib
Ribociclib

CXCR3 AMG487
Subtype_3 NOTCH signaling Brontictuzumab

Tarextumab
Subtype_4 VEGFA Sorafenib

Sunitinib
Pazopanib
Bevacizumab

NOTCH signaling Brontictuzumab
Tarextumab
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 | Article 526577

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Patient Stratification Using TF Landscape
DISCUSSION

Patient stratification is key to personalized therapy of cancer
patients. One milestone paper (11) divided ccRCC into two major
subtypes: clear cell type A (ccA) and clear cell type B (ccB). Subtype
ccB was correlated with poor survival compared with subtype ccA.
Pathway analysis suggested that ccA group over-expressed genes
associated with hypoxia, angiogenesis, and metabolism, while ccB
group over-expressed genes involved in EMT, cell cycle and wound
healing. Unsupervised clustering of the TCGA ccRCC cohort
revealed four stable subtypes using RNA expression data
designated m1-m4 (6). The subtype m1 corresponded to the ccA
group mentioned earlier, while the subtype m2 and m3
corresponded to the ccB group. The remaining subtype m4
represented a previously uncharacterized subtype with a
frequency of around 15%. The m1 subtype was characterized by
up-regulation of genes involved in chromatin remodeling.

Transcription factors regulate the transfer of genetic
information from DNA to RNA. Traditionally, transcription
factors were considered as undruggable. However, a shift of
paradigm is realized as multiple approaches to modulate the
activity of transcription factors have been demonstrated both
preclinically and clinically (12). Targeting transcription factors
can be an effective strategy against RCC. It has been
demonstrated that STAT3 inhibitor WP1066 inhibited the
Frontiers in Oncology | www.frontiersin.org 7
growth of renal cancer cell lines or xenografted renal cancer
cells (13).

Checkpoint inhibition is emerging as a promising therapy for
ccRCC patients, with a subset of patients responding to anti-PD-
1 monotherapy extremely well. Gene expression analysis
uncovered an altered transcriptional output in Janus kinase-
signal transducers and activators of transcription (JAK-STAT)
signaling (14). It was shown that alteration of transcription factor
activity can influence the response to checkpoint inhibitors.

Large cancer genome programs such as TCGA have generated
an enormous amount of data that is publicly available to the
cancer research community. Mining those datasets has enabled
novel insights into cancer biology (15–19). Our analysis suggests
that predictive models can be derived from those massive data
and used to assign patients to distinctive subtypes. Currently, lots
of signature models based on RNA-seq data have been generated
but very few made their way into routine clinical use due to lack
of reproducibility. As sequencing cost continues to drop, we
believe our transcription factor omic (TFO) approach based
patient stratification can significantly increase the robustness of
signature modeling and transform precision cancer medicine.

Our study can be extended by proof-of-concept experiments to
establish the feasibility of predicting drug sensitivity based on the
proposed patient stratification. For example, experiments can be
carefully designed to investigate the effect of CDK4/CDK6
FIGURE 6 | The survival curves were shown for the four subtypes. Only cancer samples were used for the analysis.
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inhibitors in treating Subtype_2 cancer patients using in vitro
cancer cell line model, ex vivo or in vivo cancer models. One
popular model to test is the patient derived organoids (20).
Subtyping can be performed with transcriptomic analysis using
RNA-seq, and the organoids can be perturbed with drug treatments
to show proof-of-concept that optimal treatment strategy can be
predicted with transcription factor activity based ccRCC subtyping.

In conclusion, we have revisited the molecular stratification of
clear cell renal cancer by integrative analysis of multiple publicly
available datasets with a focus in the landscape of transcription
factor activity. We demonstrated how a deep understanding of
ccRCC subtypes can be obtained by a comprehensive and
integrative reanalysis of publicly available datasets.
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