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Almost all cancer cells possess multiple epigenetic abnormalities, which cooperate with

genetic alterations to enable the acquisition of cancer hallmarks during tumorigenesis.

As the most frequently found epigenetic change in human cancers, aberrant DNA

methylation manifests at two major forms: global genomic DNA hypomethylation and

locus-specific promoter region hypermethylation. It has been recognized as a critical

contributor to esophageal squamous cell carcinoma (ESCC) malignant transformation.

In ESCC, DNA methylation alterations affect genes involved in cell cycle regulation,

DNA damage repair, and cancer-related signaling pathways. Aberrant DNA methylation

patterns occur not only in ESCC tumors but also in precursor lesions. It adds another

layer of complexity to the ESCC heterogeneity and may serve as early diagnostic,

prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in

ESCC could help better understand its pathogenesis and develop improved therapies.

We herein summarize the current research and knowledge about DNA methylation in

ESCC and its clinical significance in diagnosis, prognosis, and treatment.

Keywords: esophageal squamous cell carcinoma, aberrant DNA methylation, global DNA hypomethylation,

promoter hypermethylation, heterogeneity, clinical significance

INTRODUCTION

As the ninth most common cancer in the world, esophageal carcinoma is also the sixth leading
cause of cancer-related deaths (1). Esophageal squamous cell carcinoma (ESCC) is the predominant
subtype of esophageal carcinoma and accounts for ∼90% of the cases (2). Although enormous
progress has been made in early diagnosis and multimodal therapies, the prognosis of ESCC
patients remains dismal, with the overall 5-year survival rate below 30% (2, 3). To achieve better
clinical outcomes, a lot more work needs to be done to understand the pathogenesis of this
disease thoroughly.

Intensive molecular biological studies have revealed that epigenetic dysregulation is a
fundamental characteristic of nearly all human cancers (4). The most widely studied epigenetic
modification is DNA methylation, which meanwhile is the most frequently found abnormal
epigenetic change in human cancers. In mammals, DNA methylation occurs predominantly at
the 5′ position of cytosine forming cytosine guanine dinucleotides. This modification is catalyzed
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and maintained by enzymes known as DNA methyltransferases
(DNMTs) (5). The two major DNA methylation changes
that occur in human cancers, including ESCC, are global
DNA hypomethylation and site-specific CpG island promoter
hypermethylation (6, 7). Experimental studies indicate that
DNA hypomethylation of repetitive sequences (i.e., long
interspersed nucleotide elements, LINEs) may predispose cells
to chromosomal defects and rearrangements that result in
genetic instability. Thus, global DNA hypomethylation increases
chromosomal instability, leading to cancer development (8, 9).
On the other hand, hypermethylation of the CpG islands located
in gene promoter regions may involve in carcinogenesis
as a result of three possible mechanisms: (1) cytosine
methylation facilitates gene mutation, as 5-methylcytosine
is deaminated to thymine; (2) aberrant DNA methylation may
be associated with allelic loss; (3) tumor suppressor genes
(TSGs) may be inactivated by promoter hypermethylation
(7, 10–12) (Figure 1).

In the context of tumor epigenetic heterogeneity, DNA
methylation has also been the focus of intense research due
to the quantitative nature of DNA methylation assays and the
relative ease of obtaining sufficient stable genomic DNA (13, 14).
Mechanistically, changes in DNA methylation contribute to the
cancer development process through regulation of the spatial
chromatin organization and alteration of the transcriptome at the

right timing and environment (15). To date, DNA methylation
heterogeneity has been quantified and been linked to clinical
variables in various cancer types, including prostate cancer

(16), chronic lymphocytic leukemia (17), glioblastoma (18),
Ewing sarcoma (19), as well as ESCC (20). These findings
demonstrate the power of DNA methylation sequencing in

analyzing intratumor heterogeneity. At the same time, they

suggest the extensive involvement of DNA methylation in

tumor development.
In this brief review, we summarize recent advances regarding

DNA methylation changes in the initiation and progression of

ESCC. We also refer to their possible applications in the clinical
management of ESCC patients.

FIGURE 1 | Schematic diagram of major DNA methylation changes in human cancer. In cancer cells, global hypomethylation at repetitive sequences might cause

genetic instability, whereas site-specific CpG island promoter hypermethylation could lead to silencing of tumor suppressor genes (TSGs).

GLOBAL DNA HYPOMETHYLATION AND
PROMOTER CPG ISLAND
HYPERMETHYLATION IN ESCC

Global DNA hypomethylation in cancer tissues was first observed
more than 3 decades ago and has been recognized as a key
mechanism involved in carcinogenesis (21, 22). Nevertheless,
its presence and importance remain less well-understood in
ESCC. To evaluate the global DNA methylation status in ESCC,
several studies have measured the methylation level of the
LINE-1. LINE-1 constitutes a substantial portion (∼17%) of
the human genome and has therefore attracted attention as a
useful surrogate marker for global DNA methylation (23–27).
Importantly, genome-wide hypomethylation was consistently
observed in ESCCs, and LINE-1 hypomethylation was strongly
correlated with ESCC progression, leading to a poor prognosis
among ESCC patients (23–26). However, this association still
awaits further confirmation in larger cohorts, and potential
mechanisms by which global DNA hypomethylation affects
ESCC behavior have yet to be clearly revealed.

Compared with global genomic DNA hypomethylation,
locus-specific DNA hypermethylation, which mostly occurs at
promoter CpG islands, has been extensively studied in ESCC
by candidate gene approaches. In ESCC, as well as other

malignancies, aberrant hypermethylation in promoter CpG

islands is involved in the major components of cell cycle
regulation, DNA damage repair, and cancer-related signaling
pathways. For example, cell cycle-related genes CDKN2A,
RASSF1A, and RASSF10 are frequently hypermethylated and
transcriptionally silenced in ESCC (28–32). Inactivation of
DNA repair genes MGMT, MLH1, and MSH2 in ESCC mainly
attributes to the methylation change in their promoter regions
(33–35). Promoter hypermethylation in the genes of APC,
RUNX3, and ZNF382 respectively affects the Wnt/β-catenin,
TGF-β, and NF-κB pathways in ESCC (36–40). Additionally,
epigenetic studies on ESCC have discovered many known and
putative TSGs that are frequently inactivated by promoter
hypermethylation (Table 1). Although growing evidence has
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TABLE 1 | Aberrantly hypermethylated genes in ESCC.

Gene Official full name Function References

RASSF1 Ras association domain family member 1 Cell cycle regulation (24)

CDKN2A Cyclin dependent kinase inhibitor 2A Apoptosis Modulation and Signaling (24)

BRCA1 BRCA1 DNA Repair Associated DNA repair (28)

CDH1 Cadherin 1 Cell adhesion (28)

RAR-β Retinoic acid receptor-beta Nuclear receptor (28)

DAPK Death associated protein kinase Programmed cell death (28)

EPHA7 EPH receptor A7 Brain development (28, 41)

MGMT O-6-methylguanine-DNA methyltransferase DNA damage reversal (33–35)

MLH1 MutL homolog 1 DNA mismatch repair (33, 35)

MSH2 MutS homolog 2 DNA mismatch repair (33, 35)

APC Adenomatous polyposis coli Wnt signaling pathway (36)

RUNX3 RUNX family transcription factor 3 Notch/TGF-beta receptor signaling pathway (39)

ZNF382 Zinc finger protein 382 Transcription factor (40)

FHIT Fragile histidine triad diadenosine triphosphatase Purine metabolism (42)

TFF1 Trefoil factor 1 Secretory protein in gastrointestinal mucosa (43)

HIN-1 Secretoglobin family 3A member (High in normal-1) Secreted cytokine-like protein (44)

ABCB4 ATP binding cassette subfamily B member 4 ATP-binding cassette transporter (41)

PCDH10 Protocadherin 10 Cell adhesion (41)

DOK1 Docking protein 1 Signal transduction (41)

TAC1 Tachykinin precursor 1 Neurotransmitter (45)

DKK3 Dickkopf WNT signaling pathway inhibitor 3 Wnt signaling modulator (46)

SFRP1 Secreted frizzled related protein 1 Wnt signaling modulator (47)

CHL1 Cell adhesion molecule L1 like Signal transduction (48)

RHCG Rh family C glycoprotein Ammonium transporter (49)

PAX5 Paired box 5 Neural development; spermatogenesis (50, 51)

CHFR Checkpoint with forkhead and ring finger domains Cell cycle progression (52)

TFPI2 Tissue factor pathway inhibitor 2 Cell adhesion; plasmin signaling (53)

BIN1 Bridging integrator 1 Neuroscience (54)

ZNF132 Zinc finger protein 132 Transcription factor (55)

PTX3 Pentraxin 3 Innate immune system; inflammatory reactions (56)

RAB25 RAB25, member RAS oncogene family Membrane trafficking (57)

ECRG4 ECRG4 augurin precursor Senescence (58)

SPINT2 Serine peptidase inhibitor, Kunitz type 2 Transmembrane protein (59)

EYA4 EYA transcriptional coactivator and phosphatase 4 DNA repair (60)

SEMA3B Semaphorin 3B Neuronal development (61)

demonstrated that tobacco smoking and alcohol consumption
are the twomajor risk factors for ESCC, and correlations between
gene promotermethylation and smoking exposure have also been
observed in ESCC, the exact triggers andmechanisms responsible
for aberrant ESCC DNA methylation changes remain elusive
(62–65).

DNA METHYLATION CHANGE IS A
CRITICAL EVENT IN THE PATHOGENESIS
OF ESCC

The histologic progression of ESCC is a multi-step process
that begins from normal squamous epithelium to low-grade
dysplasia, high-grade dysplasia, carcinoma in situ, and invasive

carcinoma (66, 67). In addition to genetic alterations, epigenetic
abnormalities, in particular DNA methylation changes, have
become widely accepted as common molecular features during
ESCC development (68–70).

There is growing recognition that aberrant DNA methylation
patterns occur in the earliest stage of ESCC and may parallel
the histologic changes observed during ESCC carcinogenesis.

For example, promoter methylation of TSGs, including p16,
p14, FHIT, MGMT, and TFF1 was detected in precancerous
dysplastic lesions, indicating their early development in ESCC
(42, 43). High in normal-1 (HIN-1) is a tumor suppressor
gene that is highly expressed in many epithelial tissues.
Methylation of this gene promoter occurs in the early
stages of ESCC and accumulates with esophageal progression
tendency during carcinogenesis, resulting in HIN-1 silencing
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in carcinomas-in-situ (44). By analyzing normal esophageal
mucosa, esophageal dysplasia, and ESCC, Guo et al. also found
clear evidence of accumulated methylation events during ESCC
progression, which included accumulation of promoter region
methylation of genes MGMT, p16, BRCA1, MLH1, CDH1,
RARβ2,DAPK, and APC (28, 71). These findings are reminiscent
of the idea that hypermethylation abnormalities may represent
a “field cancerization” or “field defect” of preneoplastic changes,
which occur early in carcinogenesis and predispose cells to
subsequent malignant transformation (72–74).

From the standpoint of epigenetic heterogeneity, DNA
methylation change is also involved in the evolutionary
trajectory of ESCC. In 1976, Peter C. Nowell firstly proposed
the Darwinian-like clonal evolution of tumor cells (75). Since
then, models of tumor evolution derived from intratumor
heterogeneity have greatly improved our understanding
of tumorigenesis (76, 77). Investigations of intratumor
heterogeneity at the DNA methylation level have provided
unique opportunities in identifying epigenetic alterations
associated with tumor evolution.

In ESCC, DNA methylation status within promoters of
transcription factors SIM2 and SIX1 is strongly correlated
with their heterogeneous expression pattern, which is further
associated with ESCC differentiation and progression (78–80).
Using the Illumina Human Methylation 450K (HM450) Bead
array, Hao et al. performed multi-region global methylation
profiling on 3 ESCC patients and found numbers of TSGs,
including EPHA7, ABCB4, PCDH10, DOK1, etc., were
heterogeneously hypermethylated at their promoters within
tumors from the same individual (41). This observation
suggests that intratumor heterogeneous DNA methylation may
play a role in the subclonal diversification of ESCC tumors.
Moreover, the construction of phylogenies independently
from DNA methylation (phyloepigenetic tree) and somatic
mutations (phylogenetic tree) yielded highly concordant as
well as complementary evolutionary histories (41). This finding
supports the concept of co-dependency of aberrant DNA
methylation and genetic alterations and again demonstrates
the involvement of DNA methylation heterogeneity in the
ESCC evolutionary process. In an attempt to gain deeper
insights into the DNA methylation heterogeneity of ESCC,
most recently, Teng et al. generated single-base resolution
whole-genome bisulfite sequencing data on 84 ESCCs and
paired paraneoplastic tissues (20). Their analysis also identified
numerous DNA methylation alterations associated with ESCC
carcinogenesis and lymph node metastasis. In general, they
found ESCC manifested substantial inter- and intratumor
DNA methylation heterogeneity. Strikingly, the degree of
intertumor DNA methylation heterogeneity of ESCC was even
higher than that of prostate cancer or chronic lymphocytic
leukemia, two well-recognized heterogeneous cancer types
(16, 17). Furthermore, ESCC patients with a great extent of DNA
methylation heterogeneity tended to experience more aggressive
disease and worse overall survival (20).

Altogether, these data suggest the biological significance
of DNA methylation change in ESCC. However, additional
research is required to determine the extent to which intratumor

heterogeneity of DNAmethylation reflects differences in regional
or clone-specific driver or passenger events of ESCC, and to
what extent the alterations to DNAmethylation and genetics may
be functionally related. It is also not yet known whether and
how the pattern of DNA methylation change will evolve during
ESCC progression.

CLINICAL IMPLICATIONS OF DNA
METHYLATION CHANGE IN ESCC

In several cancer types, the methods of detecting aberrant
DNA methylation changes have been applied to clinical
fields related to early diagnosis, prognostic prediction, and
personalized therapy.

In ESCC, as with other cancers, early detection is a
prerequisite for treatment success and survival improvement.
In fact, aberrantly methylated genes have been detected in the
plasma or serum from ESCC patients, implying that they may
serve as non-invasive diagnostic biomarkers. Using methylation-
specific polymerase chain reaction, Das et al. detected the
methylation status of MGMT from 100 newly diagnosed ESCC
patients and reported that promoter hypermethylation ofMGMT
was present in 70% of serum samples (81). Zheng et al. evaluated
the diagnostic role of RUNX3 methylation in serum DNA of
ESCCs and found that RUNX3 hypermethylation was detectable
in 51.4% (36/70) of the cases, which was significantly higher
than that of the healthy donors (39). Moreover, Li et al. showed
that the serum DNA detection of a panel of methylated genes,
including RAR-β , DAPK, CDH1, p16, and RASSF1A, had a
high diagnostic sensitivity of 82% and specificity of 100% for
ESCC patients. They thereby suggested that it might be more
efficient to early diagnose ESCC through integrative analysis of
the methylation status of multiple TSGs (33). Of note, the early
diagnostic value of aberrant methylation changes in serum DNA
has been widely investigated by many other studies in ESCC.
Such methylation events include hypermethylation of genes
SFRP1, CASZ1, CDH13, ING2, DKK-3, TAC1, etc. (45–47, 82).

The aberrant methylation pattern has also been identified as
a prognostic indicator for ESCC patients. Recently, promoter
hypermethylation of CHL1 and RHCG, two novel tumor
suppressor candidates, has been reported to be associated with
poor differentiation and increased invasion of ESCC, as well as
advanced tumor stage and decreased overall survival (48, 49).
Using DNA from the plasma of ESCC patients, Liu et al. analyzed
the methylation status of Wnt antagonists SFRP1, DKK3, and
RUNX3 and showed that patients carrying two or three of these
hypermethylated genes had a significantly elevated risk of cancer
recurrence, compared with those without methylated genes (46).
In an attempt to identify DNAmethylation markers in predicting
lymph node metastasis, the genome-wide methylation of 86
ESCC patients has been recently assessed, and a 10-probe lymph
node metastasis-associated methylation signature has been
established through stringent bioinformatics analyses (83). All
in all, finding genes of prognostic impact aberrantly methylated
allows one to customize therapy for ESCC patients: patients
with a worse prognosis might benefit from a more aggressive
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treatment strategy, while patients with low risk can forego
radical surgery.

Methylation might result in the deactivation of genes that are
responsive or unresponsive to chemotherapy and radiotherapy.
Therefore, the methylation status of certain genes can be used
to predict a patient’s treatment response in advance (84). The
best known example is MGMT promoter methylation and the
resultant response to DNA alkylating agents in gliomas (85).
However, ESCC studies in this regard are very limited. PAX5 gene
methylation was identified as an excellent marker for squamous
cell carcinoma detection (50). According to Kurimoto et al.’s
study, hypermethylation of PAX5 was significantly correlated
with increased ESCC cell proliferation and cisplatin resistance,
leading to poor recurrence-free survival and overall survival (51).
CHFR is an early mitotic checkpoint gene that controls cell cycle
progression at the G2/M checkpoint andmaintains chromosomal
integrity (86). Promoter region methylation of CHFR was found
frequently in ESCC and shown to sensitize ESCC to taxane
treatment (52).

DISCUSSION

Epigenetic alterations have been recognized as key contributors
to cancer initiation and progression. Amongst these, DNA
methylation is one of the most extensively studied epigenetic
modifications that occurs in the earliest stage of cancers (87).
The aim of this review is to discuss the aberrant DNA
methylation changes affecting ESCC carcinogenesis. However,
many investigations into such epigenomic features of ESCC are
still in their infancy.

Depending on the genomic location, DNA methylation may
have different biological functions. Methylation in promoter
CpG islands is typically associated with gene repression, while
methylation in the gene body is usually linked to active gene
expression. Accumulating evidence has shown that intergenic
regions contain many regulatory elements, such as enhancers,
silencers, and non-coding RNAs, and their functions may also
be affected by DNA methylation (84). However, there is a
current lack of knowledge with regards to these types of
changes during ESCC development. Thus, the ESCC methylome
landscape awaits further characterization through sequence-
based approaches such as whole-genome bisulfite sequencing at
single-base levels of resolution.

DNA methylation changes have emerged as clinically-
relevant disease markers due to their chemical stability and
measurable feasibility (88). As mentioned previously, there
are numerous candidate methylation events that may serve
as diagnostic, prognostic, and chemo-sensitive markers in

ESCC. However, the cancer type-specificity of many of these
methylation changes remains to be determined in larger
ESCC cohorts. Their predictive and prognostic value is also
challenged by the property of tumor heterogeneity, especially
when phenotypically diversified cancerous cells are unequally
distributed and asynchronously evolving over space and time.
This entails personalized and longitudinal studies assessing
methylation changes in the course of ESCC development. It is
also worth investigating whether the extent of DNA methylation
heterogeneity by itself could be used as a clinically useful
biomarker in ESCC.

Unlike genetic alterations that are essentially fixed, epigenetic
changes, including DNA hypermethylation, are intriguingly
dynamic and theoretically reversible. This makes them attractive
targets for cancer therapy or chemoprevention (89). Indeed,
several studies have demonstrated that TSG expression could
be restored after treatment of cells with demethylating agents,
and DNMT inhibitors, such as azacytidine and decitabine,
are currently under preclinical and clinical investigations
in various cancer types (e.g., ClinicalTrials.gov Identifier:
NCT01193517, NCT03666559, and NCT04187703) (90–93).
Nonetheless, up until now, very limited data have been
shown concerning the effectiveness of DNMT inhibitors
in ESCC. Future research on this field are required to
gain a more in-depth insight into ESCC development and
open a new area for ESCC treatment. Ideally, we will
finally reach our goal of “epigenetic precision medicine”
in ESCC.
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