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Meningioma is the most common tumor of the central nervous system, most of which
is benign. Even after complete resection, a high rate of recurrence of meningioma is
observed. From in-depth study of its pathogenesis, it has been found that a number
of chromosomal variations and abnormal molecular signals are closely related to the
occurrence and development of malignancy in meningioma, which may provide the
theoretical basis and potential direction for accurate and targeted treatment. We have
reviewed advances in chromosomal variations and molecular mechanisms involved in
the progression of meningioma, and have highlighted the association with malignant
biological behavior including cell proliferation, angiogenesis, increased invasiveness, and
inhibition of apoptosis. In addition, the chemotherapy of meningioma is summarized
and discussed.
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INTRODUCTION

The meninges consist of the dura mater, arachnoid and pia mater, which envelope the surface of the
brain and spinal cord. A tumor produced in the meninges is known as a meningioma (1). According
to the latest statistical report of the Central Brain Tumor Registry of the United States (CBTRUS),
meningioma has become the tumor with the highest rate of incidence of the central nervous system,
accounting for approximately 37.1% (2). Meningioma is common in elderly patients, the median
age of diagnosis being 66 years of age. Females are approximately 2.2-fold more likely to develop
meningioma than males, except in atypical and anaplastic meningioma, where males outnumber
female patients (2). The World Health Organization (WHO) classifies meningioma into grade I
benign meningioma (>80%), grade II atypical meningioma (15–20%), and grade III anaplastic
meningioma (1.0–3.0%) (2, 3). Meningioma can be further divided into 15 subtypes according to
histopathology (4). Among them, meningothelial, fibroblastic, and transitional meningioma are
the most common subtypes of the WHO (5). By comparing the immunophenotypes of normal
arachnoid and meningiomas, research data indicate that arachnoid cap cells are likely to be the
precursor cells of meningioma (6). Finally, a study established that prostaglandin D2 synthase
(PGDS) positive arachnoid cells are the origin cells of meningiomas (7). Surgical resection can
cure 70–80% of meningioma. However, atypical and anaplastic meningioma often have high
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recurrence rates, strong invasiveness and poor prognosis.
Even after complete resection, the rate of recurrence of
atypical and anaplastic meningioma is still as high as 50%
and 80%, respectively (8). Furthermore, approximately 20%
of meningioma with benign histology are likely to in fact
be invasive and recurrent, which affects the treatment of
the tumor (9). Previous studies have identified multiple
molecular targets and genetic alterations that contribute to
its progression, including those related to cell proliferation,
increased invasiveness, angiogenesis, and inhibition of apoptosis.
These molecular targets may be targeted in future to improve
the therapeutic effect. Here, we summarize the molecular
mechanisms that drive the biological behavior and relative
medical treatment of meningioma.

CYTOGENETICS

The most common chromosomal abnormality in meningioma is
in chromosome 22, observed in 40–70% of grade I meningioma.
Beyond the loss of chromosome 22, few other chromosomal
abnormalities have been observed in benign meningioma (10).
In an analysis of chromosome 22 in 44 sporadic meningiomas,
researchers found that in 43 cases, all or part of the chromosome
had been deleted, the majority of deletions occurring in the
neurofibromatosis type 2 (NF2) region, suggesting that the
mutation on NF2 leads to the occurrence of meningioma
(11). In addition, a number of studies have demonstrated
that loss of gene function of NF2 contributes to develop
schwannoma, ependymomas, and malignant mesothelioma (12–
14). Mice lacking NF2 are prone to develop cancers such as
osteosarcoma, lymphoma, lung adenocarcinoma, hepatocellular
carcinoma (HCC), and fibrosarcoma (15). Research has suggested
that NF2 promotes contact inhibition and tumor suppression
by suppressing mitogenic signaling at the cellular cortex (16).
Therefore, the inactivation of NF2 plays an important role in
early oncogenic events. Atypical and anaplastic meningioma
exhibit a greater number of chromosomal abnormalities than
benign meningioma, but the frequency of the NF2 gene
mutations is almost the same as in benign meningioma,
indicating that NF2 may not be related to the progression of
meningioma (17). Loss of chromosome 1 is detected more often
in atypical and anaplastic meningioma, and is the second most
common deletion site in meningioma (1). The rate of deletion of
1p is significantly correlated with grade of meningioma (grade
I meningioma: 13–26%; grade II: 40–76%; and grade III: 70–
100%). Loss of 1p is also associated with malignant progression
of meningioma (18). In atypical meningioma, chromosomal loss
of 1p, 6q, 10, 14q, and 18q, and gains at 1q, 9q, 12q, 15q, 17q,
and 20q have been observed. On the basis of the mutations
described above, losses are more frequent at 6q, 9p, 10, and
14q with amplification of 17q23 in anaplastic meningioma (3)
(Figure 1). In terms of chromosomal mutation and incidence of
relapse in meningioma, researchers have used fluorescence in situ
hybridization (iFISH) analysis on 302 meningioma samples,
finding that alterations in 1p, 1q, 7, 9, 10, 14, 18, and 22
chromosome were significantly related to the incidence of relapse

(19). Chromosomal variations provide a genetic basis for the
stepwise progression of meningioma, which greatly assists in the
diagnosis of grade and prognosis. Recent studies have also shown
that the location of meningiomas is related to mutational profile.
Compared with other anatomic locations, NF2 mutations are
more common in the lateral regions and posterior skull base
meningiomas, while the most majority of non-NF2 meningiomas
often locate in the anterior, medial, or skull base regions (1, 20).
For example, meningiomas with Smoothened (SMO) mutation
are more likely to localize to the medial anterior skull base,
near the midline (20). Meningiomas with Krueppel-like-factor
4 (KLF4)/TNF receptor-associated factor 7 (TRAF7) mutation
often locate in the medial skull base and v-akt murine thymoma
viral oncogene homolog 1 (AKT1)/TRAF7 mutation in the
anterior skull base (21).

GENETIC ALTERATIONS WITH CLINICAL
PROGNOSIS

The genetic changes of meningioma is associated with the poor
prognosis. A study have shown that activating mutations in
the promoter of the telomerase reverse transcriptase (TERT)
gene promote the aggressiveness of meningiomas and reduce the
survival of patients (22). Patients with TERT promoter mutation
had significantly shorter overall survival (53.8 vs 115.6 months;
P = 0.0006). Another study also demonstrated that patients with
TERT promoter mutation had a higher risk of recurrence and
a shorter time to progression, regardless of WHO grade (23).
In a study of 169 meningioma samples, Dystrophin-encoding
and Muscular Dystrophy-associated gene (DMD) inactivation
(by genomic deletion or loss of protein expression) was detected
in 32% of patients with progressive meningiomas. Patients
with DMD inactivation had significantly shorter overall survival
than wild-type counterparts [5.1 years (95% CI 1.3–9.0) vs.
median not reached (95% CI 2.9–not reached), p = 0.006] (24).
Breast cancer (BRCA)1-associated protein-1 (BAP1) is a tumor
suppressor gene encoding for a deubiquitylating enzyme. A study
have demonstrated that BAP1-deficient meningiomas are more
aggressive and have a poor prognosis (25).

MOLECULAR MECHANISMS OF
CHANGE IN BIOLOGICAL BEHAVIOR

Abnormal Cell Growth and Proliferation
The growth and proliferation of tumor cells are closely related
to cell cycle dysregulation. For example, abnormal expression of
cyclin, cyclin dependent kinases or their inhibitors often leads to
enhanced proliferation and differentiation of meningioma cells
(26, 27). The cyclin-dependent kinase inhibitor 2A (CDKN2A)
gene can encode a variety of cell cycle regulating proteins
including p16 [inhibitor of CDK4 (INK4a)] and p14 [alternative
reading frame (ARF)] that inhibit the growth of tumor cells.
Of these, the former principally inhibits the activity of cyclin
dependent kinase 4 (CDK4) and 6 (CDK6), while the latter
inhibits the degradation of tumor suppressor protein p53 that
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FIGURE 1 | Chromosomal abnormalities in the progression of meningioma.

controls G1/S phase transition (8, 26). One study that compared
the gene coding sequences of recurrent and non-recurrent
meningioma found that changes in the CDKN2A gene were
only observed in recurrent meningioma (28). The deletion
of the CDKN2A gene promoted the malignant progression
of meningioma, indicating poor outcome (29). Cyclin D1
(CCND1) controls the transition of the cell cycle, principally
regulating the G1-S phase, and playing an important role
in the transcription of tumor genes and cell proliferation
(30). It has been reported that cyclin D1 is overexpressed
in meningioma, and positively correlated with the degree of
malignancy and rate of recurrence in meningioma. Knockdown
of cyclin D1 expression in the meningioma cell lines IOMM-
Lee and CHl57 demonstrated inhibition of the growth and
proliferation of the cells (27). Forkhead box protein M1
(FoxM1) is a pro-mitotic transcription factor, which plays a
positive regulatory role in the G1/S and G2/M transition of
the cell cycle, ensuring smooth progression of mitosis (31).
A separate study showed that an increase in FoxM1 expression
can be observed in higher-grade meningioma, promoting the
expression of β-catenin and cyclin D1, finally leading to
proliferation and colony formation in meningioma cells (32).
Similarly, overexpression of FoxM1 was also found in recurrent
meningioma (32). A single transcriptome analysis, including the
analysis of 280 human meningioma samples, demonstrated that
FoxM1 plays a critical role in the proliferation of meningioma,
indicating poor clinical prognosis (33). Cell cycle related proteins
topoisomerase IIα and mitosin control the condensation and
separation of mitotic chromosomes (34). A retrospective study
of 160 meningioma patients found that patients with high
topoisomerase IIα and mitosin expression suffered a higher risk

of recurrence (35). Rapamycin [mammalian target of rapamycin
(mTOR)] is mainly regulated by the phosphoinositide-3-kinase
(PI3K)/protein kinase B (Akt) pathway, and is over-activated
in both sporadic and hereditary brain tumors, related to
cell growth, differentiation and tumorigenesis (36) (Figure 2).
A study of human meningioma cell lines found that meningioma
with over-expression of osteoglycin (OGN) exhibited higher
cell proliferation, cell cycle activation and colony formation
rate, activities closely associated with the PI3K/Akt/mTOR
pathway (37). Inhibition of this pathway significantly suppressed
abnormal cell proliferation and increased cell death. Yesilöz
et al. analyzed 93 samples of skull base meningiomas, finding
that over-activation of the mTOR signaling pathway was closely
associated with the recurrence of meningioma (38). Another
study demonstrated that the high expression of mTOR in
atypical meningioma led to an increase in mitotic index, and
meningioma which had high expression of mTOR exhibited
worse prognosis (39).

Increased Cell Invasiveness
The adhesiveness of malignant cells is usually lower than
that of normal cells. It was found that various cell adhesion
molecules are expressed abnormally during the malignant
invasion of meningioma. E-cadherin (encoded by CDH1 at
16q22.1) is a calcium-dependent adhesion molecule, mediating
their interaction with epithelial cells (40). It relies on β-
catenin to play a role in cell adhesion, which is considered an
indirect regulator of the Wnt signaling pathway (10). E-cadherin
and β-catenin comprise the E-cadherin/catenin complex that
regulates cell adhesion and maintains cell polarity and stability
(40). A low expression or absence of E-cadherin leads to the
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FIGURE 2 | PI3K/Akt pathway is involved in cell growth, differentiation, and tumorigenesis. When the ligand binds to the membrane receptor, the receptor activates
PI3K, which then catalyzes the formation of PI3P from PIP2 on the inner surface of the membrane. As the second messenger, PI3P further activated Akt. Akt can
activate the downstream mTOR pathway, which can phosphorylate and activate S6K1 and 4EBP, and finally participate in gene expression.

reduced formation of the complex, contributing to a decrease
in adhesion between epithelial cells, the loss of intercellular
connections, in addition to the weakening of contact inhibition,
eventually leading to the uncontrolled growth of tumor cells
and invasion of surrounding tissues (41, 42). Immunostaining
of E-cadherin in 60 meningioma samples demonstrated that
the expression of E-cadherin was down-regulated in 73% of
meningioma. Moreover, E-cadherin has a more apparent down-
regulatory effect in grade II and III meningiomas (43). Other
studies of E-cadherin in meningioma have drawn similar
conclusions. One study demonstrated negative expression of
E-cadherin in all atypical meningioma, concluding that the
increased invasiveness of meningioma is partly due to the
loss of E-cadherin (44). Another study reported a positive
correlation between the low expression of E-cadherin and the
invasiveness of meningioma (45). Matrix metalloproteinases
(MMPs) are zinc-dependent endopeptidases involved in the
degradation of the extracellular matrix and tissue reconstruction,
found to be closely associated with malignant invasion and
distant metastasis of tumor cells (46). A number of reports
have suggested that MMP-9 can promote the occurrence and
development of tumors (47–50). Previous studies have shown
that the expression of MMP-9 in meningioma is significantly
correlated with the degree of malignancy and invasiveness. In
the malignant meningioma cell lines IOMM-Lee and CH157-
MN, MMP-9 has been shown to be significantly up-regulated

with increased expression of the lncRNA LINC00460, leading to
the progression of meningioma (51). The expression of MMP-9
in different grades of meningiomas has also been studied (52).
Results of immunohistochemical analysis indicated that more
MMP-9 was expressed in grade II and III meningiomas. Another
study showed increased expression of MMP-9 in meningioma
cells following irradiation (53). The authors confirmed increased
invasiveness of the cells through spheroid migration and
Matrigel invasion assays. The ability of cells to invade was
reversed by the down-regulation of MMP-9. Petermann et al.
found that loss of density-enhanced phosphatase-1 (DEP-1;
a transmembrane protein-tyrosine phosphatase) reduced the
adhesion of cell matrix, and enhanced the migration and
invasive growth of meningioma cells (54). In the following
experiments, Petermann et al. studied the relationship between
DEP-1 and the invasiveness of meningioma cells (55). They found
increased MMP-9 expression in DEP-1-depleted meningioma
cells using zymography, suggesting that up-regulation of MMP-
9 may contribute to the aggressive growth of meningioma.
A recent study also demonstrated that the deficiency of DEP-
1 promotes the progression of meningioma (56). A separate
study demonstrated that the expression levels of tissue inhibitor
of metalloproteinases-1 (TIMP-1) in invasive meningioma is
significantly lower than that in non-invasive meningioma,
possibly related to the inhibition of MMP-9 activity by TIMP-1
(57). The expression of A-kinase anchor protein 12 (AKAP12)
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FIGURE 3 | The mechanism of increased invasiveness in meningioma.

increased in actively migrating cells, believed to play an
important role in actin dynamics and actin filament-based
migration (58). It is known that the expression of AKAP12 is
inhibited in a number of human malignant tumors, such as
melanoma, HCC, gastric cancer and BRCA (59–62). It has been
found that knock-down of AKAP12 can promote the migration
and invasion of meningioma cells, indicating that AKAP12 plays
a possible role in inhibition of the progression of meningioma
(63) (Figure 3).

Angiogenesis
Meningioma is a vascular-rich type of tumor, especially
atypical and anaplastic meningioma, which are likely to relapse,
suggesting that angiogenesis plays an important role in its
malignant-type behavior (64). In a study of the molecular
mechanism of tumor angiogenesis, Bergers proposed the theory
of an “angiogenic switch,” that is, the dynamic balance of
angiogenic and antiangiogenic factors which becomes broken,
allowing the interaction of these factors to affect the biological
behavior of meningioma, such as angiogenesis and invasion (65).
Vascular endothelial growth factor (VEGF) is considered among
the most important angiogenic factors, involved in multiple
physiological and pathological pathways of angiogenesis. One
study established that VEGF and its receptor are up-regulated
in the hypoxic tissues of recurrent meningioma, inducing new
angiogenesis to alleviate the hypoxia. Microvessel density (MVD)
is closely related to poor prognosis in meningioma (66). In a study
of 40 meningioma samples, a group of researchers found positive
correlation between VEGF expression and pathological grade of
meningiomas by immunohistochemistry (67). Hypoxia inducible
factor-1 alpha (HIF-1α), an upstream regulator of a variety of
signaling pathways, regulates many tumor metabolic processes,
such as glycolysis, apoptosis, angiogenesis, and promotion of
tumor growth (68). HIF-1α activates VEGF transcription via the
PI3K/Akt signaling pathway, up-regulating VEGF expression and
promotes endothelial cell proliferation in meningioma (69). In
addition, over-expression of HIF-1α can increase the stability
of VEGF and its receptor, and promote neovascularization (70).

One study found that silencing of HIF-3α (an HIF-1α inhibitor)
suppresses angiogenesis and proliferation in meningioma (71).
As the upstream regulatory gene of VEGF, signal transducer
and activator of transcription factor 3 (Stat-3), it regulates
the expression of VEGF through the JAK/STAT signaling
pathway combined with the promoter of VEGF, promoting
tumor angiogenesis (72). Kwon et al. confirmed that MMP-9 is
expressed to a significant level in meningioma, closely related
to neovascularization and tumor cell migration (73). A study of
malignant meningioma cell lines found that the expression of
MMP-9 was silenced by small interfering RNA (siRNA) which
could inhibit the formation of a capillary network (74). MMP-9
creates the space and stimulation for angiogenesis by promoting
the degradation of extracellular matrix and releasing the VEGF
embedded in the extracellular matrix. MMP-9 also enhances the
binding function of VEGF and its receptor, and up-regulates the
bioavailability of VEGF (74). In 1999, a number of researchers
found a type of microcirculatory duct without endothelial cells
in melanoma, termed tumor vasculogenic mimicry (VM). Blood
is able to flow normally in these acellular tubular structures
(75). The VM phenomenon has also been reported in malignant
meningioma (76) (Figure 4).

Inhibition of Apoptosis
Inhibition of apoptosis is closely associated with the occurrence,
development and prognosis of tumors in meningioma. Several
studies have found that the Wnt signaling pathway plays an
important role in the development of meningioma, which is
involved in apoptosis (77–79). The main pathway comprises
three branches: the classical Wnt/β-catenin signal transduction
pathway, the planar cell polarity (PCP) pathway and the Wnt-
Ca2+ pathway (10). Members of the classical pathway include
the extracellular Wnt factor, transmembrane receptor, β-catenin,
glycogen synthase kinase-3β (GSK3β), adenomatous polyposis
coli (APC), Axin, and casein kinase-1 (CK1) (10, 80). When the
classical Wnt pathway is unactivated, GSK3β in the cytoplasm
can phosphorylate β-catenin in the form of a complex with APC,
Axin, and CK1 (81). By recognition of the phosphorylation site
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FIGURE 4 | The mechanism of angiogenesis in meningioma.

of β-catenin, β-TrCP can ubiquitinate β-catenin, then degrade
it through a proteasome, and maintain a low level of β-catenin
in cells (82). When Wnt signaling is activated, the Wnt protein
binds with the extracellular domain of Frizzled (Fz). Through
the synergistic effect of the low density lipoprotein receptor
related protein (LRP 5/6), dishevelled protein (DVL) in the
cytoplasm becomes translocated to the cellular membrane. DVL
can phosphorylate GSK3β and lead to disintegration of the
complex. In this case, β-catenin cannot be degraded, and a
large number of free β-catenin aggregates in the cytoplasm
and enters the nucleus (83). After β-catenin is combined with
lymphoid enhancer factor (LEF)/T cell factor (TCF) to form a
complex, suppression of LEF/TCF is reduced, and transcription
of downstream target genes is specifically activated, including
c-myc, cyclin D1, CD44, Bcl2, c-jun, etc. (84, 85) (Figure 5).

Multiple studies have shown that activation of the Wnt
signaling pathway inhibits neural cell apoptosis (86–90). One
study of meningioma found that lncRNA SNHG1 can inhibit
apoptosis in BEN-1-1 and IOMM-Lee cells via the Wnt pathway,
as found through the measurement of TUNEL-positive cells
and caspase-3 activity (77). Knockdown of SNHG1 inhibited
cell proliferation and promoted apoptosis. In another study, in
which down-regulation of lncRNA LINC00702 inhibited Wnt
signal activity in malignant meningioma, induction of apoptosis
and decreased meningioma cell proliferation were observed (78).
Unfortunately, there are few studies of the inhibition of apoptosis
via the Wnt signaling pathway in meningioma. However, a large
number of reports have been published concerning inhibition
of apoptosis through the Wnt signaling pathway in glioma,
neuroblastoma, spinal cord injury, and cerebral hemorrhage

(85–91). Therefore, we can reasonably assume that the Wnt
signaling pathway plays a role in inhibition of apoptosis in
meningioma cells.

Many studies have explored the potential target of anti-
apoptotic mechanisms in meningioma. One study assessed
the expression of CD163 in 50 samples of meningioma (92).
Researchers found that 48.5% and 71.4% of grade I and
II meningioma, respectively, were positive for CD163. They
also found human meningioma cell lines in which CD163
was overexpressed exhibited a decrease in apoptosis and
hematopoietic cytokines, demonstrating that CD163 prevents
apoptosis by production of granulocyte colony-stimulating factor
(G-CSF). Other researchers compared the rate of apoptosis
in meningioma between the FTS (a Ras inhibitor) group
and control group by flow cytometric analysis, finding that
apoptosis increased in the FTS group, indicating that Ras
inhibition induced apoptosis (93). It has been reported that the
expression of let-7d is down-regulated in meningioma, and that
its overexpression induces apoptosis (94). In a recent study,
researchers found a new oncogenic protein, N-myc downstream-
regulated gene 4 (NDRG4), which is overexpressed in aggressive
meningioma. After removal of NDRG4, the cells mostly died due
to apoptosis (95).

MEDICAL TREATMENT FOR
MENINGIOMA

For the majority of patients with benign meningioma, surgical
resection combined with stereotactic radiotherapy is effective in
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FIGURE 5 | Molecular mechanism of Wnt/β-catenin signaling pathway activation.

controlling the disease. However, no standardized treatment for
recurrent or progressive meningioma has yet been published.
Methods of treatment for meningioma include chemotherapy,
molecular targeted therapy, immunotherapy, and hormone
therapy, etc. (96).

Molecular Targeted Therapy
A large number of studies have confirmed that the
PI3K/Akt/mTOR pathway is overactive in meningioma,
which has a close association with cell growth, differentiation
and tumorigenesis, suggesting that mTOR is a potential
therapeutic target for meningioma. In an in vitro experiment,
eight mice with subcutaneous IOMM-Lee xenografts were
treated with mTOR inhibitors (97). Growth of the tumor
cells was significantly inhibited. A recent phase II trial of
progressive meningioma achieved satisfactory results (98).
Twenty patients with meningioma (including 18 non-benign
meningioma) were treated with everolimus (an mTOR inhibitor)
and octreotide (a somatostatin agonist). The overall PFS-6 was
55%, and a 6- and 12-month overall survival was 90% and
75%, respectively. Tumor growth rate decreased significantly
after 3 months in 78% patients, and median tumor growth rate
decreased from an initial 16.6% to 0.02%. Octreotide inhibits
the phosphorylation of the PI3K/Akt pathway and activates
tyrosine phosphatase, which can inhibit the proliferation
of tumor cells in vitro (99). One study demonstrated that

octreotide promotes the antitumor effect of everolimus in
aggressive meningioma (100). Because a meningioma is a
vascular-rich tumor, reduction in angiogenesis may be beneficial
for treatment. VEGF is an important angiogenic regulatory
molecule, which positively correlates with the pathological
grade of meningioma. The expression levels of VEGF in atypical
and anaplastic meningioma have been found to be 2 and 10
times higher than in benign meningioma, respectively (101).
A retrospective study of 15 patients of atypical or anaplastic
meningioma treated with bevacizumab (a VEGF inhibitor)
found that the progression-free survival (PFS) rate was 43.8%
at 6 months, with a median PFS of 26 weeks (102). Similarly,
another retrospective study in which 14 patients with progressive
meningioma were enrolled (including 5 patients with grade I
meningioma) found that PFS at 6 months following treatment
with bevacizumab was 86% (103). A phase II clinical trial
evaluated the response of patients with advanced meningioma
to combination treatment consisting of bevacizumab and
everolimus (104). A total of 17 patients were treated, 15 of
whom exhibited stable disease progression, with a median
disease stabilization period of 10 months. An ongoing phase
II clinical trial (NCT02847559) aims to test the efficacy of
the combination of electric field therapy and bevacizumab in
patients with recurrent or progressive meningioma. A separate
phase II clinical trial recruited 36 patients with high-grade
meningioma who were treated with sunitinib [a VEGF and
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platelet derived growth factor (PDGF) inhibitor], finding that
median PFS was 1.4 and 6.4 months in VEGFR2 negative and
positive patients, respectively (105). Despite the significant side
effects (grade 3 or higher toxicity in 60% of patients), this clinical
trial provides strong evidence for the potential targeting of VEGF
in meningioma treatment.

Other Treatments
Chemotherapy is not effective for the treatment of malignant
meningioma, and is usually only used when the initial treatment
fails or the tumor relapses (106). Timozolomide and irinotecan,
which are efficient therapies for specific intracranial tumors,
had no apparent therapeutic effect on meningioma (107, 108).
Hydroxyurea is the most well-studied chemotherapeutic drug in
advanced meningioma, and this exhibits a certain therapeutic
effect (109). Interferon-alpha is a biologic agent able to inhibit
DNA synthesis. In the early experiments of meningioma in vitro,
interferon-alpha exhibited inhibitory activity toward the growth
of tumor cells (110). A phase 2 study evaluated the efficacy of
interferon-alpha in the treatment of WHO grade I recurrent
meningioma, and found that the PFS rate was 54% at 6 months,
demonstrating pharmaceutical activity (111).

Immunotherapy is a potential treatment regimen for
malignant meningioma. It has been found that the expression
of programmed death-ligand receptor (PD-L1) is increased
in meningioma, especially in anaplastic meningioma (112).
Therefore, two phase 2 clinical trials of treatments for high-grade
meningioma are in progress, using nivolumab (NCT02648997),
and pembrolizumab (NCT03016091), respectively. With the
discovery of progesterone receptor (PR) in meningioma cells,
the use of mifepristone (an antagonist of progesterone) in the
treatment of meningioma patients has gradually attracted the
attention of researchers (113). It has been reported that in 3
cases of meningioma treated with mifepristone, 2 cases exhibited
radiological regression and 1 case was stable (114). A phase II
clinical study showed moderate clinical improvement following
treatment with mifepristone in meningioma (115). However,
the first and only randomized phase III trial for unresectable
meningioma demonstrated the opposite result. There was no
significant difference in PFS in the mifepristone and placebo
groups 10 months (95% CI 7–13 months) vs. 11 months (95%

CI 6–18 months) (116). The failure of these chemotherapy
agents in clinical studies is probably due to the wide molecular
heterogeneity of meningiomas.

Unfortunately, at present, there are no strong clinical data
showing that medical therapy has a significant effect on
meningiomas. Moreover, the sample size of most relevant clinical
trials is less than 20 patients. If we consider WHO grade,
we will find that these clinical trials also include grade I
meningiomas that do not normally require such second-line
treatment. These data may influence the real beneficial effects
of medical therapy on meningiomas. A greater number of
randomized clinical trials are required to provide evidence for the
medical treatment of meningioma.

CONCLUSION

Meningioma is the most common tumor of the central nervous
system, and most are considered benign. However, meningioma
has a high recurrence rate, and the treatment of malignant
meningioma is limited. Specially, the research on molecular
mechanism and genetics treatment is insufficient compared
with glioma. In this review, we focus on the molecular
mechanism to elucidate the changes of biological behavior
in the meningioma progression, including cell proliferation,
increased invasiveness, angiogenesis, and inhibited apoptosis.
Related signaling pathways and protein biomarkers may provide
the direction and theoretical basis for the accurate targeted
therapy of meningioma in the future.
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