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Abnormal RAS/RAF signaling plays a critical role in glioma. Although it is known that the
V600E mutation of v-raf murine viral oncogene homolog B1 (BRAFV600E) and BRAF
amplification (BRAFAMP) both result in constitutive activation of the RAS/RAF pathway,
whether BRAFV600E and BRAFAMP have different effects on the survival of glioma patients
needs to be clarified. Using cBioPortal, we retrieved studies of both mutations and copy
number variations of the BRAF gene in CNS/brain tumors and investigated data from 69
nonredundant glioma patients. TheBRAFmutation group had significantly moremale patients
(64.00% vs. 36.84%; P = 0.046) and a higher occurrence of glioblastomamultiforme (66.00%
vs. 31.58%; P = 0.013) compared to those in the other group. The BRAFAMP group had
significantly more patients with the mutant isocitrate dehydrogenase 1 and 2 (IDH1/2)
(73.68% vs. 18.00%; P = 0.000), tumor protein p53 (TP53) (73.68% vs. 30.00%; P =
0.002), and alpha thalassemia/mental retardation syndrome X linked (ATRX) (63.16% vs.
18.00%; P = 0.001) than the mutation group. The BRAFAMP and IDH1/2WT cohort had lower
overall survival compared with the BRAFAMP and IDH1/2MT groups (P = 0.001) and the BRAF
mutation cohort (P = 0.019), including the BRAFV600E (P = 0.033) and BRAFnon-V600E (P =
0.029) groups, using Kaplan–Meier survival curves and the log rank (Mantel–Cox) test. The
BRAFAMP and IDH1/2WT genotype was found to be an independent predictive factor for
glioma with BRAFmutation and BRAFAMP using Cox proportional hazard regression analysis
(HR = 0.138, P = 0.018). Our findings indicate that BRAFAMP frequently occurs with IDH1/2,
TP53, and ATRX mutations. Adult patients with glioma with BRAFAMP and IDH1/2WT had
worse prognoses compared with those with BRAF mutation and BRAFAMP and IDH1/2MT.
This suggests that the assessment of the status of BRAFAMP and IDH1/2 in adult glioma/
glioblastoma patients has prognostic value as these patients have relatively short survival
times andmay benefit from personalized targeted therapy using BRAF and/or MEK inhibitors.
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INTRODUCTION

Gliomas are themost frequent primary brain neoplasms occurring in
both the pediatric and adult populations (1). The 2016 WHO
Classification of Tumors of the Central Nervous System was the
first to provide combined data regarding the genetic and histological
characteristics of tumors and is, thus, considered a cornerstone for
understanding and diagnosing tumors. When diagnosing the
disease, mutation site genotypes of genes such as isocitrate
dehydrogenase (IDH), tumor protein p53(TP53), and alpha
thalassemia/mental retardation syndrome X linked (ATRX) and
1p/19q codeletion should be evaluated. Hence, determining the
status of IDH mutation and 1p/19q is essential for the 2016
classification of diffused gliomas, including astrocytoma,
oligoastrocytoma, oligodendroglioma, and glioblastoma (2). The
RAS/RAF/MEK/extracellular signal-regulated kinase (ERK) mitogen-
activated protein kinase (MAPK) pathway, which transduces
mitogenic stimuli via the activation of growth factor receptors, is
critical for cell proliferation, survival, and differentiation. Abnormal
activation of RAS/RAF signaling plays a role in various tumors, and
studies have revealed that the MAPK pathway is of great clinical
significance in gliomas (3). Oncogenic mutations as well as the copy
number amplification of RAS/RAF and/or abnormal activation of
upstream growth factor receptors can cause hyperactivation of the
RAS/RAF pathway (4), resulting in various neoplasms.

BRAF (v-raf murine viral oncogene homolog B1) participates in
the pathological mechanism of 7% of human neoplasms, especially
in melanoma, colorectal, thyroid, and lung cancers (5, 6). Because of
the negative outcome of high-grade glioma, BRAF mutations have
gained considerable interest in the possible benefit of the MAPK
pathway inhibitors for glioma treatment. The BRAFV600E mutation
in which the thymine at nucleotide 1799 is substituted by adenine
results in the substitution of valine with glutamic acid at amino acid
600; this is the most common BRAF mutation in glioma (6). It
imitates the normal phosphorylation of T599 and S602, resulting in
the overactivation of BRAF kinase and hyperactivation of the ERK
signaling pathway (7). In addition, BRAF amplification (BRAFAMP)
can also cause hyperactivation of MAPK signaling, which plays
essential roles in the acquired resistance to MAPK inhibitor therapy
in cancers harboring BRAFV600E (8). Moreover, BRAFAMP is also
found in primary pediatric low-grade gliomas (9).

Although both BRAFV600E and BRAFAMP can lead to the
hyperactivation of MAPK signaling, the differences between
the patterns of BRAFV600E and BRAFAMP signaling in glioma,
their influence on the survival of glioma patients, and the
involvement of other genes, remains unclear. In this study, based
on cBioPortal data, we found that patients with glioma harboring
BRAFAMP had lower overall survival compared with those
harboring BRAFV600E. Furthermore, we found that BRAFAMP

frequently co-occurred with IDH1/2, TP53, and ATRX mutations.
MATERIALS AND METHODS

Data Collection and Enrollment
We used cBioPortal (https://www.cbioportal.org/) (10, 11). The
Cancer Genome Atlas Program (TCGA) data mining tool to
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collect the necessary data. TCGA is a public database, and we
strictly followed its publication guidelines (https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/
tcga/using-tcga/citing-tcga) for collecting and generating data.
Multiple patient cohorts, including all 19 available studies on
central nervous system (CNS)/brain tumors (6122 samples)
were queried. The data were filtered to include studies that
listed both gene mutation and copy number data. In each study,
mutations and putative copy number alterations (CNA)
identified using the Genomic Identification of Significant
Targets in Cancer (GISTIC) tool were selected to analyze the
genomic profiles. We first selected tumor samples with
mutations and CNA data for creating the patient/case set.
Then, the gene names BRAF, ATRX, TP53, IDH1, and IDH2
were entered, and the query was submitted. Among the
retrieved data files, we selected samples harboring the BRAF
mutation with AMP. The mutation data and CNA as well as the
patient and sample data were retrieved. All data were recorded
in a chart for further analysis.
Characteristics Associated With BRAFAMP

and BRAF Mutation in Glioma Using
Univariate and Multivariate Logistic
Regression Analysis
The study population was divided into the BRAFAMP and BRAF
mutation groups, and the numerical values of the categorical
variables were calculated. The demographic characteristics of the
patients, pathological classification, and molecular biomarkers in
the two groups were analyzed using univariate logistic regression
analysis. Then, the statistically significant variables (P < 0.10) were
analyzed using multivariate logistic regression analysis. The odds
ratios and 95% confidence intervals were estimated. P value < 0.05
was considered statistically significant. For greater precision of
characteristic evaluation, we created a descriptive table and
divided the BRAFAMP group into two groups based on the non-
and co-occurrence of the IDH1/2mutation, and the BRAFmutation
group into BRAFV600E and BRAFnon-V600E groups.
Cross-Over Analysis Using Kaplan–Meier
Survival Curves and the Log Rank
(Mantel–Cox) Test
The overall survival of the BRAFAMP and IDH1/2MT, BRAFAMP and
IDH1/2WT, BRAFV600E, and BRAFnon-V600E groups was determined
by a crossover comparison using Kaplan–Meier survival curves and
the log rank (Mantel–Cox) test (12). The survival of the BRAF
mutation group was compared with that of the BRAFAMP and
IDH1/2MT and BRAFAMP and IDH1/2WT groups, respectively.
P value < 0.05 was considered statistically significant.

Multivariate Analysis of Overall Survival
Using Cox Regression Analysis
TheBRAFAMP and IDH1/2WT,TP53, andATRXwere analyzed using
theCoxregressionanalysis in the69 sampleswithBRAFAMPorBRAF
mutation. P value < 0.05 was considered statistically significant.
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String Analysis of BRAF, IDH1, IDH2, TP53,
and ATRX
Using STRING: functional protein association networks (https://
string-db.org/) (13), the association among BRAF, IDH1, IDH2,
TP53, and ATRX was investigated, and the combined scores
among those four proteins were obtained.
RESULTS

Data Enrollment in the Study
Among the 19 CNS/brain studies available (6122 samples), 12
studies (5487 samples) matched the required inclusion criteria,
containing both gene mutation and CNA data (Table 1). The
cancer types in these 12 CNS/brain studies included diffuse
glioma, glioblastoma, oligodendroglioma, and miscellaneous
neuroepithelial tumors. A schematic representation of the flow
of data screening and enrollment is shown in Figure 1. A total of
115 samples (109 patients) with BRAF mutation or BRAFAMP

were enrolled in this study, and data from 69 nonredundant
patients were investigated. Integrated data of major patient
characteristics, including sex, age, cancer type, BRAF mutation,
BRAF CNA, and mutation of IDH1/2, TP53, and ATRX, were
collected for further analysis (Supplementary Table S1).

Characteristics Associated With BRAFAMP

and BRAF Mutation of Glioma
The study population was divided into two groups, BRAFAMP and
BRAF mutation. The demographic characteristics and clinical data
of the two groups are summarized in Table 2. The age of patients
ranged from 20 to 85 years with an average of 45.46 years. Twenty-
five patients harbored BRAFnon-V600E mutations; of these, two
Frontiers in Oncology | www.frontiersin.org 3
patients harbored a D594G mutation; two patients, a G469A
mutation; and the remaining patients, an A320T mutation
combined with A171E, A404Cfs*9, E375*, G466E, G466V,
G469R, G469V, G596D, G69S, L331F, L382V, L597R, M531,
P708S, S394P, S614P, T121I, V504_R506dup, V504I, W476*, and
X709_splice mutations. The BRAFmutation group had significantly
more male patients (64.00% vs. 36.84%; P = 0.046) and a higher
occurrence of glioblastoma multiforme (66.00% vs. 31.58%; P =
0.013). In contrast, the BRAFAMP group had significantly more
patients harboring IDH1/2 (73.68% vs. 18.00%; P = 0.000), TP53
(73.68% vs. 30.00%; P = 0.002), and ATRX (63.16% vs. 18.00%; P =
0.001) mutations. Variables with P value < 0.10 were analyzed using
multivariate logistic regression analysis; the BRAF mutation group
had more male patients (64.00% vs. 36.84%; P = 0.027), and the
BRAFAMP group had significantly more patients harboring IDH1/2
mutations (73.68% vs. 18.00%; P = 0.029) (Table 2). Further
analysis indicated that the BRAFAMP group had no
simultaneously detected BRAF mutations, and that the BRAF
mutation group had no simultaneously detected BRAFAMP. The
BRAFAMP and IDH1/2MT group had a significantly higher
percentage of co-occurrence of TP53 (13/14, 92.86%) and ATRX
(12/14, 85.71%) mutations (Table 3).

Crossover Analysis Using Kaplan–Meier
Survival Curves and Log Rank (Mantel–
Cox) Test
The crossover Kaplan–Meier survival curves and log rank (Mantel–
Cox) test were performed to explore the influence of BRAF gene
alteration on the overall survival of glioma patients. The estimated
mean survival time was 67.026 months for patients harboring
BRAFAMP and IDH1/2MT, 9.750 months for patients
harboring BRAFAMP and IDH1/2WT, 41.573 months for patients
TABLE 1 | The CNS/Brain projects of TCGA data enrolled in the study retrieved using cBioPortal.

Project All
Samples

Samples with mutation
and CNA data

Samples of
BRAFAMP

Samples of
BRAFV600E

Samples of
BRAFnon-V600E

References

Diffuse Glioma
Brain Lower Grade Glioma (TCGA, Firehose Legacy) 530 283 10 1 1 https://www.

cancer.gov
Brain Lower Grade Glioma (TCGA, PanCancer Atlas) 514 507 7 1 2 (14–19)
Glioma (MSK, 2018) 91 91 1 2 1 https://www.

cancer.gov
Glioma (MSKCC, Clin Cancer Res 2019) 1004 1004 3 22 26 (20)
Merged Cohort of LGG and GBM (TCGA, Cell 2016) 1102 794 9 5 2 (21)
Glioblastoma
Brain Tumor PDXs (Mayo Clinic, 2019) 95 83 0 2 1 https://www.

cbioportal.org
Glioblastoma (TCGA, Cell 2013) 543 248 2 3 0 (22)
Glioblastoma (TCGA, Nature 2008) 206 91 0 0 0 (23)
Glioblastoma Multiforme (TCGA, Firehose Legacy) 604 273 1 5 1 https://www.

cancer.gov
Glioblastoma Multiforme (TCGA, PanCancer Atlas) 592 378 4 5 4 (14–19, 24)
Oligodendroglioma
Anaplastic Oligodendroglioma and Anaplastic
Oligogastrocytoma (MSKCC, Neuro Oncol 2017)

22 22 0 0 0 (25)

Miscellaneous Neuroepithelial Tumor
Pheochromocytoma and Paraganglioma (TCGA, Firehose
Legacy)

184 162 1 0 1 https://www.
cancer.gov
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TABLE 2 | Univariate and multivariate analysis: characteristics associated with BRAFAMP and BRAF mutation in gliomas.

Variables BRAFAMP(n = 19) BRAFmutation
(n = 50)

Univariate analysis Multivariate analysis

Number % Number % Odds Ratio 95% Confidence
Interval

P
Value

Odds
Ratio

95% Confidence
Interval

P
Value

Male 7 36.84 32 64.00 0.328 0.110–0.982 0.046 0.181 0.040–0.824 0.027
Diagnosis Age
20–40 years 9 47.37 21 42.00 1.243 0.430–2.592 0.688
41–60 years 7 36.84 18 36.00 1.037 0.346–3.105 0.948
> 61 years 3 15.79 11 22.00 0.665 0.163–2.704 0.568

Cancer type detailed
Glioblastoma

multiform
6 31.58 33 66.00 0.238 0.077–0.736 0.013 0.590 0.120–2.893 0.515

Astrocytoma 5 26.32 9 18.00 1.627 0.466–5.680 0.445
Oligoastrocytoma 4 21.05 0 0.00 5384916143 0.000– 0.999
Oligodendroglioma 4 21.05 3 6.00 4.178 0.839–20.814 0.081 0.807 0.098–6.633 0.842
Gliosarcoma 0 0.00 2 4.00 0.000 0.000– 0.999
Other glioma 0 0.00 3 6.00 0.000 0.000– 0.999

Mutation
BRAFV600E 0 0.00 25 50.00 1227760777 0.000– 0.998
BRAFnon-V600E 0 0.00 25 50.00 0.000 0.000– 0.998
IDH1/2 14 73.68 9 18.00 12.756 3.653–44.534 0.000 8.805 1.242–62.406 0.029
TP53 14 73.68 15 30.00 6.533 1.994–21.407 0.002 1.463 0.165–13.000 0.733
ATRX 12 63.16 9 18.00 7.810 2.403–25.383 0.001 1.832 0.273–12.310 0.534

Copy number variation
BRAFAMP 19 100.00 0 0.00 – – –

Overall survival status
Deceased 7 36.84 24 48.00 0.632 0.214–1.870 0.407
Frontiers in Oncology | w
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FIGURE 1 | Schematic representation of the process of data enrollment in the study using cBioPortal. Among the 19 CNS/brain studies, including 6112 samples,
115 samples (109 patients) with BRAF mutation or BRAFAMP were enrolled in this study, and 69 nonredundant patients with information regarding major patient
characteristics, including sex, age, cancer type details, BRAF mutation, BRAF copy number alteration, and mutation of IDH1/2, TP53, as well as ATRX, were further
investigated. BRAF, v-raf murine viral oncogene homolog B1; IDH1/2, isocitrate dehydrogenase 1 and 2.
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harboring BRAFV600E, and 89.958 months for patients harboring
BRAFnon-V600E. The estimated survival time of the BRAFAMP and
IDH1/2WT cohort was the shortest and was significantly lower
compared with that of the BRAFAMP and IDH1/2MT (9.750 vs.
67.026, chi-square 10.526, P = 0.001), the BRAFV600E (9.750 vs.
41.573, chi-square 4.536, P = 0.033), and the BRAFnon-V600E (9.750
vs. 89.958, chi-square 4.747, P = 0.029) cohorts. The estimatedmean
survival time of the BRAFmutation cohort was significantly greater
than that of the BRAFAMP and IDH1/2WT cohort (71.698 vs. 9.750,
chi-square 5.469, P = 0.019). The estimated mean survival times of
the three cohorts were significantly greater than that of the
BRAFAMP and IDH1/2WT cohort (74.401 vs. 9.750, chi-square
7.639, P = 0.006) (Figure 2). When analyzed using Kaplan–Meier
survival curves and the log rank (Mantel–Cox) test, there was no
significance between the following groups: BRAFAMP cohort vs.
BRAF mutation cohort (58.835 vs. 71.698, chi-square 0.020, P =
0.886), BRAFV600E cohort vs. BRAFnon-V600E cohort (41.573 vs.
89.958, chi-square 1.999, P = 0.157), BRAFAMP and IDH1/2MT

cohort vs. BRAFV600E cohort (67.026 vs. 41.573, chi-square 1.031,
P = 0.310), BRAFAMP and IDH1/2MT cohort vs. BRAFnon-V600E

cohort (67.026 vs. 89.958, chi-square 0.025, P = 0.875), BRAFAMP

and IDH1/2MT cohort vs. BRAFmutation cohort (67.026 vs. 71.698,
chi-square 0.513, P = 0.474) (Supplementary Figure S1). The
estimated survival time of the BRAFV600E cohort above 30 years
of age was 40.135 months, whereas that of the BRAFAMP and IDH1/
2WT cohort was significantly lower (9.750 vs. 40.135, chi-square
5.575, P = 0.018) (Supplementary Figure S2).
Multivariate Analysis of Overall Survival
Using the Cox Regression Analysis
The IDH1/2 mutation in 13 of the 14 BRAFAMP patients was
R132H, and one patient harbored the R132G mutation. The
Frontiers in Oncology | www.frontiersin.org 5
IDH1/2 mutation in eight BRAFnon-V600E patients was R132H
with the exception of one sample (R132S). The TP53 and ATRX
mutations were highly diverse in all patients (Supplementary Table
S1). The Cox regression analysis introduced three factors, including
BRAFAMP and IDH1/2WT, TP53 mutation, and ATRX mutation in
all BRAFAMP and BRAF mutation patients and determined the
BRAFAMP and IDH1/2WT genotype as an independent predictive
factor for overall survival (HR = 0.138, P = 0.018) (Figure 3).
Associations Between BRAF, IDH1, IDH2,
TP53, and ATRX Using String Analysis
The networks showed that there were functional links between
BRAF, IDH1, IDH2, TP53, and ATRX except for BRAF and
ATRX and BRAF and IDH2. BRAF was directly associated with
TP53 and indirectly interacted with ATRX through TP53. BRAF
was directly associated with IDH1 and indirectly interacted with
IDH2 through IDH1. There were direct interactions among
TP53, ATRX, IDH1, and IDH2 (Figure 4A). The combined
score of the association showed that the highest score was that
between IDH1 and IDH2 (0.976), followed by TP53 and ATRX
(0.793), TP53 and IDH1 (0.770), IDH1 and ATRX (0.731), IDH2
and TP53 (0.700), ATRX and IDH2 (0.669), BRAF and TP53
(0.561), and BRAF and IDH1 (0.409) (Figure 4B).
DISCUSSION

Glioma is the most common primary brain malignancy and is
characterized by high heterogeneity and extensive mutations (26).
The roles of RAF serine/threonine protein kinases in various
cancers have been investigated in the last two decades. BRAF
regulates normal cell growth, differentiation, and survival via the
TABLE 3 | Characteristics associated with BRAFAMP and BRAF mutation in gliomas.

Variables BRAFAMP & IDH1/2MT(n = 14) BRAFAMP & IDH1/2WT(n = 5) BRAFV600E(n = 25) BRAFnon-V600E(n = 25)

Number % Number % Number % Number %

Male 6 42.86 1 20.00 14 56.00 18 72.00
Diagnosis Age
20–40 years 7 50.00 2 40.00 12 48.00 9 36.00
41–60 years 6 42.86 1 20.00 7 28.00 11 44.00
> 61 years 1 7.14 2 40.00 6 24.00 5 20.00

Cancer type detailed
Glioblastoma multiform 2 14.29 4 80.00 19 76.00 14 56.00
Astrocytoma 4 28.57 1 20.00 3 12.00 6 24.00
Oligoastrocytoma 4 28.57 0 0.00 0 0.00 0 0.00
Oligodendroglioma 4 28.57 0 0.00 0 0.00 3 12.00
Gliosarcoma 0 0.00 0 0.00 0 0.00 2 8.00
Other glioma 0 0.00 0 0.00 3 12.00 0 0.00

Mutation
BRAFV600E 0 0.00 0 0.00 25 100.00 0 0.00
BRAFnon-V600E 0 0.00 0 0.00 0 0.00 25 100.00
IDH1/2 14 100.00 0 0.00 0 0.00 9 36.00
TP53 13 92.86 1 20.00 1 4.00 14 56.00
ATRX 12 85.71 0 0.00 1 4.00 8 32.00

Copy number variation
BRAFAMP 14 100.00 5 100.00 0 0.00 0 0.00

Overall survival status
Deceased 5 35.71 2 40.00 13 52.00 11 44.00
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MAPK/ERK pathway (27, 28). BRAFmutations and copy number
variation have been widely investigated in melanoma, thyroid
carcinoma, and lung and colon cancers (6, 29). Although
BRAFV600E is rarely found in adult gliomas, it occurs
predominately in pediatric gliomas, accounting for 68%–80% of
pleomorphic xanthoastrocytoma (PXA), 20%–70% of
ganglioglioma, 9%–10% of pilocytic astrocytoma (PA), 5%–15%
of low-grade glioma (LGG), 20% of pediatric glioblastoma
Frontiers in Oncology | www.frontiersin.org 6
(pGBM), and 3% of adult glioblastoma multiforme (GBM) cases
(30–32). Because genetic alterations are important in tumor
development and progression (33, 34) and both BRAFV600E and
BRAFAMP can activate the MAPK pathway, we investigated the
different effects of these two BRAF alterations and the mutations
associated on the survival of glioma patients.

In this study, among the various BRAF mutations that were
identified using next-generation sequencing, the most frequent
A B

C

E

D

FIGURE 2 | Kaplan–Meier survival curves of patients with gliomas harboring BRAFAMP and BRAF mutation. (A) BRAFAMP and IDH1/2WT cohort vs. BRAFAMP and
IDH1/2MT cohort (9.750 vs. 67.026, chi-square 10.526, P = 0.001). (B) BRAFAMP and IDH1/2WT cohort vs. BRAFV600E cohort (9.750 vs. 41.573, chi-square 4.536,
P = 0.033). (C) BRAFAMP and IDH1/2WT cohort vs. BRAFnon-V600E cohort (9.750 vs. 89.958, chi-square 4.747, P = 0.029). (D) BRAFAMP and IDH1/2WT cohort vs.
BRAF mutation cohort (9.750 vs. 71.698, chi-square 5.469, P = 0.019). (E) BRAFAMP and IDH1/2WT cohort vs. other three BRAF alteration cohorts, including the
BRAFAMP and IDH1/2MT, BRAFV600E, and BRAFnon-V600E cohorts (9.750 vs. 74.401, chi-square 5.469, P = 0.019). BRAF, v-raf murine viral oncogene homolog B1;
IDH1/2, isocitrate dehydrogenase 1 and 2.
January 2021 | Volume 10 | Article 531968
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A B

FIGURE 4 | The association among BRAF, IDH1, IDH2, TP53, and ATRX proteins. (A) The networks showed functional links among these four proteins,
except for BRAF and ATRX and BRAF and IDH2. TP53 is associated with BRAF and ATRX via a known interaction (experimentally determined, the pink
edge) and another interaction (text mining, the lime green edge), respectively. BRAF is associated with IDH1 via other interactions (coexpression, the black
edge; text mining, the lime green edge). IDH1 is associated with IDH2 via known interactions (from curated databases, the jungle green edge; experimentally
determined, the pink edge), predicted interaction (gene co-occurrence, the blue edge), and other interactions (text mining, the lime green edge;
coexpression, the black edge; protein homology, the violet edge). TP53 is associated with IDH1 and IDH2, and ATRX is associated with IDH1 and IDH2 via
another interaction (text mining, the lime green edge) respectively. (B) The combined score showed that the highest score was that between IDH1 and IDH2
(0.976), followed by TP53 and ATRX (0.793), TP53 and IDH1(0.770), IDH1 and ATRX (0.731), IDH2 and TP53 (0.700), ATRX and IDH2 (0.669), BRAF and
TP53 (0.561), and BRAF and IDH1(0.409). BRAF, v-raf murine viral oncogene homolog B1; IDH1/2, isocitrate dehydrogenase 1 and 2; TP53, tumor protein
p53; ATRX, alpha thalassemia/mental retardation syndrome X linked.
FIGURE 3 | Multivariate analysis of overall survival using Cox regression analysis. Three factors including BRAFAMP and IDH1/2WT, TP53, and ATRX were analyzed.
The BRAFAMP and IDH1/2WT genotype was determined as an independent predictive factor for overall survival (HR = 0.138, P = 0.018). BRAF, v-raf murine viral
oncogene homolog B1; IDH1/2, isocitrate dehydrogenase 1 and 2.
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mutation was BRAFV600E. Although some BRAFmutations are in
the functional domains, other BRAF mutations with unknown
functions occur across the gene (35). Patients with IDH1WT

glioma have a poor prognosis; however, patients with BRAFV600E

and IDH1WT experience favorable outcomes. Andrew S. Chi et al.
report that five patients with grade II glioma harboring
BRAFV600E without IDH1 mutation who had undergone gross
total resection without treatment were progression-free for 14–
35 months; two patients with glioblastoma harboring BRAFV600E

and IDH1WT had a progression-free survival of 36 and 19
months, respectively (36). In addition, a study reported a
glioma patient with BRAFV600E without the IDH1 mutation
who experienced 2 years of overall survival (37). Hiromichi
Suzuki’s study shows that IDHWT in grade II and III gliomas
(type III) is associated with a poorer overall survival rate
compared with that of glioblastoma. In contrast, the grade II
subtype (type IIIa) was associated with more BRAF mutations
and better overall survival than the grade III subtype (type IIIb)
(26). Patients with glioma harboring BRAFV600E might benefit
fromMAPK pathway inhibitor target therapy, a rescue treatment
that includes the use of RAF inhibitors and MEK inhibitors alone
or in combination (38–41), and the results were encouraging
(42). Our data show that the survival of the BRAFnon-V600E

cohort was comparable to that of the BRAFV600E cohort.
We also find that the gross survival of the BRAFAMP cohort was

comparable to that of both the BRAFV600E and BRAFnon-V600E

cohorts. Because the IDH1/2 mutation was frequently present in
the BRAFAMP cohort, we divided this cohort into two groups based
on the absence/presence of the IDH1/2 mutation in order to
elucidate the exact survival of patients with BRAFAMP alone and
without the interference of the IDH1/2mutation.We found that the
BRAFAMP and IDH1/2WT cohort had reduced overall survival
compared with that of the BRAFmutation cohort (BRAFV600E and
BRAFnon-V600E) and the BRAFAMP and IDH1/2MT groups. We
propose two possible reasons for this. First, the mRNA and
protein expression levels of BRAFAMP may be higher than those of
BRAFV600E, resulting in higher activation of the MAPK/ERK
pathway and subsequent proliferation of cancer cells. Second, the
survival of patients with BRAFAMP and IDH1/2MT was comparable
to that of patients with BRAF mutations and greater than that of
patientswithBRAFAMP and IDH1/2WT, probably because the IDH1/
2 mutation and 2-HG can induce oxidative stress, autophagy, and
apoptosis in cancer cells. We believe that these two reasons may
explain the poor survival of the BRAFAMP and IDH1/2WT cohorts.
Young adult patients are enriched with BRAFV600E mutations and
have better survival than older patients; we reveal that the survival of
patients above30yearsof age in theBRAFAMPand IDH1/2WTcohort
was also significantly reduced compared with that of the BRAFV600E

cohort above 30 years (P = 0.018).
The results of Cox proportional hazard regression analysis

show that BRAFAMP and IDH1/2WT genotype was an
independent predictive factor for glioma with BRAF mutation
and BRAFAMP. IDH1/2 mutations exist in greater than 70% of
lower-grade gliomas (grades II and III) and in some
glioblastomas (43, 44). It is known that the IDH1/2 mutation
leads to hypermethylation, which is the molecular basis of the
Frontiers in Oncology | www.frontiersin.org 8
CpG island methylator phenotype in gliomas (45). We found
that BRAFAMP cohorts have lower survival compared with BRAF
mutation cohorts, including BRAFV600E and BRAFnon-V600E.
However, the survival of patients with BRAFAMP and
IDH1/2MT was better than that of patients with BRAFAMP and
IDH1/2WT and comparable to that of the BRAFnon-V600E cohort.
A previous study indicated that IDH1/2 mutation status alone
was a predictive factor for longer overall survival and
progression-free survival for the entire group of nonenhancing
hemispheric grade II–III gliomas (46). Therefore, we propose
that IDH1/2 mutations can improve the survival of cohorts with
BRAFAMP. Because the mutant IDH1 and 2-HG can induce
oxidative stress, autophagy, and apoptosis (47), we propose
that this is the mechanism underlying the improvement in
survival conferred by the IDH1/2 mutation.

Most of the studies of BRAFV600E in gliomas focus on
pediatric neoplasms, especially in gangliogliomas and PXA
(48–50). As all the patients enrolled in this study were adults,
our findings provide insight into the effects of BRAF alterations
in adult glioma. In addition to their diagnostic role, BRAF
mutations may also have a prognostic value (51). Our data
show that males accounted for the majority of patients in the
BRAF mutation cohort, compared with the BRAFAMP cohort.
The occurrence of GBMwas higher in the BRAFmutation cohort
than in the BRAFAMP cohort, whereas the BRAFAMP group had
significantly more patients with the IDH1/2, TP53, and ATRX
mutations. ATRX deletions/mutations are associated with several
conventional molecular events, including IDH1 and TP53
mutations (52, 53). Somatic mutations in TP53, ATRX, and
IDH1/2 have been identified in adult low-grade gliomas (54).
Although IDH1/2mutations are scarce in primary GBM, they are
common in diffuse/anaplastic gliomas and secondary GBM (43,
44). ATRX mutations are detected in adult diffuse gliomas and
astrocytomas harboring both TP53 and IDH1/2. The co-
occurrence of TP53, IDH1/2, and ATRX mutations facilitates
the growth of a subgroup of adult diffuse astrocytomas (55). All
of the above studies indicate that ATRX mutations frequently
overlap with IDH1 and TP53 mutations. Additionally, our string
analysis reveals close connections between BRAF, IDH1, IDH2,
TP53, and ATRX proteins, similar to previous studies (55).
Moreover, our results show that BRAF has direct reactions
with TP53 and IDH1 but not with ATRX.

Active Ras can induce the hetero-dimerization of BRAF and
CRAF (56), and BRAF can phosphorylate CRAF through direct
protein–protein interactions (57, 58). CRAF exerts anti-
apoptotic effects, which are mediated by an independent
MAPK pathway (59, 60) through direct binding to Bcl-2 (59).
TP53 can regulate Bcl-2 by suppressing Bcl-2 transcription (61).
Liu et al. (55). find that ATRX alterations are correlated with
mutations in IDH1/2 and TP53 in glioma of all grades. Lai et al.
(62) find that the rate of Arg-to-Cys substitutions at position 273
in TP53 is higher than that of Arg-to-His substitutions at
position 132 in IDH1. They propose that this event is caused
by a strand asymmetry mechanism (63) in which C to T
mutations occur in the nontranscribed DNA strand in TP53
and IDH1mutations occur in the transcribed strand in IDH. The
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study indicates that IDH1/2 mutations represent early events in
brain tumor formation (64). We propose that an increase in
BRAF activates Bcl-2 by phosphorylating CRAF, and mutated
TP53 fails to regulate Bcl-2 but frequently accompanies IDH1/2
mutation via a strand asymmetry mechanism. Further work
using appropriate clinical tissue samples or animal models is
required to provide some evidence for this proposal.

In conclusion, our study shows that BRAFAMP and IDH1/2WT is
related to the reduced survival in adult patients with glioma
compared with BRAFV600E and that BRAFAMP is associated with
mutations in IDH1, TP53, and ATRX. This suggests that assessment
for BRAFAMP and IDH1/2WT alterations is of prognostic value in
adult glioma/glioblastoma patients because patients with this gene
alteration pattern have relatively shorter survival times and may
benefit from personalized, targeted therapy using BRAF and/or
MEK inhibitors. As noted above, a concentrated effort is required to
prospectively evaluate these findings in adult glioma patients.
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cohort (67.026 vs. 89.958, Chi-Square 0.025, P = 0.875);E: BRAFAMP & IDH1/
2MT cohort vs. BRAF mutation cohort (67.026 vs.71.698, Chi-Square 0.513, P =
0.474). BRAF, v-raf murine viral oncogene homolog B1; IDH1/2, isocitrate
dehydrogenase 1 and 2.

SUPPLEMENTARY FIGURE 2 | Kaplan-Meier Survival curves of patients above
30 years of age with gliomas harboring BRAFAMP& IDH1/2WT and BRAF V600E.
BRAFAMP & IDH1/2WT cohort vs. BRAFV600E cohort (9.750 vs. 40.135, chi-square
5.575, P = 0.018). BRAF, v-raf murine viral oncogene homolog B1; IDH1/2,
isocitrate dehydrogenase 1 and 2.
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