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Introduction: Hepatocellular carcinoma (HCC) is one of the leading causes of

cancer-related deaths worldwide due to poor survival outcome. Thus, there is an urgent

need to identify effective biomarkers for early diagnosis and prognosis prediction.

Methods: A total of 389 differentially expressed genes (DEGs) between HCC samples

and normal were selected based on the Robust Rank Aggregation (RRA) method.

We combined DEGs expression and clinical traits to construct a gene co-expression

network through WGCNA. Forty hub genes were selected from the key module. Among

them, YWHAB, PPAT, NOL10 were eventually identified as prognostic biomarkers using

multivariate Cox regression model. Biomarkers expression pattern was investigated by

informatic analysis and verified by RNA-seq of 32 patients with HCC. DiseaseMeth 2.0,

MEXPRESS, and Tumor Immune Estimation Resource (TIMER) were used to assess the

methylation and immune status of biomarkers. GSVA, CCK8, colony formation assay,

Edu imaging kit, wound-healing assay, and xenograft tumor model were utilized to

investigate the effects of biomarkers on proliferation, metastasis of HCC cells in vitro,

and in vivo. The Kaplan–Meier (KM) plotter and ROC curves were used to validate the

prognostic and diagnostic value of biomarker expression.

Results: All the selected biomarkers were upregulated in HCC samples and higher

expression levels were associated with advanced tumor stages and T grades. The

regulation of YWHAB, PPAT, NOL10 promoter methylation varied in tumors, and

precancerous normal tissues. Immune infiltration analysis suggested that the abnormal

regulations of these biomarkers were likely attributed to B cells and dendritic cells. GSVA

for these biomarkers showed their great contributions to proliferation of HCC. Specific
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inhibition of their expression had strong effects on tumorigenesis in vitro and in vivo. ROC

and KM curves confirmed their usefulness of diagnosis and prognosis of HCC.

Conclusions: These findings identified YWHAB, PPAT, and NOL10 as novel biomarkers

and validated their diagnostic and prognostic value for HCC.

Keywords: prognosis, biomarker, GEO, hepatocellular carcinoma (HCC), dignosis

INTRODUCTION

Primary liver cancer is the fourth leading cause of cancer-
related deaths worldwide and hepatocellular carcinoma (HCC)
accounts for the majority of cases (1, 2). At present, it is
difficult to accurately predict prognosis in patients with HCC
because of cirrhosis and additional comorbidities (3). Tumor

burden and stage of liver dysfunction proved to be important
indictors in prognosis prediction and treatment selection (4, 5).

Multiple cohort studies and randomized controlled trials have

shown the survival benefits from several therapeutic strategies

including liver resection (LR), tumor ablation (ABL), liver
transplantation (LT), intra-arterial therapy (IAT), and immune
checkpoint inhibitors therapy (4–6). However, most patients
are not diagnosed until the tumor progressed to the late stage,
missing the best period for treatment (7, 8). The prognosis of
liver cancer remains poor overall, with a 5-year survival of 18%
(9). Therefore, it is necessary to search for effective diagnostic and
prognostic biomarkers for HCC.

Cancer biomarkers are defined as diagnostic indicators for
tumor biological behavior and stage assessment. To date, more
than 25 molecular therapies in 526 oncology have been approved
for clinical use based on predictive biomarkers (10). In HCC,
the landscape of molecular characterizations has uncovered
targetable drivers, of which ∼25% are considered to have
potential functions (11, 12). Recent clinical evidence indicates
that the percentage of patients in HCC with genomic alterations
related to response is approaching 20% (13). The identification
of recurrently mutated genes and copy number alterations have
shown that mutations and prevalent drivers (TERT, CTNNB1,
TP53, AXIN1, ARID1A, and ARID1B) detected in HCCs can
be considered as candidates for biomarkers. However, the
advancements in the understanding of these molecular drivers
have not yet been translated into biomarker-driven trials of
precision medicine. Further studies are required to identify
novel specific biomarkers of HCC to improve the prognosis.
Fortunately, rapid development of genome sequencing and
bioinformatics provides good opportunities for researchers to
integrate information from multiple independent studies. Large
sample sizes overcome substantial inter-study heterogeneity and
enhance credibility in promising biomarkers exploration.

The aim of this study was to explore potential diagnostic

and prognostic biomarkers and their biological functions in the
progression of HCC. In our study, 10 eligible Gene Expression
Omnibus (GEO) datasets were integrated with Robust Rank

Aggregation (RRA) method to identify robust differentially
expressed genes (DEGs) between HCC and adjacent normal
tissues. We combined expression profile of these DEGs and

clinical characteristics of the samples from The Cancer Genome
Atlas (TCGA) database to find hub genes through weighted
gene co-expression network analysis (WGCNA). Multivariate
Cox regression with forward stepwise strategy was used to select
biomarkers with prognostic value from hub genes. In addition,
association of biomarker expression with methylation status
and immune infiltration were detected. The result of Gene Set
Enrichment Analysis (GSEA) revealed that biomarkers were
closely associated with tumor proliferation, which was further
validated through their functional roles in the progression of
HCC both in vivo and in vitro. Kaplan–Meier (KM) survival
curves and receiver operator characteristic (ROC) curves were
drawn to confirm prognostic and diagnostic value of biomarkers
at last. The bioinformatic analysis of HCC in this study provides
insight into the critical roles of biomarkers in cell proliferation,
diagnosis, and prognosis of HCC.

MATERIALS AND METHODS

Selection Strategy of GEO Datasets
We searched for datasets related to HCC from Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) with the
Mesh terms “liver neoplasms” and “human.” A further filter
was performed with organism “Homo sapiens” and study type
“Expression profiling by array.” Consequently, 730 datasets were
included. In order to guarantee the quality of this study, datasets
obtained above were excluded if the following terms were met:

1. Sample counts lower than 10
2. Non-tumor liver specimens obtained from patients with

chronic hepatitis or cirrhosis.

According to the systematic screening strategy, nine series
accessions were finally included in this study: GSE14520,
GSE22405, GSE62232, GSE59261, GSE101685, GSE121248,
GSE64041, GSE50579, and GSE25097 (Table 1). In the
GSE14520, part of samples was carried out on the Affymetrix
Human Genome U133A 2.0 Array (GPL571) while other
samples were processed on the 96 HT HG-U133A microarray
platform (GPL3921). Therefore, GSE14520 was divided into
two datasets, namely GSE14520571 and GSE145203921. In
addition, transcriptome profiling and clinical information of
primary tumor and solid normal tissue were downloaded from
the TCGA-LIHC database (https://cancergenome.nih.gov/).

Screening for DEGs
We downloaded the series matrix files of datasets from GEO. The
R package “limma” was utilized to normalize the data, average
character values of duplicate genes and remove duplicate (14).
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TABLE 1 | Characteristics of GEO datasets included in the study.

Series accession ID Country (region) Number of samples Platform ID

Tumor Normal

GSE101685 Taiwan 24 8 GPL 570

GSE121248 Singapore 70 37 GPL 570

GSE59261 Italy 8 8 GPL18541

GSE62232 France 81 10 GPL570

GSE25097 United States 268 243 GPL10687

GSE50579 Germany 67 10 GPL14550

GSE64041 Switzerland 60 60 GPL6244

GSE14520 United States 22 19 GPL571

GSE14520 United States 225 220 GPL3921

GSE22405 United States 24 24 GPL10553

GSE, Gene Expression Omnibus Series; GPL, Gene Expression Omnibus Platform.

We then used ‘RobustRankAggreg’ R package to integrate the
results of those 10 datasets to find the most robust DEGs (15).
The log2 FC of each gene indicated its ranking in the final gene
list, and genes with adjusted P < 0.05 and |log2 FC| ≥ 1 were
considered as significant DEGs in the RRA analysis.

GO and KEGG Enrichment Analysis
We conducted Gene Ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
using the R package “clusterprofiler” (16). Bubble charts
visualized the top 10 terms of the biological process, cellular
component and molecular function of DEGs, respectively. A
visual network map of signaling KEGG pathway was further
drawn in Cytoscape 3.7.1 software (17).

Identification of Hub Genes
We extracted the top 5144 DEGs from RRA analysis to perform
WGCNA with clinical and expression data from TCGA. The
“WGCNA” R package was applied to construct clinical traits-
related modules and identify hub genes (18). The adjacency
matrix was transformed into topological overlap matrix (TOM).
Genes were divided into multiple gene modules based on the
TOM–based dissimilarity. Here, soft-thresholding power was set
as 7 (scale free R2

= 0.85), cut height as 0.25, and minimal
module size as 30. Correlations between module eigengenes and
clinical traits were calculated. Moreover, gene significance (GS)
was defined as the absolute value of the correlation coefficient
between genes and traits, and module membership (MM) of the
gene in the module was deemed to be the relation to expression
profiles. The gene with GS >0.2 and MM >0.8 in the module
most relevant to clinical traits was considered hub one. The
function annotation of hub genes was investigated through GO
enrichment analysis.

Construction of Prognostic Biomarkers
Based on the optimal cutoffs estimated by X-tile 3,6,1 (Yale
University, New Haven, CT, USA), continuous variables,
expression profiles of hub genes, were transformed into
dichotomous variables, low- and high-expression group. These

categorical variables along with clinicopathological factors, such
as tumor stage, T grade, age, body mass index (BMI), and gender,
were included to establish a multivariate Cox regression model
in the TCGA-LIHC dataset. Moreover, forward stepwise strategy
was used to select most robust independent prognostic variables.
Based on the above results, we built a nomogram to visualize
the prognosis prediction process and evaluated the prediction
accuracy through the calibration curves.

RNA Extraction, RNA-seq, and Data
Analysis
RNA was extracted from liver fresh frozen tissues of 32 patients
treated in our hospital, The First Affiliated Hospital of Medical
School of Zhejiang University (FAHMSZU). DNA libraries were
sequenced by Illumina HiSeq 2500 (pair-end 150-nucleotide read
length). Raw data were deposited in NCBI Gene Expression
Omnibus (GSE138485/PRJNA576155). HISAT2 (version 2.1.0)
was used to align Sequencing reads human reference sequence
(UCSC/hg38.p12) (19). FeatureCounts (release 1.6.3) was
performed for ach gene count from trimmed reads against
the GENCODE (release 30) (https://www.gencodegenes.org)
transcript models (20).

Correlations Between Biomarker
Expression With Clinical Features,
Methylation, and Immune Infiltration
To further evaluate the prognostic value of selected biomarkers,
violin plots were depicted to compare the expression levels
of biomarkers in tumor tissue and normal in the TCGA
dataset and the FAHMSZU cohort. Moreover, tumor samples
were divided into several subgroups based on pathological
stage and T grade to assess correlations between expression
levels and clinical characteristics. In addition, we investigated
differences in methylation levels of biomarkers with between
normal and tumor samples using UALCAN (https://ualcan.path.
uab.edu/index.html) online tool (21), which is a comprehensive
web resource for analyzing epigenetic regulation of gene
expression by promoter methylation in the TCGA database.
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Furthermore, MEXPRESS (http://mexpress.be) (22), an online
tool for visualizing expression, DNA methylation and clinical
TCGA data, was used to explore association between biomarker
expression and methylation levels at multiple DNA sites. In
terms of the relationship between biomarker expression and
tumor-infiltrating immune cells, the online tool TIMER (https://
cistrome.shinyapps.io/timer/) was utilized (23), which is a
comprehensive resource for the clinical relevance of tumor-
immune infiltrations.

Gene Set Enrichment Analysis (GSEA)
GSEA of biomarkers was performed to find potential functions
based on the “clusterprofiler” R package (16). The gene set
“c2.cp.kegg.v6.2.symbols.gmt,” downloaded from the Molecular
Signature Database (MSigDB, http://software.broadinstitute.org/
gsea/msigdb/index.jsp), was selected as the reference gene set.
Tumor samples were classified into two groups as described in
section Construction of Prognostic Biomarkers.

Validation of Diagnostic and Prognostic
Value of Biomarkers
Kaplan–Meier (KM) survival curves were drawn between high-
and low-expression biomarker groups to show prognostic
significances of biomarker expression in patients withHCC based
on the KM plotter database (24). In addition, diagnostic value
of prognostic biomarkers was assessed by receiver operating
characteristic (ROC) curves and the area under the curve (AUC)
in the TCGA dataset and the FAHMSZU cohort.

Cell Culture and Transfection
Four HCC cell lines (LM3, Huh7, 97H, SK-hep1) and one
normal hepatocyte cell line (LO2) were purchased from the
Liver Cancer Institute of Fudan University (China). All HCC
cells lines were cultured in DMEM high glucose medium
(Biological Industries, IL with 10% FBS and LO2 were cultured
in RMPI 1640 medium (Biological Industries, Israel) with 10%
FBS at 37◦C in a humidified incubator containing 5% CO2.
LM3 and Huh7 cells were transfected with particular siRNAs
purchased from GenePharma (China) using lipofectamine2000
(Invitrogen, USA). shRNA-YWHAB was constructed according
to the sequence of YWHAB si-1#. LM3 cells were infected by
lentivirus at a MOI of 20 pfu per cell. The stable transformants
were selected with 4 µg/ml puromycin.

YWHAB si-1#: Sense: GCUGAAUUGGAUACGCUGAAUTT
Antisense: AUUCAGCGUAUCCAAUUCAGCTT
YWHAB si-2#: Sense: CGCUGAAUGAAGAGUCUUAUATT
Antisense: AUAUAAGACUCUUCAUUCAGCGTT
PPAT si-1#: Sense: CCCUUCGUUGUUGAAACACUUTT
Antisense: AAGUGUUUCAACAACGAAGGGTT
PPAT si-2#: Sense: GUAGCUUCACCACCAAUUAAATT
Antisense: AUUUAAUUGGUGGUGAAGCUACTT
NOL10 si-1#: Sense: GCUGCGGAGAAUAAUGUUUTT
Antisense: AAACAUUAUUCUCCGCAGCAT
NOL10 si-2#: Sense: GCACAGUCUAUGAUGAUUATT
Antisense: UAAUCAUCAUAGACUGUGCTT.

RNA Extraction and qRT-PCR Analysis
RNA was extracted from the cell lines using TRIzol reagent
(Invitrogen, USA). RNA s µg) was then reversely transcribed
into cDNA through a Reverse Transcription Kit (Takara, China).
SYBRGreen (Takara, China) was used for real-time PCR analysis.
The results were normalized to the expression of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH).

Western-Blot

Scholars extracted the total proteins for 60min on ice in
RIPA buffer (Thermo Scientific, USA) having protease and
phosphatase as an inhibitor (Cell Signaling Technology, USA).
Cell lysates were centrifuged at 1.2 × 104 g, 4◦C for 15min, and
the concentrations of supernatants were examined with a BCA
Protein assay kit (Thermo Scientific, USA). 30 µg protein was
separated by 10% SDS-PAGE (Life Technology, USA) and then
moved to 0.45µm PVDF membranes (Millipore, USA). After
that, the PVDF membranes were instantaneously obstructed by
5% defatted milk in 1× tris-buffered saline (pH 7.6, 50mM
Tris and 150mM NaCl) for about 2 h at a regular temperature.
The membranes were incubated with monoclonal antibodies
at 4◦C for 24 h. In total, primary antibodies included those
for YWHAB (Abcam, UK, ab32560), NOL10 (Abcam, UK,
ab181161), PPAT (Abcam, UK, ab125864), GAPDH (Abcam, UK,
ab8245). We washed membranes for three times then incubated
with fluorescent-tagged secondary antibody for another 2 h.
Then, we used electrochemiluminescence (ECL) to read and
the immunoblots were examined with a visible imaging system
(Bio-Rad, USA).

Colony Formation Assay and Cell Viability
A total of 2 × 103 siRNA-transfected cells/well were plated into
6-well plates at 37◦C in a humidified incubator containing 5%
CO2. After 14 days, the cells were stained and photographed. Cell
proliferation was detected by using a Cell Counting Kit-8 assay
(Dojindo, JPN). Transfected LM3 and Huh7 cells (2 × 103/well)
were plated into 96-well plates. We measured the absorbance at
450 nm. The ethynyl deoxyuridine assays used an EdU Apollo
567 imaging kit (RiboBio, CN) to determine cell viability.

Cell Migration, Invasion, and
Wound-Healing Assay
Transfected Huh7 cell (3 × 104/well) in media with 1% FBS
were added to the upper insertion chamber (Millipore, USA),
while the lower chamber contained the medium with 10% FBS.
After incubation for 24 h, the remaining cells on the upper
membrane were removed with a cotton swab. Cells migrating
through the membrane were dyed with methanol, stained with
0.1% crystal violet. Cell invasion assay was performed using a 24-
well Transwell chamber. At 24 h after transfection, transfected
Huh7 cell were transferred to the Matrigel-coated top chamber
containing 100mL of serum-free medium. FBS was added to
the bottom chamber as chemoattractant. After 24 h, cells on the
bottom of the chambers were fixed in 4% methanol and stained
with 0.1% crystal violet. At 24 h after transfection, transfected
Huh7 and LM3 cell was created in the center of each well using
a micropipette tip. Cell migration was assessed by measuring the
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movement of the cells into the scratch in the well. The wound-
closure speed after 24 and 48 h was determined and normalized
to the length at 0 h.

Tumor Xenograft Model
HCC LM3 cells were harvested after being transfected with
shRNA or an empty vector. Next, the cells (4× 107) were injected
subcutaneously into the immunodeficient mice (Shanghai XeB
Animal Ltd, CN) (six animals per group). Eighteen days later,
all mice were sacrificed, and tumor tissue was collected for
analysis. Tumor volume was calculated using the formula: V
(mm3) = Width2 (mm2) × length (mm)/2. The Zhejiang
Medical Experimental Animal Care Commission approved the
experimental protocols involving animals.

Statistical Analysis
All statistical analyses were performed in R 3.6.1 software and
web resources. The non-parametric Wilcoxon rank-sum test was
applied to compare mRNA expression in tumor and normal
tissues and Kruskal–Wallis test was used to compare expression
differences between multiple tumor stage or T grades samples
and normal samples. A multivariable regression model with
biomarker expression and infiltration of immune cells was
constructed to calculate partial correlation coefficients between
independent variables in TIMER tool. Fisher’s exact test was
adopted to determine gene enriched pathway and process in
DAVID functional annotation tool. Log-rank test was used to
show survival differences in the KM curves. All assays were
carried out three times. The Student’s t-test was used to examine
the statistical significance of differences between two groups
if the data were normally distributed; otherwise, the Mann-
Whitney test was used. A 2-sided α of <0.05 was considered
statistically significant.

RESULTS

Identification of DEGs
The flowchart shows identification and validation process of
biomarkers with diagnostic and prognostic value (Figure 1).
As a result, ten eligible datasets that met screening criteria
were included in the subsequent analysis. Detail information
of included datasets, such as GEO series accession ID, study
country, sample information, platform ID, was shown in Table 1.
All of ten expression matrices were sorted by logarithmic fold
change (log2 FC) ranking of internal genes and integrated to
screen robust DEGs. Finally, 389 integrated DEGs, including
292 upregulated and 97 downregulated significant DEGs, were
identified based on the RRA analysis. The top 20 upregulated
and downregulated DEGs were drawn on the heatmap
(Figure 2). CLEC1B was the most significant upregulated gene
(log2 FC = 6.88) while CCNB2 ranked first among all of
downregulated genes (log2 FC= 5.84).

Functional Enrichment Analysis of DEGs
Gene Ontology (GO) annotation was performed for the
significant integrated DEGs. The top biological process GO
enrichment terms were small molecule catabolic process,

carboxylic acid biosynthetic process, and organic acid catabolic
process. Collagen-containing extracellular matrix was the most
enriched cellular component GO terms, followed by spindle and
condensed chromosome. In addition, we found several enriched
molecular functions such as coenzyme binding, heme binding,
and tetrapyrrole binding. What’s more, the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways in which integrated
DEGs were most enriched were cell cycle, followed by chemical
carcinogenesis, retinol metabolism, p53 signaling pathway, and
metabolism of xenobiotics by cytochrome P450 (Figure 3). The
result of KEGG pathway enrichment was further visualized on
network diagram drawn by Cytoscape software, as shown in
Supplementary Figure 1.

WGCNA and Module Analysis
We incorporated the expression profile of integrated DEGs with
clinical traits of the TCGA-LIHC samples to construct a gene
co-expression network. Clinical characteristics including TNM
grade, BMI, age, gender, and living status of HCC samples were
clustered with expression matrix as shown on the heat map
(Figure 4A). Next, the soft threshold was set to 7 so that the scale-
free network evaluation coefficient R2 reached 0.85 for the first
time (Figure 4B). A total of 15 modules were identified from the
co-expression network after merging similar modules according
to a cut height of 0.25 (Figures 4C,D). Correlations between
module eigengene and clinical traits were visualized in Figure 4E.
We found the turquoise module most relevant to clinical traits
from the heatmap of module-trait relationships, especially the T
grade (correlation coefficient = 0.22, P = 3E−06) (Figure 4F).
Forty hub genes were identified from the turquoise module by
setting the screening criteria of GS >0.2 and MM >0.8. Hub
genes showed a close connection with each other, as shown in
Supplementary Figure 2A. What’s more, GO function analysis
was performed to reveal potential biological functions of hub
genes. As a result, viral process was themost significant GO terms
for biological process in which hub genes were most enriched
as well. The most significant GO annotation was cytoplasm for
cellular component and protein binding for molecular function,
respectively (Supplementary Figures 2B–D).

Selection of Biomarkers With Prognostic
Value
We selected thirty genes that had never been proved to be
associated with HCC from forty hub genes as candidates to
construct biomarkers with prognostic value. The dichotomous
variables of candidate gene expression and clinicopathological
characteristics, such as tumor stage, T grade, body mass
index (BMI), age, and gender, were included as covariates in
the multivariate Cox regression model. The result revealed
NOL10 expression was the most significant independent factor
(Figure 5A). Subsequently, forward stepwise selection was
performed and each step chose the most significant gene into
the final model. Detailed results of selection at each step was
shown in Supplementary Table 1. YWHAB, PPAT, NOL10, and
age were eventually considered as independent prognostic factors
(Figure 5B). We further combined four independent variables
to build a nomogram that visualized their prognostic value in
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FIGURE 1 | Flow chart of biomarker identification and validation.

predicting overall survival at 1, 3, and 5 years (Figure 5C).
Moreover, calibration curves indicated that the nomogram had
good prediction accuracy for 3 and 5-year overall survival

(Figures 5D,E). After comprehensive assessment of prognostic
value, YWHAB, PPAT, andNOL10 were considered as prognostic
biomarkers for HCC.

Frontiers in Oncology | www.frontiersin.org 6 September 2020 | Volume 10 | Article 541479

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hu et al. Novel Biomarkers for Prognosis of Hepatocellular Carcinoma

FIGURE 2 | Identification of robust DEGs by RRA method. Heatmap shows the top 20 upregulated and downregulated DEGs in GEO series accessions. Each row

denotes one DEG and each column represents one dataset. The color changes from red to green indicates regulation from up to down. The numbers in the box stand

for logarithmic fold change.
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FIGURE 3 | Bubble charts of enriched GO annotations and KEGG pathways for integrated DEGs. (A) The top 10 enriched biological process GO terms. (B) The top

10 enriched cellular component GO terms. (C) The top 10 enriched molecular function GO terms. (D) The top 10 enriched KEGG pathways.

Validation of Correlations Between
Biomarker Expression and Progression of
HCC
It was worth noting that biomarker expression was significantly
upregulated in tumor samples compared to adjacent normal
controls (P < 0.001). The similar results were obtained from
a cohort of 32 paired HCC patients treated in our hospital,
The First Affiliated Hospital of Medical School of Zhejiang
University (FAHMSZU). In comparisons with normal tissue,
significant differences in biomarker expression at different
T grades and stages were observed. As the tumor stage
progressed from early to advanced or the tumor grade
progressed from low to high, biomarker expression tended to
rise (Figure 6).

Association of Biomarker Expression With
Methylation, Immune Infiltration, and
Tumor Proliferation
Regulation of promoter methylation varied when comparing
average methylation levels of biomarker in tumors and
precancerous normal tissues. Among three biomarkers, YWHAB
methylation level was significantly higher in HCC than in
normal and PPATmethylation level showed an inverse significant
regulation compared to YWHAB while NOL10 methylation
level did not differ significantly between two groups. Despite
the aforementioned differences in methylation regulation, the
similarity was that the expression levels of YWHAB, PPAT, and
NOL10 correlated with methylation levels at many methylation
sites in their DNA sequences. Regarding immune infiltration,
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FIGURE 4 | Identification of hub genes from key modules associated with clinical traits in the TCGA-LIHC dataset through WGCNA. (A) Clustering dendrograms of

robust DEGs from RRA analysis and clinical traits of TNM grade, BMI, gender, and age displayed at the bottom. (B) Analysis of the scale-free fit index and the mean

connectivity for various soft-thresholding powers. (C) Clustering of module eigengenes. (D) Dendrogram of all DEGs clustered with dissimilarity measure based on

topological overlap. (E) Heatmap of the correlation between module eigengenes and clinical traits. Each row denotes a module eigengene, each column represents a

clinical trait and each cell contains the correlation coefficient and P-value. (F) Scatter plot of genes in turquoise module.
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FIGURE 5 | Selection of biomarkers with diagnostic and prognostic value. (A) Forest plot of first step selection based on the multivariate Cox regression model.

(B) Forest plot of final model constructed by forward stepwise strategy. (C) Nomogram to predict survival probability at 1, 3, 5 years. (D) Calibration curve for the

nomogram predicting 3-year overall survival. (E) Calibration curve for the nomogram predicting 5-year overall survival.
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FIGURE 6 | Correlations between biomarker expression and progression of HCC. (A) YWHAB expression differences. (B) PPAT expression differences. (C) NOL10

expression differences. (a) between tumor and adjacent normal tissues in the FAHMSZU cohort. (b) between tumor and solid normal tissues in the TCGA-LIHC

dataset. (c) between different T grades tumor and solid normal tissues in the TCGA-LIHC dataset. (d) between different stages tumor and solid normal tissues in the

TCGA-LIHC dataset. (ns P ≥ 0.05; *P < 0.05; **P < 0.01; ****P < 0.0001).

YWHAB, PPAT, and NOL10 were all positively related to B
cells and dendritic cells. Notably, positive associations were
observed between YWHAB and all of immune infiltration as
well as tumor purity. In addition, the results of GSEA plots
revealed “DNA replication,” “Homologous recombination” and
“Mismatch repair” were three pathways in which genes were
significantly enriched. These enriched pathways were all closely
related to tumor proliferation (Figure 7).

Biomarkers Regulate HCC Cell
Proliferation and Migration
In order to verify the results of above bioinformatic analysis,
we next examined the influence of three biomarkers on
the biological behaviors of HCC cell lines. According to
the expression levels (Supplementary Figures 4A–C), the

HCC-LM3 and Huh7 cell lines were chosen for stable
knockdown experiments. YWHAB, PPAT, NOL10 were
knocked down in Huh7 and LM3 HCC cell lines, respectively.
As shown in Figure 8A, Supplementary Figures 3A, 4D the
transfection efficiency was examined by RT-PCR and western
blot, CCK-8 assays indicated that knocking down PPAT,
YWHAB expression suppressed the proliferative ability of HCC
cells, while the effect of NOL10 on HCC growth is insignificant
(Figure 8B and Supplementary Figure 3B). In addition, a
similar result was also observed with an EdU assay (Figure 8C
and Supplementary Figure 3C). Furthermore, it turned out
that colony formation in HCC cells was significantly reduced
after PPAT and YWHAB depletion (Figure 8D). Next, we
found that Huh7 and LM3 cell migration and invasion were
observably impaired after NOL10 knockdown (Figures 8E–G).
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FIGURE 7 | Association of biomarker expression with methylation, immune infiltration and tumor proliferation in the TCGA-LIHC dataset. (A) YWHAB, (B) PPAT, and

(C) NOL10. (a) Differences in promoter methylation levels between tumor and solid normal tissues. (b) Association between expression and methylation sites of DNA

sequences. (c) Association between expression and immune infiltration. (d) Top 3 enriched KEGG pathways in the high-expression group. (ns P ≥ 0.05;

*P < 0.05; **P < 0.01).

To determine the effect of hub genes on HCC growth in vivo, we
subcutaneously injected YWHAB-silenced or control LM3 cells
into nude mice. All tumors were collected 3 weeks after injection
(Figure 8H). The tumor volumes and weights were quantified.
The data indicated that silencing YWHAB reduced tumor weight
and tumor volume (Figures 8I,J).

Validation of Diagnostic and Prognostic
Value of Biomarkers
The Kaplan–Meier (KM) plotter was used to validate the
prognostic value of biomarker expression. We found that higher
expression of three biomarkers was significantly associated with
poorer overall survival, relapse-free survival, post-progression
survival, and disease-specific survival, suggesting that YWHAB,
PPAT, and NOL10 were reliable biomarkers for HCC prognosis
(Figures 9A–C). Moreover, high diagnostic value of these three
biomarkers was confirmed in the ROC curves depicted in the
TCGA-LIHC dataset and the FAHMSZU cohort (Figures 9D,E).

DISCUSSION

Globally, liver cancer is the fourth leading cause of cancer-related
deaths, with the sixth highest incidence (1). HCC accounts for
about 80% of all cases of primary liver cancer, most of which
occur in patients with chronic diseases such as hepatitis B
virus (HBV), hepatitis C virus (HCV) and alcoholism (25, 26).
The increase in deaths caused by HCC is a growing concern.
Despite significant advances in the early treatment of HCC
patients through surgery, the five-year overall survival rate is

only 50–70% (5). According to the World Health Organization
report, more than one million patients will die from liver
cancer by 2030. Thanks to comprehensive genomic analysis
and advances in bioinformatics technology, more molecular
events have been discovered to study new biomarkers and
therapeutic targets for HCC. For instance, many abnormally
regulated signaling pathways (such as RAS–MAPK, mTOR, and
WNT signaling) and the most frequently mutated drivers (such
as TERT promoter, CTNNB1 and TP53) have been confirmed
to be associated with HCC (11, 27, 28). Nevertheless, the
research achievements of molecular pathogenesis have not yet
transformed into molecular therapies for precision medicine
(29, 30). Therefore, there is an urgent need to find more effective
diagnostic and prognostic markers.

In our study, we adopted three methods of RRA, WGCNA,
and multivariate Cox regression analysis to explore novel
biomarkers. First, a total of 389 integrated DEGs were identified
between HCC samples and normal in 10 GEO datasets based
on the RRA analysis. The results of enrichment analysis in
multiple GO terms and KEGG pathways revealed that these
DEGs had close associations with the progression of HCC due
to their robust relations to oxidation-reduction process, zinc
ion binding, protein binding, and metabolic pathway. Notably,
protein binding is a critical factor in the advance of HCC.
Metabolic pathway plays an important role in drug metabolism
and may be a risk indicator for the common complications of
HCC (31). Furthermore, forty hub genes in the key module were
identified through gene co-expression network. Some of these
genes, such as FUBP1 (32) and TRIM (33), have been reported
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FIGURE 8 | Biomarkers regulate HCC cell proliferation and migration in vitro and in vivo. (A) HCC Huh7 was transfected with four siRNAs. qRT-PCR was used to

detect the transfection efficiency. (B) CCK-8 assays were conducted to examine Huh7 cell viability after the knockdown of YWHAB, PPAT, and NOL10 expression.

(C) EdU incorporation assays were used to examine cell proliferation (red signal). The cell nuclei were counterstained with Hoechst (blue signal). Representative

images and quantification are shown. (D) Knocking down YWHAB and PPAT expression inhibited colony formation in HCC cells. (E,F) Migration and invasion of Huh7

was detected after transfection with si-NOL10, respectively, for 24 and 48 h. (G) Migration of Huh7 cells was detected after transfection with si-NOL10 for 24.

(H) Photographs of the subcutaneous tumors are shown. (I,J) The tumor weights and volumes were measured. (ns P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001;

****P < 0.0001).

to be correlated with the poor prognosis of HCC. Additionally,
viral process is the most enriched biological progress GO
term of all hub genes. However, how genetic alterations drive
cancer phenotypes in HBV/HCV-related HCC remains unknown
although viral hepatitis (especially chronic HBV and HCV
infection) is themost common cause of HCC, accounting for 80%
of HCC cases worldwide (34).

To further search for the effective biomarkers with diagnostic
and prognostic value, a multivariate Cox regression model
including hub gene expression and clinicopathological
characteristics was constructed. As a result, three biomarkers
were selected, namely YWHAB, PPAT, and NOL10.
Phosphoribosyl pyrophosphate aminotransferase (PPAT) is a key
regulatory enzyme in de novo purine nucleotide biosynthesis and
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FIGURE 9 | Kaplan–Meier survival analysis of high- and low- expression samples. (A) YWHAB, (B) PPAT, and (C) NOL10. (a) Overall survival. (b) Disease-specific

survival. (c) Post-progression survival. (d) Relapse-free survival. (D) Diagnostic ROC curves for YWHAB, PPAT, and NOL10 in the FAHMSZU cohort. (E) Diagnostic

ROC curves for YWHAB, PPAT, and NOL10 in the TCGA-LIHC dataset.

has become an attractive and credible drug target for leukemia
and other cancer therapeutics (35, 36), but its function in HCC
remains unclear. Previous studies have reported that circNOL10

is involved in cell proliferation and cell cycle progression of
lung cancer through the methylation of splicing factor epithelial
splicing regulatory protein 1 (ESRP1) (37), but the role of NOL10
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in HCC is implicit. Similar to the other two biomarkers, what
role YWHAB plays in the progression of HCC remains a mystery
while it proves to be a biomarker for idiopathic pulmonary
arterial hypertension (IPAH) (38). Significant differences in
expression of these three biomarkers between tumor tissues
and normal were observed in the TCGA-LIHC dataset and the
FAHMSZU cohort, indicating that YWHAB, PPAT, NOL10 were
overexpressed, especially in patients with advanced pathological
T grade and stage.

Moreover, the HCC microenvironment is a complex
ecosystem that fuses a variety of parenchymal cells and
immune-related cells, and the success of immune checkpoint
suppression in solid tumors highlights the key role of the tumor
microenvironment in tumor progression (39, 40). We utilized
TIMER to explore the biomarker-related immune infiltration
and tumor purity, and close associations with B cells and
dendritic cells were detected. One plausible hypothesisis that
an altered liver microenvironment, through reprogramming of
the inflammatory milieu, may contribute to HCC. Patients with
HCC present spontaneous antitumor immunity despite the fact
that they arise in a “tolerogenic” environment. Recently, some
immune-based approaches such as antigen-based vaccination
strategies (peptides, dendritic cells), immune checkpoint
blockade, adoptive cell therapy and Toll like receptor (TLR)
agonists have been shown in preclinical and clinical development
for HCC. Traditional subsets of dendritic cells (DC) (cDC1
and cDC2) have been reported to be inhibited due to local
factors (including IL-10), which prevented mature DCs from
inducing anti-tumor immune responses in HCC (41, 42). A
recent research has shown that upregulated β-catenin (CTNNB1)
promotes immune escape and involves defects in recruitment
of dendritic cells (43). In our work, the positive correlations
between biomarkers and immune cells suggested YWHAB,
PPAT, and NOL10 likely related to tumor microenvironment,
which affected the recruitment of infiltrating immune cells
into the tumor microenvironment of HCC. However, little is
known about the characteristics and functions of biomarkers and
immune cells (B cells and DC subsets) in patients with HCC. It
requires more work to confirm in the future.

To further uncover the potential biological functions of
biomarkers in HCC, we performed GSEA analysis on the high
expression groups of each biomarker and found that “DNA
replication,” “Homologous recombination” and “Mismatch
repair” were three significantly enriched pathways. Homologous
recombination is the main pathway to repair DNA double-
strand breaks, the most fatal form of DNA damage. Based on
the findings from GSEA, we proposed that YWHAB, PPAT,
and NOL10 made great contributions to the proliferation of
HCC. We further knocked down the expression of PPAT,
YWHAB, and NOL10 in HCC cells and found that depletion
of PPAT, YWHAB suppressed the tumor proliferation. The
effect of YWHAB on HCC growth was also observed in
vivo. Moreover, NOL10 silencing inhibited the migration
and invasion of HCC. Interestingly, higher expression of
three biomarkers has robust connections with poorer overall
survival, relapse-free survival, post-progression survival, and
disease-specific survival, indicating that YWHAB, PPAT, and

NOL10 are reliable biomarkers to predict prognosis in patients
with HCC. Based on the ROC curves, YWHAB, PPAT, and
NOL10 have also been identified as potential biomarkers for
diagnosing HCC with high sensitivity and specificity. The
above findings from bioinformatics analysis and laboratory
experiments demonstrated that novel biomarkers we selected
performed well for survival prediction and diagnosis of HCC.
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