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Background: Immune and stromal cells in the tumor microenvironment (TME)

significantly contribute to the prognosis of lung adenocarcinoma; however, the

TME-related immune prognostic signature is unknown. The aim of this study was to

develop a novel immune prognostic model of the TME in lung adenocarcinoma.

Methods: First, the immune and stromal scores among lung adenocarcinoma patients

were determined using the ESTIMATE algorithm in accordance with The Cancer

Genome Atlas (TCGA) database. Differentially expressed immune-related genes (IRGs)

between high and low immune/stromal score groups were analyzed, and a univariate

Cox regression analysis was performed to identify IRGs significantly correlated with

overall survival (OS) among patients with lung adenocarcinoma. Furthermore, a least

absolute shrinkage and selection operator (LASSO) regression analysis was performed to

generate TME-related immune prognostic signatures. Gene set enrichment analysis was

performed to analyze the mechanisms underlying these immune prognostic signatures.

Finally, the functions of hub IRGs were further analyzed to delineate the potential

prognostic mechanisms in comprehensive TCGA datasets.

Results: In total, 702 intersecting differentially expressed IRGs (589 upregulated

and 113 downregulated) were screened. Univariate Cox regression analysis revealed

that 58 significant differentially expressed IRGs were correlated with patient

prognosis in the training cohort, of which three IRGs (CLEC17A, INHA, and XIRP1)

were identified through LASSO regression analysis. A robust prognostic model

was generated on the basis of this three-IRG signature. Furthermore, functional

enrichment analysis of the high-risk-score group was performed primarily on the

basis of metabolic pathways, whereas analysis of the low-risk-score group was

performed primarily on the basis of immunoregulation and immune cell activation.

Finally, hub IRGs CLEC17A, INHA, and XIRP1 were considered novel prognostic

biomarkers for lung adenocarcinoma. These hub genes had different mutation

frequencies and forms in lung adenocarcinoma and participated in different signaling

pathways. More importantly, these hub genes were significantly correlated with the

infiltration of CD4+ T cells, CD8+ T cells, macrophages, B cells, and neutrophils.
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Conclusions: The robust novel TME-related immune prognostic signature effectively

predicted the prognosis of patients with lung adenocarcinoma. Further studies are

required to further elucidate the regulatory mechanisms of these hub IRGs in the TME

and to develop new treatment strategies.

Keywords: tumor microenvironment, lung adenocarcinoma, prognostic model, TCGA database, ESTIMATE

algorithm

INTRODUCTION

Lung cancer is still the leading disease worldwide in terms of the
threat to human life and health (1, 2), and lung adenocarcinoma
is the most common pathological subtype. Studies in the past
decade have reported that tyrosine kinase inhibitors (TKIs)
targeting epidermal growth factor receptor (EGFR), anaplastic
lymphoma kinase (ALK), and ROS proto-oncogene 1 (ROS1)
are potential therapeutic targets for lung adenocarcinoma, upon
genotyping (3–5). Molecular-targeted therapy based on these
sensitive targets has considerably enhanced overall survival
(OS) among patients with lung adenocarcinoma; however, this
therapy is not suitable for all patients with lung adenocarcinoma.
Furthermore, drug resistance is common among patients
receiving molecular-targeted therapy, and their prognosis is
poor (6, 7). Nonetheless, numerous studies have led to the
advancement of immunotherapy for several cancers, including
lung adenocarcinoma. Immunotherapy is different from targeted
therapy; it has more durable clinical benefits. Furthermore,
some antibodies used for immunotherapy have been successfully
approved as first- and second-line treatments for advanced lung
adenocarcinoma (8). In particular, the immune system reportedly
plays an important role in the pathogenesis and prognosis of lung
adenocarcinoma (9). Therefore, it is essential to understand the
immune prognostic signature of lung adenocarcinoma.

Previous studies have investigated the prognostic role of
immune-related genes (IRGs) in lung adenocarcinoma from
the ImmPort database (10, 11); however, this database contains
published data on IRGs, thus potentially not accounting for
all IRGs. Moreover, these studies have reported no correlation
between prognostic factors and OS among certain subgroups
of patients with lung adenocarcinoma, indicating that this
association is largely unknown. One of the important reasons
may be the complex prognostic behavior of tumors; furthermore,
when considering the characteristics of IRGs directly associated
with tumors, it is also important to focus on the tumor
microenvironment (TME) (12). The TME is closely associated
with tumorigenesis and patient prognosis (13, 14). Moreover,
accumulating evidence indicates that tumor-infiltrating immune
cells and stromal cells (15, 16), as the primary nontumor
components of the TME, play a significant role in lung
cancer prognosis. These findings highlight the importance of
understanding the association between the TME and lung
adenocarcinoma prognosis. The development of a prognostic

Abbreviations: IRGs, immune-related genes; TME, tumor microenvironment;

TCGA, The Cancer Genome Atlas data; DAVID, Database for Annotation,

Visualization and Integrated Discovery.

model of IRGs based on the TME might provide novel insights
into the generation of a more accurate prognostic system.

Accurate management and appropriate personalized therapies
for lung adenocarcinoma are required in accordance with
prognostic stratification. Moreover, an enhanced understanding
of IRGs involved in the TME would help elucidate their
regulatory mechanisms in the TME and develop new treatment
strategies. With advancements in machine learning, the
ESTIMATE algorithm has been used to investigate IRGs in
the TME, based on the immune and stromal scores of the
TME, and to generate a TME-related immune prognostic
model (17). Moreover, this algorithm can effectively predict the
prognosis of patients with various cancers. Accordingly,
in this study, we determined the immune and stromal
scores of tumors using the ESTIMATE algorithm and
developed a novel TME-related immune prognostic model of
lung adenocarcinoma.

MATERIALS AND METHODS

Acquisition of TCGA Data
Normalization of RNA sequence data, in terms of level 3
fragments per kilobase of exon per million fragments mapped
(FPKM) reads, was performed for 594 samples obtained from
The Cancer Genome Atlas (TCGA) database, including 535
adenocarcinoma and 59 normal lung samples, before December
15, 2019. Thereafter, the Ensemble IDs were converted to
gene symbols in accordance with human gene annotations.
Furthermore, clinical data of lung adenocarcinoma patients were
obtained andmerged into a single matrix for subsequent analysis.
Patients with an incomplete follow-up duration or recorded
date of death of any cause were excluded. Finally, 494 lung
adenocarcinoma patients with expression profiles and clinical
data were included.

Immune Score and Stromal Score in the
TME
Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data (ESTIMATE) is a tool for predicting
and estimating infiltrating immune and stromal cells in tumor
tissues based on gene expression profiles. Herein, the ESTIMATE
algorithm was used to analyze the characteristics of specific gene
expression in immune and stromal cells for each tumor sample to
predict their immune and stromal scores. Thereafter, the immune
and stromal scores were analyzed using the estimate package in
R software.
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Screening of Differentially Expressed IRGs
Based on the median immune and stromal scores, patients with
lung adenocarcinoma were divided into two groups: high and
low immune/stromal score groups. Significant differences in OS
between the high and low immune/stromal score groups were
analyzed. On the basis of the significant differences in patient
prognosis, differentially expressed IRGs between the two groups
were assessed using the Limma package in R software. Finally,
intersecting differentially expressed IRGs in both groups were
considered for further analysis. A log(fold change) of >2 and
an adjusted p-value of <0.05 were considered cutoffs. Heat maps
and Venn diagrams were generated using R.

GO and KEGG Pathway Enrichment
Analyses of Differentially Expressed IRGs
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analyses were
performed to understand gene functional annotation and
functional enrichment, respectively. Common differentially
expressed IRGs of GO and KEGG annotation were performed
using Database for Annotation, Visualization, and Integrated
Discovery (DAVID), an online database (https://david.ncifcrf.
gov/), to predict functional domains and their biological
implications. Fisher’s exact test was performed to analyze
pathways, diseases, and functions. A p-value of <0.05 indicated
the significance of GO terms and KEGG pathway enrichment
in genes herein. Furthermore, the top 10 GO terms and KEGG
pathway enrichment results were mapped using Hmisc and
ggplot2 in R software.

Construction of Prognostic Model for Lung
Adenocarcinoma in the Training Set
A total of 494 patients with lung adenocarcinoma in the TCGA
dataset were randomly divided into a training set and testing set
at a ratio of 7:3 (training cohort, 346 patients; testing cohort,
148 patients).

First, univariate Cox proportional hazard regression analysis
was performed to screen out prognostic IRGs in the training
cohort (iteration = 1,000), with p < 0.05 indicating statistical
significance. Second, the key IRGs were further selected from
among significant prognostic IRGs on univariate analysis,
through least absolute shrinkage and selection operator (LASSO)
regression, a powerful tool for developing refined prognostic
models, fitting generalized linear models, selecting variables,
and regularizing complexity, using R software. Key IRGs were
subjected to multivariate Cox regression analysis. Finally, the risk
score formula was developed in accordance with the key IRGs
identified through LASSO analysis.

Evaluation of the Prognostic Model in the
Training Set
After the expression value of each specific gene was included, the
risk score formula for each patient was weighted by its estimated
regression coefficient on LASSO regression analysis. On the basis
of the best separation of risk score, patients were divided into
high-risk-score and low-risk-score groups. Survival differences

between the two groups were assessed by Kaplan–Meier survival
curves using log-rank tests. ROC curves were used to assess the
accuracy of model prediction. Furthermore, LASSO regression
analysis was performed to examine the role of the risk score
in predicting clinical outcomes. Furthermore, the association
between risk score and clinical stage was analyzed.

To further determine whether the independent prognostic
model could be used as an independent prognostic factor,
univariate and multivariate Cox regression analyses were
performed to analyze the predictive value of age, sex, stage,
TNM stage, and predictive model. In the univariate analysis, the
correlation between some independent variables and dependent
variables was considered, and some correlationsmight bemasked
by the influence of confounding factors. To avoid omitting
important predictors of prognosis, the threshold in univariate
analysis was relaxed to p < 0.1, while the p-value in multivariate
analysis was still 0.05.

GSEA Analysis of Differences in Pathway
Enrichment in the Training Set
To investigate the differences in the putative mechanism
between the high-risk-score and low-risk-score groups, gene set
enrichment analysis (GSEA) was performed to comprehensively
analyze the differences in function enrichment. GSEA is a
computational method of determining whether an a priori
defined set of genes is significantly different between two
biological states. The number of permutations was set to 1,000,
and the permutation type was set to phenotype. In this study,
all genes in the training set were sequenced according to the
degree of differential expression in the high-risk-score group and
the low-risk-score group. GSEA was used to comprehensively
analyze differences in gene pathway enrichment between the
two groups.

Validation of the Prognostic Model in the
Testing Cohort
The prognostic model was further validated for the testing cohort
(n= 148).

Similarly, the risk score of each patient was weighted on the
basis of the risk score. Thereafter, based on the best separation
of the risk score, patients in the testing cohort were divided
into high-risk-score and low-risk-score groups. A Kaplan–Meier
survival curve and ROC curve analysis were performed in the
testing however.

Functional Analysis of IRG Signatures in
the Model
To further analyze the mutation characteristics and the
putative functional mechanisms of these hub IRGs in lung
adenocarcinoma, gene expression profiles of patients with lung
adenocarcinoma were imported from the following datasets:
TCGA database (Broad, Cell 2012), Lung Adenocarcinoma
(MSKCC, Science 2015), Lung Adenocarcinoma (TCGA,
Firehose Legacy), Lung Adenocarcinoma (TSP, Nature 2008),
and Non-Small-Cell Cancer (MSKCC, Cancer Discov 2017). A
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TABLE 1 | Baseline characteristics of patients with lung adenocarcinoma.

Training set Testing set p-value

High score

(N = 194)

Low score

(N = 152)

High score

(N = 91)

Low score

(N = 57)

Age (years)

≥60 132 116 68 42 0.131

<60 62 36 23 15 0.767

Gender

Male 92 67 55 14 0.002

Female 102 85 36 42 0.213

AJCC stage

Stage I 95 99 35 34 0.802

Stage II 47 29 28 13 0.488

Stage III 41 17 18 4 0.312

Stage IV 9 4 9 4 1.000

NA 2 3 1 2 0.850

T stage

T1 53 70 22 22 0.429

T2 108 68 52 28 0.577

T3 22 9 11 3 0.593

T4 9 5 5 0 0.257

TX 2 0 1 0 NA

N stage

N0 114 115 50 39 0.305

N1–3 74 34 40 16 0.701

NX 6 3 1 2 0.523

M stage

M0 133 92 60 40 0.880

M1 8 4 9 4 1.000

MX 51 54 23 13 0.112

NA 2 2 0 0 NA

Survival Time (days) 653.45 ± 36.96 840.44 ± 82.79 714.41 ± 95.64 953.81 ± 118.03 NA

Survival status

Alive 113 124 51 44 0.323

Dead 81 28 40 13 0.873

combined study of five datasets including 1,825 patients were
included in this study.

GSCALite is an online cancer genomic analysis tool that
integrates cancer genomics data for 33 cancer types from the
TCGA and normal tissue data from GTEx (http://bioinfo.life.
hust.edu.cn/web/GSCALite/), enabling gene set pathway analysis
in data analysis. In this study, GSCALite was used to analyze the
pathway of hub genes.

The TIMER database is a comprehensive tool for analyzing
the immune cell infiltrates in tumors. The abundances of
six immune infiltrates (B cells, CD4+ T cells, CD8+ T
cells, neutrophils, macrophages, and dendritic cells) were
estimated using the TIMER algorithm. In this study, the
TIMER database was further applied to analyze the correlation
between hub genes and immune cells. The correlation of
hub gene expression with immune infiltration level was
visualized in lung adenocarcinoma using the Gene module.

The scatterplots were generated and displayed after hub
genes and cancer type were submitted successfully, showing
the purity-corrected partial Spearman’s correlation and
statistical significance.

Statistical Analysis
All statistical analyses were conducted with the R language
(version 3.6.1). All statistical tests were bilateral, and p < 0.05
was statistically significant.

RESULTS

Study Design and Workflow Overview
A total of 594 samples were obtained, including 535
adenocarcinoma and 59 normal lung samples. Data for a total
of 494 lung adenocarcinoma patients with clinical information
were retrieved (Table 1). The workflow for constructing and
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FIGURE 1 | Workflow of the construction and verification of the immune-stromal score prognostic signature.

verifying the immune-related prognostic model is shown
in Figure 1.

Immune Score and Stromal Score in the
TME
The immune and stromal scores were analyzed using the
ESTIMATE algorithm. The immune and stromal scores of
lung adenocarcinoma are shown in Supplementary Table 1.
On the basis of the median value of immune and stromal
scores, patients with lung adenocarcinoma were divided into
two groups: the high immune/stromal score group and the low
score group. These results show that the high immune score
group had better OS than the low immune score group for lung
adenocarcinoma. In terms of stromal score, although patients
with high stromal score had better prognosis than those with

low stromal score, the difference was not statistically significant
(Figures 2A–C).

Screening of Differentially Expressed IRGs
According to the criteria of a log(fold change) of >2
and an adjusted p-value of <0.05, our results showed
that a total of 3,034 genes with significant differentially
expressed IRGs were screened, including 2,521 upregulated
IRGs and 513 downregulated IRGs. Among them, 1,394
differentially expressed IRGs (1,092 upregulated IRGs
and 302 downregulated IRGs) were included in the
immune score group (Supplementary Table 2), and 1,640
differentially expressed IRGs (1,429 upregulated IRGs and
211 downregulated IRGs) were included in the stromal
score group (Supplementary Table 3). Heat maps and
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FIGURE 2 | Screening and identification of differentially expressed IRGs. (A) Relationship between comprehensive immune score and OS. (B) Relationship between

immune score and OS. (C) Relationship between stromal score and OS. (D) Heatmap of immune score groups. (E) Heatmap of stromal score groups. (F) The Venn

diagram of the intersection of up-regulated IRGs between the immune and stromal score groups. (G) The Venn diagram of the intersection of down-regulated IRGs

between the immune and stromal score groups. OS, overall survival; IRGs, immune-related genes.

Frontiers in Oncology | www.frontiersin.org 6 September 2020 | Volume 10 | Article 541330

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Qi et al. Prognostic Signature of Tumor Microenvironment

Venn diagrams are displayed in Figures 2D–G. In total,
702 intersecting differentially expressed IRGs (589 upregulated
and 113 downregulated) in both groups are indicated in
Figures 2F,G (Supplementary Table 4).

GO Terms and KEGG Pathway Enrichment
Analysis of Differentially Expressed IRGs
GO terms are divided into three parts: biological processes,
cellular components, and molecular functions. GO analysis

FIGURE 3 | Bubble map of the top 10 GO terms and KEGG pathway enrichment analysis data of differentially expressed IRGs. (A) GO analysis of differentially

expressed IRGs in biological processes. (B) GO analysis of differentially expressed IRGs in cellular components. (C) GO analysis of differentially expressed IRGs in

terms of molecular function. (D) KEGG enrichment analysis of differentially expressed IRGs. A high gene ratio represents a high level of enrichment. The size of the dot

indicates the number of target genes in the pathway, and the color of the dot reflects the p-value range. (E) GO chord plot of differentially expressed IRGs. (F) KEGG

chord plot of differentially expressed IRGs.
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TABLE 2 | Top five GO terms.

Category ID Term Count % p value FDR

Upregulated IRGs

GOTERM_BP_DIRECT GO:0006955 Immune response 93 17.95366795 4.59E−75 7.47E−72

GOTERM_BP_DIRECT GO:0050776 Regulation of immune response 55 10.61776062 1.14E−51 1.86E−48

GOTERM_BP_DIRECT GO:0002250 Adaptive immune response 41 7.915057915 4.73E−36 7.69E−33

GOTERM_BP_DIRECT GO:0006956 Complement activation 33 6.370656371 6.95E−34 1.13E−30

GOTERM_BP_DIRECT GO:0006898 Receptor-mediated endocytosis 40 7.722007722 1.48E−30 2.40E−27

GOTERM_CC_DIRECT GO:0009897 External side of plasma membrane 43 8.301158301 1.52E−31 1.86E−28

GOTERM_CC_DIRECT GO:0005886 Plasma membrane 167 32.23938224 5.95E−29 7.29E−26

GOTERM_CC_DIRECT GO:0005887 Integral component of plasma membrane 85 16.40926641 2.95E−23 3.61E−20

GOTERM_CC_DIRECT GO:0005576 Extracellular region 86 16.6023166 3.11E−20 3.81E−17

GOTERM_CC_DIRECT GO:0072562 Blood microparticle 24 4.633204633 4.61E−15 5.71E−12

GOTERM_MF_DIRECT GO:0003823 Antigen binding 39 7.528957529 6.92E−41 9.44E−38

GOTERM_MF_DIRECT GO:0004252 Serine-type endopeptidase activity 36 6.94980695 1.11E−21 1.52E−18

GOTERM_MF_DIRECT GO:0004872 Receptor activity 25 4.826254826 4.79E−13 6.53E−10

GOTERM_MF_DIRECT GO:0004888 Transmembrane signaling receptor activity 24 4.633204633 2.73E−12 3.72E−09

GOTERM_MF_DIRECT GO:0030246 Carbohydrate binding 23 4.44015444 3.43E−12 4.68E−09

Downregulated IRGs

GOTERM_BP_DIRECT GO:0071395 Cellular response to jasmonic acid stimulus 3 3.75 7.50E−05 0.106090023

GOTERM_BP_DIRECT GO:0044598 Doxorubicin metabolic process 3 3.75 3.47E−04 0.489670004

GOTERM_BP_DIRECT GO:0044597 Daunorubicin metabolic process 3 3.75 3.47E−04 0.489670004

GOTERM_BP_DIRECT GO:0030855 Epithelial cell differentiation 4 5 0.002002754 2.797891239

GOTERM_BP_DIRECT GO:0055114 Oxidation–reduction process 8 10 0.004999641 6.849000785

GOTERM_CC_DIRECT GO:0043025 Neuronal cell body 6 7.5 0.00495641 5.157580931

GOTERM_CC_DIRECT GO:0008076 Voltage-gated potassium channel complex 3 3.75 0.038309612 34.05203615

GOTERM_CC_DIRECT GO:0005576 Extracellular region 11 13.75 0.053136406 44.11602637

GOTERM_CC_DIRECT GO:0005892 Acetylcholine-gated channel complex 2 2.5 0.081015685 59.35918267

GOTERM_MF_DIRECT GO:0016655 Oxidoreductase activity, acting on NAD(P)H,

quinone or similar compound as acceptor

4 5 2.36E−06 0.002915475

GOTERM_MF_DIRECT GO:0047086 Ketosteroid monooxygenase activity 3 3.75 3.72E−05 0.045918231

GOTERM_MF_DIRECT GO:0047115 trans-1,2-dihydrobenzene-1,2-diol

dehydrogenase activity

3 3.75 7.42E−05 0.091606887

GOTERM_MF_DIRECT GO:0018636 Phenanthrene 9,10-monooxygenase activity 3 3.75 7.42E−05 0.091606887

GOTERM_MF_DIRECT GO:0004032 Alditol:NADP+ 1-oxidoreductase activity 3 3.75 2.58E−04 0.318095483

showed that upregulated IRGs were mainly involved in
the immune response (BP, GO: 0006955), external side
of plasma membrane (CC, GO: 0009897), and antigen
binding (MF, GO: 0003823). The downregulated IRGs were
mainly involved in the cellular response to jasmonic acid
stimulus (BP, GO: 0071395), neuronal cell body (CC, GO:
0043025), and oxidoreductase activity, and in acting on
NAD(P)H, quinone or similar compounds as acceptors
(MF, GO: 0016655) (Figures 3A–C,E; Table 2). The KEGG
pathway enrichment results in the upregulated IRGs were
mainly involved in cytokine–cytokine receptor interactions,
chemokine signaling pathways, and cell adhesion molecules
(CAMs). However, the KEGG pathway enrichment results of
downregulated IRGs were mainly involved in arachidonic acid
metabolism, metabolic pathways, and tyrosine metabolism
(Figures 3D,F; Table 3).

Development of a Prognostic Model for the
Training Cohort
To generate a prognostic model for lung
adenocarcinoma, univariate regression analysis was first
performed to screen the key prognostic genes in
the training cohort. Thereafter, 58 significantly
differentially expressed IRGs correlated with prognosis
were considered for LASSO regression analysis. Finally,
three key IRGs (CLEC17A, INHA, and XIRP1) were selected
to generate an immune prognostic model. The results of
the multivariate Cox regression analysis are summarized
in Table 4. The risk score was determined using the
following formula:

[Expression level of CLEC17A × (−0.13549042)] +

[Expression level of INHA × (0.01207179)] + [Expression
level of XIRP1× (0.6263501)].
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TABLE 3 | Top five KEGG pathway enrichment results.

Category Term Count % p-value Genes FDR

Upregulated IRGs

KEGG_PATHWAY Cytokine–cytokine receptor

interaction

28 5.405405405 2.94E−13 CCL1, IL21R, CXCL9, TNFRSF8, CXCL6,

CXCL11, IL7R, IL10, CXCL10, CCL23,

CCL21, IL10RA, CSF2RB, IL1B, CSF1R,

IL2RA, TNFRSF13B, CCL19, CCL18,

TNFSF8, CCR8, CCL13, CCL14,

TNFSF13B, CCR5, CCR4, CXCL13,

CCR2

3.53E−10

KEGG_PATHWAY Chemokine signaling pathway 19 3.667953668 3.51E−08 CCL1, PIK3CG, ITK, CXCL9, CCL19,

CXCL6, CXCL11, CCL18, CXCL10,

CCR8, DOCK2, CCL13, CCL23, CCL14,

CCR5, CCL21, CXCL13, CCR4, CCR2

4.22E−05

KEGG_PATHWAY Cell adhesion molecules (CAMs) 15 2.895752896 1.03E−06 PTPRC, CADM3, SELL, ICAM3, ITGAM,

PDCD1LG2, HLA-DQA1, CD86, CD80,

ICOS, CD22, CD4, CD226, SPN, CD28

0.00123743

KEGG_PATHWAY B cell receptor signaling pathway 9 1.737451737 7.44E−05 PIK3CG, CD19, CR2, FCGR2B, CD22,

PIK3AP1, CD79B, CD79A, BTK

0.089383945

KEGG_PATHWAY Phagosome 12 2.316602317 2.37E−04 MRC1, MARCO, MSR1, FCGR2B, OLR1,

FCGR2C, FCGR1A, CD209, TLR4,

FCGR3A, ITGAM, HLA-DQA1

0.284714595

Downregulated IRGs

KEGG_PATHWAY Arachidonic acid metabolism 4 5 0.002057483 AKR1C3, GPX2, CBR1, PLA2G10 2.102810979

KEGG_PATHWAY Metabolic pathways 13 16.25 0.002420062 ETNPPL, DDC, ODC1, PLA2G10,

OGDHL, HAL, HGD, TAT, AKR1C3,

CBR1, HMGCS2, ENO3, NAT8L

2.469211516

KEGG_PATHWAY Tyrosine metabolism 3 3.75 0.009368241 DDC, HGD, TAT 9.255598588

KEGG_PATHWAY Metabolism of xenobiotics by

cytochrome P450

3 3.75 0.038441569 AKR1C2, CBR1, AKR1C1 33.26837318

KEGG_PATHWAY Phenylalanine metabolism 2 2.5 0.069378576 DDC, TAT 52.38108893

TABLE 4 | Multivariate Cox regression analysis of key immune-related genes.

Gene Coef HR HR.95L HR.95H p-value

CLEC17A −0.13549042 0.192289385 0.071601478 0.516402855 0.001071204

INHA 0.01207179 1.141665832 1.046649718 1.245307623 0.002804616

XIRP1 0.6263501 2.024671234 1.219239069 3.362173761 0.006410729

Evaluation of the Prognostic Model in the
Training Cohort
LASSO regression analysis was performed to construct and
evaluate the prognostic model (Figures 4A,B). Patients were
divided into high- and low-risk-score groups in accordance with
the best separation of risk scores. The high-risk-score group had
significantly worse OS than the low-risk-score group (p< 0.0001;
Figure 4C). The area under the ROC curve for predicting the 1-,
3-, and 5-year survival of lung adenocarcinoma was 0.699, 0.631,
and 0.669, respectively (Figure 4D).

Additionally, the risk curve indicated that the high-risk-score
group had a higher mortality and worse prognosis than the
low-risk-score group (cutoff value: 0.889; Figure 4E). Further
analysis of the relationship between risk score and pathological
stage revealed that patients with early-stage lung adenocarcinoma
(stages 1 and 2) scored lower than those with advanced stage lung
adenocarcinoma (p= 0.043; Figure 4F).

Univariate Cox analysis showed that pathological staging and
risk score had statistical significance, while age and sex had no
statistical significance (Figure 4G). However, multivariate Cox
analysis showed that pathological stage (HR, 1.995; 95% CI,
1.113–3.574; p = 0.020) and risk score (HR, 1.120; 95% CI,
1.025–1.223; p = 0.012) were independent prognostic factors
(Figure 4H).

GSEA of the Mechanism Underlying the
Prognostic Differences Between the Two
Groups
In this study, the possiblemolecularmechanisms of the prognosis
difference between the two groups of patients were analyzed by
GSEA analysis. The results showed that the GO and pathway
enrichment in the high-risk-score group was mainly involved in
metabolism-related pathways (Figures 5A,C). However, GO and
pathway enrichment in the low-risk-score group was primarily
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focused on immunoregulation and immune cell activation
(Figures 5B,D). The detailed GSEA results are described in
Table 5.

Validation of the Prediction Model in the
Testing Cohort
The Kaplan–Meier results showed that the high-risk group had
worse OS than the low-risk group (p < 0.0001) (Figure 6A). The
area under the ROC curve for predicting the 1-, 3-, and 5-year
survival of lung adenocarcinoma was 0.725, 0.712, and 0.660,
respectively (Figure 6B). Additionally, risk curve revealed that
the high-risk-score group had a worse prognosis than the low-
risk-score group (Figure 6C). These results were consistent with
the results of the training set.

The Mechanism of Action of Hub IRGs in
the TCGA Database
To further analyze the potential function of hub IRGs, our results
were verified using the TCGA and GTEx databases. First, the
mutation characteristics of these hub IRGs were analyzed among
patients with lung adenocarcinoma. The mutation rates of these
hub IRGs in patients with lung adenocarcinoma were 0.8, 1,
and 2.6% (Figure 7A). Moreover, each hub gene had different
mutation forms, including mutation, deletion, and amplification,
in lung adenocarcinoma. For example, the mutation form of
CLEC17A was mainly amplification, the mutation form of INHA
was mainly amplification and missense mutation, while the
mutation form of XIRP1 was mainly deep deletion and missense
mutation (Figure 7B).

In addition, analysis of pathways in the GSCALite database
revealed that CLEC17A is primarily involved in the activation of
the epithelial–mesenchymal transition (EMT) and RAS pathways
and cell cycle inhibition. INHA is primarily involved in the
activation of the mTOR pathway and inhibition of the apoptosis
pathway. XIRP1 was mainly involved in the activation of the
apoptosis and the EMT pathways and inhibition of the DNA
damage and the PI3K pathways (Figures 7C,D).

Finally, the TIMER database was used to analyze the
correlation between hub IRGs and immune cells. The results
showed that these key genes were significantly correlated with
the infiltration of CD4+ T cells, CD8+ T cells, macrophages,
B cells, and neutrophils. Assuming that a correlation coefficient
>0.3 was considered a strong correlation, further analysis showed
that CLEC17A was positively correlated with the infiltration
of B cells and CD4+ T cells. However, INHA was negatively
correlated with the infiltration of CD8+ T and dendritic cells.
However, there was no strong correlation between XIRP1 and
the infiltration of immune cells (Figure 7E). Moreover, the
relationship between copy number variation (CNV) of hub
IRGs and immune cell infiltration was further analyzed. The
results showed that there were significant differences between
the CNV of these hub IRGs and immune cell infiltration. Arm-
level deletion of the CLEC17A gene was closely related to the
infiltration of B cells, CD4+ T cells, macrophages, neutrophils,
and dendritic cells. Arm-level gain of the INHA gene was closely
related to the infiltration of CD4+ T cells. Arm-level deletion of

FIGURE 4 | LASSO regression analysis and identification of prognostic

signatures in the training set. (A) Ten-fold cross-validation for turning

parameter selection in the LASSO Cox regression model. (B) Coefficient

profiles in the LASSO Cox regression model. (C) Survival curve of low- and

high-risk groups stratified by immune-stromal score signature. (D) ROC

analysis of the TCGA dataset for prognostic signature. (E) LASSO regression

analysis of low- and high-risk groups. (F) Relationship between risk score and

clinical stage. (G) The forest plot of the prognostic signature by univariate

analysis. (H) The forest plot of the prognostic signature by multivariate Cox

proportional regression analysis.

the XIRP1 gene was closely related to the infiltration of CD4+ T
cells and macrophages (Figure 7F).

DISCUSSION

Tumor-infiltrating immune cells in the TME significantly
contribute to the prognosis of lung adenocarcinoma. Therefore, it
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FIGURE 5 | GSEA analysis of differences in pathway enrichment in the training set. (A,B) GO terms in the high- and low-risk score groups. (C,D) KEGG pathway

enrichment in the high- and low-risk score groups.

is essential to develop a TME-related immune prognostic model
for appropriate clinical management of lung adenocarcinoma.
Accordingly, the aim of this study was to develop a novel TME-
related immune prognostic model for lung adenocarcinoma.

Although some studies have explored the prognostic value of
TME-related IRGs in lung adenocarcinoma, certain key issues of
these models remain to be resolved.

Yang et al. (18) used the CIBERSORT algorithm to analyze
a TME-related prognostic immunity-based model for lung
adenocarcinoma. This model was developed to evaluate the
relative levels of the 22 immune cell phenotypes, primarily
including B cells, T cells, macrophages, dendritic cells, plasma
cells, natural killer cells, and mast cells. Moreover, this algorithm
is primarily used to evaluate immune cells; however, it cannot be
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TABLE 5 | Detailed results of gene set enrichment analysis.

NAME ES NES NOM p value

GO Terms

High score group

GO_RIBOSOMAL_LARGE_SUBUNIT_ASSEMBLY 0.78643316 1.9444792 0.00203252

GO_PENTOSE_PHOSPHATE_SHUNT 0.7535411 1.8539398 0.008298756

GO_RIBOSOME_ASSEMBLY 0.68597955 1.8540714 0.016528925

GO_NUCLEOBASE_BIOSYNTHETIC_PROCESS 0.71662575 1.7974799 0.01980198

Low score group

GO_B_CELL_ACTIVATION −0.6719656 −2.3789294 0

GO_IMMUNE_RESPONSE_REGULATING_CELL_SURFACE_RECEPTOR_SIGNALING_PATHWAY −0.654903 −2.3589978 0

GO_LYMPHOCYTE_ACTIVATION_INVOLVED_IN_IMMUNE_RESPONSE −0.60444784 −2.3353372 0

GO_T_CELL_ACTIVATION −0.6102059 −2.343195 0

KEGG Pathway Enrichment

High score group

KEGG_CITRATE_CYCLE_TCA_CYCLE 0.62047356 1.6142783 0.046184737

KEGG_GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM 0.5940425 1.5761957 0.060194176

KEGG_ARGININE_AND_PROLINE_METABOLISM 0.45005503 1.4639851 0.055900622

KEGG_NICOTINATE_AND_NICOTINAMIDE_METABOLISM 0.4092993 1.3358487 0.115384616

Low score group

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY −0.72458243 −2.4734645 0

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY −0.6531744 −2.3155243 0

KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION −0.5735697 −2.178205 0.001968504

KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS −0.5871511 −2.1173847 0

used to evaluate stromal cells in the TME. Yue et al. (19) used the
ESTIMATE algorithm to investigate the TME-related immune
prognostic characteristics of lung adenocarcinoma. However,
they directly enumerated immune and stromal cells from their
expression profiles of all genes expressed in lung adenocarcinoma
and normal tissues. Moreover, differentially expressed IRGs were
analyzed usingWilcoxon correlation analysis between tumor and
normal tissue. However, some limitations are associated with
the analysis of multi-dimensional tumor gene expression profiles
through theWilcoxon rank-sum test. These findings indicate that
these TME-related prognostic immunity-based models have not
been adequately evaluated. These issues can be resolved primarily
by improving the algorithm of IRGs in the TME and to identify
more specific TME-related IRGs for lung adenocarcinoma.
Therefore, it is essential to develop a new TME-related immune
prognostic model for lung adenocarcinoma.

To address these aforementioned limitations, in the present
study, a new method was developed to identify differentially
expressed IRGs. First, TME-related differentially expressed
IRGs were identified exclusively from tumor samples by
evaluating tumor-infiltrating immune cells and stromal
cells via the ESTIMATE algorithm; this probably effectively
reflected the TME-related IRGs in tumor tissue. Second,
differentially expressed IRGs were analyzed on the basis of
significant differences in OS between the high- and low-
immune-score groups in terms of lung adenocarcinoma,
rather than differences between lung adenocarcinoma
and normal tissue using the Wilcoxon rank-sum test. The

prognostic model, based on prognosis-associated differentially
expressed genes, might more accurately predict the prognosis
of lung adenocarcinoma. Finally, intersecting differentially
expressed IRGs with significant prognostic characteristics in
both immune and stromal scores were used for subsequent
analysis. Both immune cells and stromal cells in each
tumor sample were assessed, thus better reflecting the
characteristics of the TME. Therefore, the TME-related
immune prognostic model developed herein was different
from those developed previously. In this study, we developed
a more robust prognostic model of TME-related IRGs in
lung adenocarcinoma.

Furthermore, this study shows that patients with lung
adenocarcinoma and high immune scores had a better prognosis
than those with low immune scores, which might be due to
the involvement of upregulated IRGs in immune cell infiltration
factors, such as cytokines and B cell immune pathways. Clinical
studies have also shown that lung cancer patients with high
immune infiltration of helper T cells have a better prognosis
than those with low infiltration (20, 21). These findings were
consistent with our results. Previous studies have suggested that
IL-2 is involved in antitumor T cell infiltration, increasing the
efficacy of immunotherapy (22). IL-33 also promotes myeloid-
derived suppressor cells (MDSCs) and interferes with CD8+
T and natural killer (NK) cell infiltration (23). These studies
have suggested that certain cytokines are involved in antitumor
immune pathways, potentially elucidating the mechanisms
associated with prognosis.
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FIGURE 6 | Validation of the prediction features. (A) Survival curve of low- and high-risk groups stratified by immune-stromal score signature. (B) ROC analysis of the

TCGA dataset for prognostic signature. (C) LASSO regression analysis of low- and high-risk groups.

Moreover, GSEA was performed to further investigate the
potential mechanism underlying the differences in prognosis
between the two groups. The present results indicate that the
immunoregulation and immune cell activation pathways are
potentially associated with a better prognosis. The underlying
putative mechanism potentially involves the enrichment of B and
T cell immune pathways. Furthermore, the infiltration of these
immune cells is associated with an enhanced prognosis among

patients with lung adenocarcinoma. Our results are concurrent
with those of the aforementioned studies.

Furthermore, this study described the functional prediction
of potential hub IRGs. An enhanced understanding of these
potential hub genes is essential to elucidate their mechanisms
of action in the TME in lung adenocarcinoma. The present
results suggest that although these genes were prognosis-related
IRGs, they harbored different mutations involved in different
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FIGURE 7 | Mechanism analysis of hub genes in the TCGA database. (A) Matrix heat map shows genomic alterations of hub genes in five lung datasets. (B) The

alteration frequencies of hub genes across five studies on lung adenocarcinoma. (C) The pathways of hub genes were analyzed by the GSCALite tool. (D) Heatmap

percentage of hub genes. (E) The correlation between the hub gene and immune cells was analyzed in the TIMER database. (F) The relationship between copy

number variation (CNV) of hub genes and immune cell infiltration was further analyzed.
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pathways in lung adenocarcinoma, indicating their potential
involvement in different immunoregulatory pathways in lung
adenocarcinoma. Further analysis of the function of these
genes revealed that these hub genes and their CNVs were
different. Moreover, the association between these hub genes
and the infiltration of B cells, CD4+ T cells, CD8+ T cells,
neutrophils, and other immune cells was also different. These
results indicate that different CNVs of these hub genes warrant
further differentiation to better understand the association
between hub genes and immune cell infiltration. Based on
the aforementioned results, our results indicate that CLEC17A,
INHA, and XIRP1 are potential novel biomarkers for the
prognosis of lung adenocarcinoma.

CLEC17A is a human lectin found in lymph node B cells
and is involved in a variety of biological processes, including cell
adhesion, intercellular interactions, and pathogen recognition
(24). Previous studies have shown that CLEC17A is related to
the B cell receptor signaling pathway and plays an important role
in the pathogenesis of chronic lymphocytic leukemia (25). The
present results further indicate that CLEC17A is associated with
immune cell infiltration in lung adenocarcinoma, concurrent
with previous reports. XIRP1 is a striated muscle protein and
belongs to the Xin actin-binding repeat-containing protein
(XIRP) family. Previous studies have shown that the XIRP1
gene is related to hypertension and nervous system development
(26, 27). The function of the gene has not been reported in
tumors. However, our study showed that it was not only related
to the TME in lung adenocarcinoma but is also related to the
prognosis of lung adenocarcinoma. INHA encodes a member of
the transforming growth factor-beta (TGF-beta) superfamily of
proteins. The function of the gene has not been reported in lung
cancer. Our results showed that INHA was a marker of poor
prognosis in lung adenocarcinoma. The possible mechanism was
that INHA was involved in tumor angiogenesis, leading to tumor
metastasis and poor prognosis (28). Further studies are required
to elucidate the roles of these hub genes in the TME in the
pathogenesis of lung adenocarcinoma.

This study also had some limitations. First, this study only
mined data in the TCGA database and did not combine GEO
database analysis. However, in our study, patient data were
segregated into training and testing cohorts. In addition, the
results were verified and analyzed in comprehensive TCGA
and GSCALite datasets. Second, the function of the hub gene
in our study was analyzed based on the TCGA database, and
the validation function of the hub gene needs to be further
confirmed by basic experiments. Constructing an immune-
related prognosis model was the focus of our research; hence,
there was no basic experiment on hub prognostic genes.

Third, our study only analyzed the correlation of differentially

expressed IRGs with immune cell infiltration, thus lacking
the correlation analysis of the expression of PDL1 and tumor
mutational burden.

CONCLUSIONS

The robust TME-related immune prognostic model developed
herein effectively predicted the prognosis of patients with
lung adenocarcinoma, thus potentially guiding personalized
treatment of lung adenocarcinoma in accordance with prognostic
stratification. Further studies are required to elucidate the
regulatory mechanisms of these IRGs in the TME and develop
new treatment strategies.
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