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Background: The development and clinical adoption of quantitative imaging biomarkers
(radiomics) has established the need for the identification of parameters altering radiomics
reproducibility. The aim of this study was to assess the impact of magnetic field strength on
magnetic resonance imaging (MRI) radiomics features in neuroradiology clinical practice.

Methods: T1 3D SPGR sequence was acquired on two phantoms and 10 healthy
volunteers with two clinical MR devices from the same manufacturer using two different
magnetic fields (1.5 and 3T). Phantoms varied in terms of gadolinium concentrations and
textural heterogeneity. 27 regions of interest were segmented (phantom: 21, volunteers: 6)
using the LIFEX software. 34 features were analyzed.

Results: In the phantom dataset, 10 (67%) out of 15 radiomics features were significantly
different when measured at 1.5T or 3T (student’s t-test, p < 0.05). Gray levels resampling,
and pixel size also influence part of texture features. These findings were validated in
healthy volunteers.

Conclusions: According to daily used protocols for clinical examinations, radiomic
features extracted on 1.5T should not be used interchangeably with 3T when
evaluating texture features. Such confounding factor should be adjusted when adapting
the results of a study to a different platform, or when designing a multicentric trial.

Keywords: tissue features, heterogeneous phantom, homogeneous phantom, magnetic fields, texture, magnetic
resonance imaging
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HIGHLIGHTS

1. - Radiomic features at 1.5T are not interchangeable with 3T
when evaluating tumor texture

2. - Field strength should be taken into account in the
interpretation of the texture indices

3. - Signal to noise ratio should be taken into account in the
interpretation of the texture indices
INTRODUCTION

Radiomics is a fast growing discipline, which is undergoing
growing interest in computational medical imaging (1). This
field of medical study aims at extracting a large amount
of quantitative features from medical images using data-
characterization algorithms. This research field is faced with
multiple challenges (2). Radiomics is used in oncology to analyze
features that are invisible to the naked eye and that may be
associated with gene expression, tumor histology, treatment
response and patient outcome (3).

MRI has several advantages and disadvantages for radiomics
analysis (4–7). Among imaging modalities, it offers the best soft
tissue contrast. Conversely, differences in MRI parameters (field
strength, gradient characteristics), image acquisition protocols
(8, 9), sequences, pixel size (10), and the signal-to-noise ratio
(SNR) (11, 12) might impact radiomics features that are sensitive
to image quality.

The impact of MRI acquisition and processing on radiomics
reproducibility is scarcely reported. As in nuclear medicine, the
validation of a biologically relevant and reproducible clinical
biomarker based on radiomics implies standardization of
protocols across several centers (13). For example, 3T
compared with 1.5T MRI not only provides higher SNR,
allows increased image resolution, and modifies relaxation
times T1 and T2 but also induces some artifacts. Thus, there is
a clear need to evaluate the influence of field strength and related
settings like image resolution (pixel size, field of view [FOV], and
matrix) on radiomic features.

Recent articles using radiomics as biomarkers consider that the
major challenge is that grayscale MRI intensities, contrary to X-ray
CT, are not standardized and are highly dependent onmanufacturer,
sequence type and acquisition parameters (14, 15).

To address this problem, authors focused on image pre-
processing techniques that effectively minimize MR intensity
inhomogeneity in a tissue region (16–18), spatial resampling
(17–20) and brain arch extraction prior to image intensity
normalisation (21, 22).

Although several studies have shown variability in texture
analysis as a function of MRI acquisition parameters and gray
Abbreviations: 3D SPGR, 3D rapid gradient echo sequence; EORTC, European
Organization for Research and Treatment of Cancer; TR, Repeat time; MTX, Image
matrix; CoMat, The co-occurrence matrix; GRLM, The gray-level run length matrix;
GZLM, The gray-level zone length matrix; SBW, Sampling bandwidth.
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level discretization steps, none of them have evaluated the
combined impact of magnetic field strength, matrix size, pixel
size, intensity normalization, and gray level discretization pre-
processing methods on MRI radiomic feature values (9, 10, 23).

This study was designed to evaluate the impact of the field
strength (1.5T vs. 3T) on radiomic features. Two clinical 1.5 and 3T
MR devices from the same manufacturer were used to image the
same phantoms, mimicking homogeneous and heterogeneous
tissues. We also imaged healthy volunteers with the same
sequences acquisition and image processing parameters.

It is believed that this step is crucial before proposing
recommendations to standardize brain MRI pre-processing
techniques, which is in turn essential for guaranteeing reliable
radiomics-based models with big data and artificial intelligence.
MATERIAL AND METHODS

This prospective study was approved by the local institution
review board.

Homogeneous Phantoms
Our homogeneous phantom was designed to mimic cerebrospinal
fluid and opacified blood vessels. It was defined with different
gadolinium concentrations: eight 30-ml tubes were filled with
demineralized water mixed with increasing gadolinium chelate
concentration (Gadoteric Acid; Dotarem®, Guerbet): 0.25, 0.5,
0.75, 1, 1.25, 1.5, 1.75, and 2 mmol/l (Figures 1A, B). Those eight
homogeneous tubes were designated C1 to C8.

Heterogeneous Phantoms
Our heterogeneous phantom, designed to mimic the brain white
matter, was composedof agarose gel coating polystyrenebeads. The
proton density of agarose has similar characteristics and relaxation
times to biological tissues (10).We defined six heterogeneous tubes
and two homogeneous tubes. The 30-ml tubes were filled with
polystyrene beads of different diameters (1, 2 and 3 mm) in an
agarose gel solution (2%), either pure or mixed with 0.25 mmol/l
Gadolinium chelate (Figures 1C, D) (9). The tubes were displayed
in the tube slots of the Eurospin phantom (A Eurospin II-(TO5)
phantom; Diagnostic Sonar) glass cylinder, filled with 1% copper
sulfate (24). The eight tubes were designated T1 to T8.

Healthy Volunteers
Clinical MRI sequences were performed in 10 healthy volunteers
aged 21–26 years (six men, four women). Two MRI acquisitions
were performed on each MRI device within a 40-min time interval.

MRI Devices and Protocols
The influence of field strength was tested on two different MRI
devices from the same manufacturer (General Electric): an
Optima MR450w 1.5T superconducting magnet MRI installed
in 2016 with a 70 cm tunnel, 32 channels, 50 cm FOV (Z axis),
and gradients 40 mT SR 200 mT/m/s, and a Discovery MR750w
3T superconducting magnet MRI installed in 2012, with a 70 cm
tunnel, 32 channels, 50 cm FOV (Z axis), and gradients 44 mT/m
SR 200 T/m/s.
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We used ‘head and neck’ coils with 32 channels with a 35 cm
diameter adapted to the frequency of each MRI.

Acquisition
MRI imaging acquired was based on a T1-weighted 3D rapid
gradient echo sequence (3D SPGR). This sequence is used in
clinical imaging for rapid volumetric imaging and can be
acquired before or after contrast agent injection. The same
sequences parameters (matrix, FOV, plane) were used for
both MRIs. Parameters were chosen as recommended by the
European Organization for Research and Treatment of Cancer
(EORTC) to explore brain tumors: repeat time (TR) 6.1 ms; echo
time (TE) inphase 1.2–2.1 ms; NEX1; thickness 1 mm in
contiguous sections and bandwidth at 31 with 165 slices; 2–5-
min acquisition depending on the FOV and matrices. The
temperature was maintained between 19 and 21°C in each
MRI during acquisition. For the healthy volunteers, the same
3DT1 SPGR sequence was used covering the whole encephalon.
Frontiers in Oncology | www.frontiersin.org 3
Acquisition Parameters: Field of View and
Matrix Size
For the phantom study, five couples of matrices and FOV,
determining various pixel size, were applied on both machines
(Table 1). The couples were chosen to be suitable with clinical
acquisition. In healthy volunteers only one acquisition per device
was performed, the FOV was fixed at 24 cm with an image matrix
of 256 × 256 on both machines.

Texture Analysis
Segmentations and texture features calculations were performed
with the freely available LIFEX software package (http://www.
lifexsoft.org) (25). A 6 cm3 VOI was placed in each homogeneous
and heterogeneous phantom’s tube. VOI position along Z axis of
tubes was controlled according to the reference markers located
on the phantom surface. For healthy volunteers, VOI were
displayed in six bilateral areas: corpus callosum, central gray
nuclei, and white matter of the centrum semiovale.
FIGURE 1 | (A) Homogeneous phantoms: eight 30-ml tubes filled with demineralized water mixed with increasing gadolinium chelate concentration (Gadoteric Acid;
Dotarem®, Guerbet): 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2 mmol/l and a central demineralized water tube. (B) T1 weighted MRI image of the homogeneous
phantom (256x256 matrix, 18 cm FOV). (C, D) T1 weighted MRI image of the heterogeneous phantom (256;256 matrix, 24 cm FOV): in the two central columns are
six 30-ml tubes filled with polystyrene beads of different diameters (1, 2 and 3 mm) in an agarose gel solution (2%), either pure or mixed with 0.25 mmol/l gadolinium
chelate, and two 30-ml tubes filled with agarose gel solution (2%) and two different concentration of gadolinium chelate.
January 2021 | Volume 10 | Article 541663
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In each VOI, 38 texture features (indices) were extracted from
first order and second-order statistics, arising from the analysis
of the intensity histogram and the calculation of three texture
matrices: the co-occurrence matrix (CM), the gray-level run
length matrix (GRLM) and the gray-level zone length matrix
(GZLM) (26). The texture analysis software needs to resample
the 16-bit gray levels of MRI images in order to calculate these
features. Voxel intensities were resampled in three different ways,
using 256, 128 and 64 discrete values.

Calculation of Signal-to-Noise Ratio
Mean SNR values were calculated on both MRIs by measuring
the ratio between the mean signal intensity in each pure agarose
sample and the standard deviation (SD) of the background noise
selected in the frequency encoding direction. Calculation of SNR
in healthy volunteers was also performed by measuring the mean
signal intensity in each white substance and the SD of the
background noise selected in the frequency encoding direction.

Statistical Methods
Two-by-two correlation texture features were calculated. The
statistical significant differences between 1.5 and. 3T were
determined by the Student’s t-test using paired data. In the
event of a lack of normal distribution (N < 30), results were also
presented as boxplots to demonstrate the trend of texture values
on 1.5T vs. 3T. The association between acquisition protocols
(magnetic field, matrix, FOV), textural changes in the phantom
(homogeneous vs. heterogeneous and polystyrene size), and
imaging features, was calculated with Spearman’s rho correlation
coefficients with P-values corrected for multiple tests. Statistical
analyses were performed using SPSS v24.0. The datasets generated
and analyzed are available from the corresponding author.
RESULTS

Phantom Study
Influence of Software Resampling Step
The analysis software needs to resample the images gray scale by
sub-sampling the number gray levels, in order to be able to
calculate texture features. Thus, we firstly explored the influence
of this sub-sampling step before exploring the influence of
magnetic field strength. We did this through the two-by-two
coefficient correlation calculation between the texture features
(Figure 2). A colored (red/blue) hierarchical clustering is
presented, showing the importance of the correlation beteween
coefficients (Figure 2) for each level of resampling. A strong
Frontiers in Oncology | www.frontiersin.org 4
correlation was observed for a large number of texture features at
the 256 gray level (only 9 features were totally independent with
a Spearman’s rho <0,70). The correlation value decreased with
the sub-sampling in gray levels resolution. The gray level sub-
sampling influence on texture features was not significant for
parameters extracted from the histogram. In contrast, the gray
levels sub-sampling had a significant impact on parameters
extracted from matrices.

Influence of Field Strength on Homogeneous
Phantom
The majority of texture features values were significantly
different between the two magnetic fields (1.5T vs. 3T). For
example the mean value is presented for comparison between the
two fields strenght (Figure 3). The entropy mean value was
higher on 3T versus 1.5T by a factor of four (Figure 3).

Influence of Field Strength on Heterogeneous
Phantoms
The majority of texture features were significantly different
between the two magnetic fields (1.5T vs. 3T) according to the
Student’s paired t-test (Table 2). Concerning features from
histogram analysis, only Kurtosis, Entropy, and Energy did not
significantly differ beteween 1.5 and 3T. For the matrix-based
texture features, only LZHGE shows no significant difference.

Influence of Pixel Size
The pixels size, dependant on both matrix size and FOV size,
altered the radiomics output in homogeneous phantom
according to three behaviors. First of all, pixel size altered the
values of the texture features on both the 1.5 and 3T magnetic
field, for 15 indices: stdvalue, skewness, Homogeneity, Contrast,
Correlation, Entropy, Dissimilarity, ZLNU, GLNU, RLNU,
Coarseness, SZE, LZE, GLNU_1, and ZP. Figure 4A illustrates
the “Correlation” named feature. Second, pixel size altered the
value of texture features only on 1.5T, but not on 3T: Kurtosis,
Entropy H, Energy H, Energy, LRE, RP. Figure 4B illustrates
“Energy” named feature. Note that in contrast “Contrast_1”
named feature value was isolatedly modified only on 3T.
Thirdly, pixel size did not significantly alter the value of
texture features for: minvalue, meanvalue, maxvalu, HGRE,
SRHGE, LRHGE, HGZE, SZHGE, and LZHE.

The impact of matrix size and FOV as well as pixel size, on the
radiomics output was also studied with the heterogeneous
phantoms. Also three behaviors were observed. First, pixel size
altered the values of the texture features on the two magnetic
fields for: RLNU, Coarseness, SZLGE, GLNU and ZLNU. Figure
5A shows the example of “GLNU” named feature. Second, pixel
size altered the value of texture features only on 1.5T, but not on
3T for: Correlation, LGRE, SRLGE, GLNU, and LGZE. Figure
5B shows an example with the “SRLGE” named feature. Third,
pixel size did not significantly alter the value of texture features
for the other 29 texture parameters.

Ability of texture features to identify a difference between
phantom tubes, in both field sthrengh separatly, regardless of
the pixel size, is observed through the absolute Spearman’s
rho correlation coefficient (Table 3). Eight imaging features
TABLE 1 | Matrices and FOVs studied at 1.5 and 3T with the corresponding
pixel size.

MTX (pixels) Field of view (cm) Pixel size (mm)

256 x 256 24 0.938
256 x 256 18 0.703
256 x 256 12 0.468
256 x 128 24 0.937 x 1.875
128 x 128 24 1.875
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A

B

C

FIGURE 2 | Graphs showing influence of software resampling step on phantom study. Each graph representes the two-by-two coefficient correlation calculation
between the texture parameters at one resampling level. The difference in resulting patterns shows the influence of the software resampling step on texture
parameters calculation, particularly on parameters extracted from co occurrence matrix. (A) 256 gray levels resampling. (B) 128 gray levels resampling. (C) 64 gray
levels resampling.
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identified the (visually obvious) difference between homogeneous
and heterogeneous phantoms, with an absolute Spearman’s rho
correlation coefficient above 0.5. The following texture features
identified the difference between the different heterogeous
phantoms (mainly different according to their polystyrene beads
size and spatial distribution) in both field sthrengh separatly:
Frontiers in Oncology | www.frontiersin.org 6
dissimilarity, LZHGE, entropy, homogeneity, SRE, SZE, LRE,
GLNU, RLNU, ZLNU, KurtosisH, LZE, entropyH, coarseness,
SRLGE, SRLGE, SZLGE, and LGRE. Two texture features
(coarseness, RLNU) identified the difference between
homogeneous tubes (mainly different by their Gadolinium chelate
concentration). As long as the pixel size remains sufficiently tiny
FIGURE 3 | Difference of phantoms textures features values at 1.5 and 3T. Example of the mean value. Each colored dot groups shows the mean value calculated
from repeated phantom MRI acquisition (one dot per MRI acquisition) in different homogeneous tubes with different concentration of Gadolinium chelate (on color per
tube), respectively at 1.5 and 3T.
A

B

FIGURE 4 | In vitro parameters value according to magnetic field strengh and pixel size: For correlation (A) and energy (B). Texture features extracted to the
homogeneous phantoms. Each colored dot groups and related box plot shows the value of correlation (A) and energy (B) calculated from repeated phantom MRI
acquisition (one dot per MRI acquisition) with different pixel size (one color per matrix/FOV couple), respectively, at 1.5 and 3T.
January 2021 | Volume 10 | Article 541663
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small (1 mm or less in our study), 26 features were sensitive to
texture alteration.

Effect of Field Strength on MRI Texture
Features Values in Healthy Volunteers
Among the 38 parameters, significant differences were observed
with 15 texture features measured in healthy volunteers between
1.5 and 3T MRIs for the same anatomical region (Figure 6).
With constant fields (1.5T vs. 1.5T and 3T vs. 3T), those 15
texture features values appeared identical when measured in
symmetrical anatomical structures (eg corpus calosum or
caudate nucleus).
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

Our study demonstrates that field strength (1.5T vs. 3T)
influences numerous texture features values for both phantom
and human exploration. Our study also demonstrated that gray-
level resampling and pixel size influence some texture features.
Those results are of importance for clinical study design and for
patient examination and follow-up. In addition to that, our study
identifies texture parameters that are able to differentiate
phantom textures in our setup. It is important to mention that
these relevant textures parameters are significantly influenced by
field strength.

An increasing number of radiomics or deep-learning studies
use imaging based on MRI acquisitions (24–28). Confounding
parameters that can alter radiomic output have been largely
addressed for CT scans but less for MRIs (27, 29–31). Our study
aims to complete knowledge in the field of radiomics applied to
neuroradiology MRI acquisitions.

The presented study identifies the importance to consider the
impact of magnetic field strength on radiomics features values in
clinical practice. SNR is well-known to increase when the field
strength increases. We hypothesize that our result may be
partially due to this difference in SNR between the two MRI
machines. Even given that field strength is a major factor
A

B

FIGURE 5 | In vitro parameters value according to magnetic field strengh and pixel size: for GLNU_1 (A) and SRLGE (B). Texture features extracted to the
heterogeneous phantoms. Each colored dot groups and related box plot shows the value of GLNU_1 (A) and SRLGE (B) calculated from repeated phantom MRI
acquisition (one dot per MRI acquisition) with different pixel size (one color per matrix/FOV couple), respectively, at 1.5 and 3T.
TABLE 2 | Texture features presenting significant or non-significant differences
at 1.5 and 3T based on the heterogeneous phantoms examination (student’s
paired t-test).

Significant difference in
texture features value at 1.5
and 3T (p-values < 10-5)

LGRE, Homogeneity, SZE, ZP, Contrast, LGZE,
Correlation, RLNU Entropy, SRLGE, LRHGE,
HGRE, mean value, SRHGE, LRE, GLNU, HGZE,
GLNU, SRE, SZHGE, SZLGE, LRLGE, max value,
Dissimilarity Contrast, RP, std value, LZE, ZLNU,
skewness, H min, value Coarseness, LZLGE

Non-significant difference in
texture features value at 1.5
and 3Tp-values > 0.005

Energy H, Entropy H, Kurtosis H, LZHGE, Energy H
January 2021 | Volume 10 | Article 541663
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influencing signal intensity, further factors modifying signal have
to be considered, as discussed in a recent literature review.
Mayerhoefer et al. previously demonstrated that MRI texture
features are influenced by change in SNR (5, 9). The difference in
SNR could be explained by magnetic field strength, but SNR is
also linked to the entire signal acquisition system (coils,
electronic device etc.). The European research project COST
B11 (31, 32), aimed at developing quantitative methods for MRI
imaging features extraction (between 1998 and 2002),
demonstrated that signal and subsequently texture features
were dependent on parameters such as configuration of the
transmitting and/or receiving RF coil (antenna), and the
number of active segments in the coil due to change in tilt angle.

Our results showed that most texture features are also
sensitive to the variations in matrix and FOV and
consequently spatial resolution, even if the clinical ranges in
matrix size and FOV for a dedicated organ may be thinner than
those investigated in literature physics studies. Of note, we
acquired images at different pixel sizes whereas most studies
Frontiers in Oncology | www.frontiersin.org 8
changed the pixel size during post-processing. Our study showed
that as long as the pixel size remains sufficiently small (1 mm in
our experience), 26 features are sensitive to texture alteration.
This is in accordance with Jirák study. which also compared MRI
features measured on phantoms with nodular patterns in a
multicenter settings and showed that texture classification was
influenced by low resolution causing large errors (10).

For a defined magnetic field strength, our study showed that
part of the texture features differentiated the heterogeneous
phantoms from the homogeneous phantoms on all sequences,
irrespective of the pixel size, and part of radiomics features
differentiated phantoms with large and small spherical objects
(polystyrene beads) scattered in agarose gel. These results are in
agreement with literature (8, 10, 28, 29, 33, 34).

In our study, gray level resampling has a significant impact on
radiomic parameters. This observation is in accordance with
literature. Collewet et al. resampled gray scale using four
methods: original gray levels, same maximum for all images,
same average for all images, and limited dynamics. Results also
TABLE 3 | Tabulation of textures features and their ability to dissociate the different phantom’s tubes at both field strengths separately, regardless to pixel size.

Heterogeneous vs. Homogeneous media Size of polystyrene Gadolinium concentration

RLNU 0.796 Contrast 0.801 Coarseness 0.577
Coarseness 0.795 Contrast_1 0.795 RLNU 0.513
minValue 0.683 Dissimilarity 0.794 minValue 0.482
GLNU 1 0.617 LZHGE 0.789 GLNU 0.414
SZLGE 0.552 stdValue 0.786 SZLGE 0.371
SRLGE 0.534 Entropy 0.783 SRLGE 0.354
Entropy 0.645 Homogeneity 0.773 GLNU 0.347
Homogeneity 0.622 ZP 0.77 EntropyH 0.33
ZLNU 0.491 SRE 0.768 meanValue 0.328
EntropyH 0.484 RP 0.762 LGZE 0.325
LGRE 0.481 Energy 0.756 LGRE 0.315
LGZE 0.477 SZE 0.756 EnergyH 0.308
GLNU 0.468 LRE 0.741 KurtosisH 0.302
Contrast 0.458 GLNU 0.738 SkewnessH 0.293
EnergyH 0.439 RLNU 0.732 Correlation 0.262
Contrast 0.429 minValue 0.727 maxValue 0.246
Dissimilarity 0.423 ZLNU 0.698 Contrast 0.246
stdValue 0.421 KurtosisH 0.677 ZLNU 0.237
Energy 0.418 LZE 0.646 LRLGE 0.228
meanValue 0.409 EntropyH 0.624 LRHGE 0.198
KurtosisH 0.405 Coarseness 0.617 Entropy 0.195
RP 0.378 SRLGE 0.583 Energy 0.182
SRE 0.373 EnergyH 0.554 Contrast 0.181
Correlation 0.363 SZLGE 0.554 Dissimilarity 0.18
SZE 0.346 LGRE 0.524 LZLGE 0.173
LRE 0.329 LGZE 0.46 Homogeneity 0.165
ZP 0.329 LRHGE 0.373 stdValue 0.155
LRHGE 0.316 LZLGE 0.321 HGZE 0.15
LRLGE 0.3 meanValue 0.275 HGRE 0.145
SkewnessH 0.229 SkewnessH 0.267 RP 0.141
maxValue 0.228 LRLGE 0.244 SZHGE 0.137
LZHGE 0.21 maxValue 0.112 SRE 0.132
HGZE 0.185 HGRE 0.101 SRHGE 0.132
HGRE 0.174 GLNU 0.092 SZE 0.132
SRHGE 0.14 HGZE 0.087 LRE 0.111
SZHGE 0.132 SRHGE 0.041 ZP 0.104
LZLGE 0.097 SZHGE 0.037 LZE 0.077
LZE 0.096 Correlation 0.017 LZHGE 0.01
Ja
nuary 2021 | Volume 10 | Artic
Given are the names of the feature variables and the absolute Spearman’s rho correlation coefficient between imaging features and the type of phantom tube. First column: ability to
dissociate homogeneous versus heterogeneous tubes. Second column: ability to dissociate heterogeneous tubes according to their polystyrene beads sizes and their spatial distribution.
Third column: ability to dissociate homogeneous tubes according to their Gadolinium chelate concentration.
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showed the influence of the normalization method on the texture
classification accuracy.

While our study focuses on field strength, pixel size and gray
level resampling, previous studies have identified further MRI
sequence parameters of interest, including repeat time (TR), echo
time (TE) and receiver bandwidth (BW). Mayerhoefer et al.
evaluated how texture features varied according to acquisition
parameters (e.g., TR, TE, sampling bandwidth [SBW], and
spatial resolution). Interestingly, variations in TR, TE and SBW
had little effect on pattern discrimination results, as long as a
high-spatial resolution was observed. In addition, both studies
(Mayerhoefer’s and ours) showed higher stability with the
texture features derived from the co-occurrence matrix over
first order texture features for characterizing patterns close to
the resolution limits in varying conditions of TR/TE or pixel size.

Our approach to evaluate measures of radiomic features on
standardized phantoms modeled to the organ under
investigation is in line with the study by Bianchini et al. who
explicitely designed and used an organ specific phantom for the
optimization of radiomic studies of the female pelvis (35).

The question of the stability of our phantoms during the delay
between the different acquisition/machine can be raised. Jirák
et al. evaluated the long-term stability of the agarose phantoms,
the optimal choice of texture parameters, and compared different
MRI magnetic fields (3T, 4T, and 7T) (8, 10). They demonstrated
that phantoms are stable over 12 months. In our study, all
sequences were acquired on the same day within the same
hour of examination, consequently we did not expect to incur
phantom stability issue in our setup.

Optimal methodological guidelines are currently being
defined to optimize data analysis strategies (4, 36–38) in the
field of radiomics. Our results are critical since they demonstrate
that standardization strategies for the use of radiomics in MRI
should focus on addressing the challenge of heterogeneity in
protocols since there is a dramatical difference between
Frontiers in Oncology | www.frontiersin.org 9
radiomics features extracted from the same patient or the same
phantom at 1.5 or 3T.

Our study demonstrates that field strength had a strong
influence on texture feature values, also spatial resolution and
gray scale resampling. Quantification of the impact of the various
parameters of imaging features is of major interest. Our findings
are clinically relevant as image acquisition was performed
according to daily used protocols for clinical examinations.
Those confounding factors need to be adjusted when designing
a multicentric trial and when adapting the results of a study to
different platforms.
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7. Sun R, Limkin EJ, Dercle L, Reuzé S, Zacharaki EI, Chargari C, et al.
[Computational medical imaging (radiomics) and potential for immuno-
oncology]. Cancer Radiother (2017) 21:648–54. doi: 10.1016/j.canrad.
2017.07.035

8. Lerski RA, Schad LR, Luypaert R, Amorison A, Muller RN, Mascaro L, et al.
Multicentre magnetic resonance texture analysis trial using reticulated foam
test objects. Magn Reson Imaging (1999) 17:1025–31. doi: 10.1016/S0730-
725X(99)00034-X

9. Mayerhoefer ME, Szomolanyi P, Jirak D, Materka A, Trattnig S. Effects of
MRI acquisition parameter variations and protocol heterogeneity on the
results of texture analysis and pattern discrimination: an application-oriented
study. Med Phys (2009) 36:1236–43. doi: 10.1118/1.3081408
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