
Frontiers in Oncology | www.frontiersin.org

Edited by:
Zhi Sheng,

Virginia Tech, United States

Reviewed by:
Kevin James Pridham,

Virginia Tech Carilion, United States
Robin T. Varghese,

Edward Via College of Osteopathic
Medicine, United States

*Correspondence:
Aifu Lin

linaifu@zju.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Molecular
Targets and Therapeutics,

a section of the journal
Frontiers in Oncology

Received: 07 July 2020
Accepted: 09 September 2020

Published: 30 October 2020

Citation:
Wu M, Fu P, Qu L, Liu J and Lin A

(2020) Long Noncoding RNAs, New
Critical Regulators in Cancer Immunity.

Front. Oncol. 10:550987.
doi: 10.3389/fonc.2020.550987

MINI REVIEW
published: 30 October 2020

doi: 10.3389/fonc.2020.550987
Long Noncoding RNAs, New Critical
Regulators in Cancer Immunity
Minjie Wu1,2†, Peifen Fu1†, Lei Qu2, Jian Liu3 and Aifu Lin1,2*

1 Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 2 MOE Laboratory
of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China, 3 Reproductive
and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States

Long noncoding RNAs (lncRNAs) play crucial roles in various aspects of cellular functions.
Recent studies have revealed that lncRNAs are critical players in the immune system by
modulating immune cell differentiation and functions, particularly in cancer immunity. Here
we systematically summarize how lncRNAs are involved in different processes of the
cancer immunity cycle, including immune cell differentiation, proliferation, trafficking, and
infiltration. Moreover, the limitations of the current understanding of lncRNA’s functions in
cancer immunity are described, such as the complexity of the cancer immunity system,
the inclusive functions of lncRNAs in this system, and the associated immune response. In
sum, the comprehensive investigation of the roles of lncRNAs in cancer immunity aids in
cancer diagnosis and therapies.
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INTRODUCTION

With the advance of the human genome sequence, more than 90% of the human genome
transcribed RNAs lack protein-coding functions. Nearly 75% among them are noncoding RNAs
(ncRNAs), which are divided into two groups: small ncRNAs (<200nt) and long ncRNAs
(lncRNAs) (≥200nt) (1). Although lncRNAs cannot directly encode proteins due to the lack of
open reading frames, they can control gene transcription and expression by regulating
transcriptional activators or repressors, different components of transcription reaction (e.g., RNA
polymerase II), and DNA duplex (2). LncRNAs also regulate post-transcription, such as mRNA
splicing (3, 4) and translation (5). What is more, they regulate epigenetic modification, including
DNA methylation (6, 7), histone acetylation (8), and ubiquitination (9). LncRNAs powerfully
function in various cellular activities. For example, lncRNAs play indispensable roles in the
progression of various cancers in past years, such as breast cancer (10, 11), prostate cancer (12),
gastric cancer (13), and lung cancer (14–16). Of note, lncRNAs have been found to be the key
Abbreviations: LncRNA, long noncoding RNA; APC, antigen presenting cell; CTL, cytotoxic T lymphocyte; MHC I, major
histocompatibility complex class I; NK, natural killer; NSCLC, non-small-cell lung cancer; PD1, programmed cell death
protein 1; PD-L1, programmed cell death ligand 1; TCR, T cell receptor; TH, T Helper; TNBC, triple negative breast cancer;
Treg, T-regulatory; CALR, calreticulin; VLDLR, very low-density lipoprotein-receptor; HCC, hepatocellular carcinoma; DC,
dendritic cell; IDO, indoleamine 2, 3-dioxygenase; SGK1, serine/threonine-protein kinase; SNHG1, small nucleolar RNA host
gene 1; NEAT1, nuclear Enriched Abundant Transcript 1; NeST, nettoie salmonella pas Theiler’s; TILs, tumor-infiltrating
lymphocytes; NATs, natural antisense transcripts; ASO, antisense oligonucleotide.
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players in regulating cancer immunity. In this review, we aim to
summarize the findings of lncRNAs functions in cancer
immunity as well as their clinical impacts.
CANCER IMMUNITY CYCLE

The cancer immunity cycle is defined as stepwise events
effectively controlling cancer cell growth by immune system.
This cycle is arbitrarily divided into seven steps (Figure 1):
cancer cells release antigens (Step 1); antigens are captured by
dendritic cells (DCs) (Step 2); DCs with captured antigens
migrate to lymph node and prime with T cells to activate
tumor-specific cytolytic CD8+ T cells (Step 3); the cytolytic T
cells migrate from lymph node into blood vessels (Step 4);
immune cells infiltrate into tumor stroma (Step 5); the
cytolytic T cells recognize tumor cells (Step 6); T cells kill
cancer cells (Step 7) (17, 18). Recently, lncRNAs have been
revealed as key regulators in the cancer immunity cycle (Figure 2
and Table 1), including the impact on the epigenetic and
transcriptional profiles of immune cells.
lncRNAs IN TUMOR ANTIGEN RELEASE

Tumor antigen is an antigenic substance produced by tumor
cells, especially dying tumor cells. It triggers the immune
system to attack it (41, 42). Calreticulin (CALR), which is a
calc ium-binding chaperone and influences ant igen
Frontiers in Oncology | www.frontiersin.org 2
presentation to cytotoxic T cells (43), is expressed in many
cancer cells and promotes macrophages to engulf hazardous
cancerous cells (44). In lung cancer, NcRNA-RB1, a lncRNA
expressed from the RB1 promoter, inhibits the expression of
CALR. It shows a tumor-inhibitor mechanism through
impairing the “kill me” signal (19). Meanwhile, the efficiency
of chemotherapy is associated with the expression of some
lncRNAs besides the death of immune cells or released
neoantigens. For example, Lnc-ROR, a stress-responsive
lncRNA highly expressed in hepatocellular carcinoma (HCC)
cells, promotes the proliferation of CD133+ cells by activating
TGF-b pathway to weaken the effectiveness of chemotherapy
drugs in HCC (20). Lnc-VLDLR (very low-density lipoprotein-
receptor-VLDLR) is expressed in extracellular vesicles (EV) and
promotes tumor cell death during chemotherapy, leading to
increased chemotherapy efficiency (21). Taken together, the
roles of lncRNAs in tumor antigen release are starting to
be recognized.
lncRNAs IN ANTIGEN PRESENTATION

Antigen presentation is a vital immune process to trigger
effective immune response. Activation of T cells depends on
effective antigen presentation, including immunogenic signals
and specific antigen presentation cells (APCs). LINK-A inhibits
antigen presentation by specifically inhibiting antigen-presenting
cell (APC) and decreasing CD8+ T cell abundance in basal-like
breast cancer (45). DCs are antigen-presenting cells that act as
FIGURE 1 | The cancer immunity cycle and the lncRNAs involved in each step of cancer immunity cycle.
October 2020 | Volume 10 | Article 550987

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wu et al. lncRNAs Regulate Cancer Immunity
the messengers between the innate and adaptive immune system.
The lncRNA that is expressed exclusively in human DC (lnc-DC)
has been identified as an lncRNA involved in the differentiation of
Frontiers in Oncology | www.frontiersin.org 3
monocytes to DCs. Lnc-DC mainly exists in the cytoplasm and
activates DC transcription factor STAT3by binding with STAT3
and promoting STAT3 tyrosine-705 phosphorylation. During the
TABLE 1 | LncRNAs involved in cancer immunity and their functions.

Steps of cancer immunity
cycle

LncRNAs Functions of lncRNAs

1. Release of antigens NcRNA-RB1 NcRNA-RB1 inhibits the expression of CALR, prevent tumor cells release “killing me” signal (19).
Lnc-ROR Lnc-ROR promotes the proliferation of CD133+ cells through TGF-b in HCC (20).
Lnc-VLDLR Lnc-VLDLR expressed in EV promotes tumor cell death and releases noe-antigen (21).
MELOE MELOE increase immunogenicity to be recognized by TCLs (22).

2. Antigen presentation LINK-A LINK-A inhibits antigen presentation in breast cancer (23).
lnc-DC Lnc-DC promotes differentiation of monocytes to dendritic cells (24, 25).
LncTh2-LCR LncTh2-LCR regulates the expression of Th2 cytokines, IL-4, IL-5, and IL-13 (26).
LincRNA-cox2 LincRNA-cox2 inhibits chemokines (Ccl5, Cx3c11) and cytokines (Ccrl) receptors expression (27).
MALAT1 MALAT1 inhibits the production of TNF-a and IL-6 to repress antigen presentation (28).

3. Immune cell priming and T
cell activation

lncEGFR LncEGFR links immunosuppression to cancer by promoting differentiation of Treg cells (9).
SNHG1 SNHG1 impedes the immune escape by inhibiting the differentiation of Treg cells through promoting miR-448

expression and reduces the protein level of IDO (29).
lnc-SGK1 Lnc-SGK1 promotes Th2 and Th17 differentiation by SGK1/JunB signaling.
NEAT1 In HCC, NEAT1 promotes CD8+ T-cell apoptosis and enhances cytolysis (30).
NeST NeST promotes IFNG transcription to improve INF-g production during CD8+ T cells activation (31).
lncTim-3 LncTim-3 exacerbates CD8 T cell exhaustion (32).

4. Immune cell migration lnc-sox5 Lnc-sox5 induces the down regulation of IDO1 to regulate infiltration and cytotoxicity of CD3+CD8+ T cells (33).
lincR-Ccr2-5’AS Knockdown of lincR-Ccr2-5’AS induces a dramatic migration of Th2 cells into lung in mice [34].

5. Immune cell infiltration LINK-A LINK-A, inhibits CD8+ T cell infiltration (23).
TCL6 TCL6 promotes infiltration of CD8+ T cells, CD4+ T cells, neutrophils, DCs (35).

6-7. Recognition and attack
by T cell

AFAP1-AS1 AFAP1-AS1 increase PD1 expression (36).
LncMX1-215 LncMX1-215 promotes PD-L1 expression and immune escape (37).
MALAT1 MALAT1 promotes PD-L1 expression and immune escape (38).
SNHG20 SNHG20 promotes PD-L1 expression and immune escape (39).
UCA 1 UCA 1 promotes PD-L1 expression and immune escape (40).
FIGURE 2 | General lncRNA mechanisms. LncRNA interacts with DNA, RNA, and Proteins.
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differentiation of DCs, the transcript of lnc-DC is upregulated
(24). Knockdown of lnc-DC impairs the expression of DC-specific
genes regulating antigen presentation, T cell activation, and cell
migration, such as CD40, CD80, CD86, and CCR7 (24, 25).
Moreover, deletion of lnc-DC in DC cells leads to impaired
priming CD4+ T cells or secreting inflammatory cytokines after
pathogen stimulation (24).

Moreover, lncRNAs regulate pro-inflammatory cytokines
that are crucial to antigen presentation, such as IFN-g and
TNF-a (46–48). LincRNA-cox2 is an lncRNA located adjacent
to Cox2. The study reported that silencing lincRNA-cox2 leads
to increased expression of chemokines (Ccl5, Cx3c11) and
cytokine receptors (Ccrl) (27). Moreover, lncRNA Th2 locus
control region (lncTh2-LCR) regulates expression of Th2
cytokines, IL-4, IL-5, and IL-13 (26), and MALAT1
(Metastasis Associated Lung Adenocarcinoma Transcript 1)
inhibits the production of TNF-a and IL-6 by inhibiting NF-kB
DNA binding to gene promoters (28). More interestingly,
lncRNAs also improve antigen presentation after being
translated into short polypeptides. In melanoma, lncRNA
MELOE, which is translated into MELOE-1, MELOE-2, and
MELOE-3 by different translational approaches, shows the
highest immunogenicity and can be recognized by tumor-
infiltrating lymphocytes. MELOE is currently considered as a
targeted specific antigen to improve the efficacy of melanoma
immunotherapy (22). These findings establish the key roles of
lncRNAs in antigen presentation.
lncRNAs IN IMMUNE CELL PRIMING
AND ACTIVATION

Effective immune priming and activation are determined by the
ratio of T effector cells and T regulatory (Treg) cells (49). Some
lncRNAs have been demonstrated to regulate lymphocyte
differentiation and activation (50–54). In HCC, lnc-epidermal
growth factor receptor (lncEGFR) promotes Treg cells
differentiation and suppresses cytotoxic T lymphocytes
(CTLs) activity (9, 55). Mechanistically, lncEGFR specifically
binds to EGFR and blocks its ubiquitination by c-CBL, leading
to EGFR stabilization and to augment its activation and its
downstream AP-1/NF-AT1 axis. Indoleamine 2, 3-dioxygenase
(IDO) is encoded by IDO1 gene and a heme-containing enzyme
physiologically expressed in a number of tissues. IDO not only
suppresses anti-tumor immune response in the body (56, 57), it
also limits T-cell function and engages in mechanisms
of immune tolerance (58). In breast cancer, small nucleolar
RNA host gene 1 (SNHG1) negatively regulates the protein
level of IDO to inhibit Treg cells differentiation and impede
immune escape (29). In addition, lnc-SGK1 (Serine/threonine-
protein kinase-SGK1) promotes Th2 and Th17 differentiation
by SGK1/JunB signaling in gastric cancer (59). In HCC,
Nuclear Enriched Abundant Transcript 1 (NEAT1) promotes
CD8+ T cell apoptosis and enhances cytolysis through miR-
155/Tim-3 pathway (30). Lnc-Tim-3 specifically binds to Tim-3
Frontiers in Oncology | www.frontiersin.org 4
and blocks its interaction with Bat3, thus suppressing
downstream Lck/NEAT1/AP-1 signaling and exacerbating
CD8+ T cell exhaustion (32). NeST (Nettoie salmonella pas
Theiler’s) is a lncRNA expressed in different immune cells
including CD8+ T cells, CD4+ T TH1 cells, and natural killer
cells (34, 60, 61). NeST promotes IFNG transcription to
improve INF-g production during CD8+ T cell activation
(31). These findings indicate lncRNAs modulate immune cell
priming and activation by different mechanisms. The emerging
roles of lncRNAs in immune cell priming and activation
indicate that these lncRNAs can be potential targets for
cancer therapies.
ROLE OF lncRNAs IN IMMUNE CELL
MIGRATION

Recent studies have shown that some lncRNAs (e.g., lnc-sox5 and
lincR-Ccr2-5’AS) are involved in immune cell trafficking.
Knockdown of lnc-sox5 induces down-regulation of IDO1 in
xenograft mouse model, leading to the modulation of CD3+CD8+

T cells infiltration and cytotoxicity (33). lincR-Ccr2-5’AS is a
lncRNA specifically expressed in Th2 cells and transcribed in the
opposite direction of the Ccr2 gene. Knockdown of lincR-Ccr2-5’AS
induces a dramatic Th2 cells migration into the lung in mice (61).
These findings spike the notion that lncRNAs can directly modulate
the migration of immune cells.
lncRNAs IN IMMUNE CELL INFILTRATION

Effective response of cancer immunity is also indispensable of
effective T cells infiltrating into tumor stroma. By far, there are
limited pieces of evidence about lncRNAs in the process of T cell
infiltration in the cancer immunity cycle. In triple-negative breast
cancer (TNBC) of patients receiving pembrolizumab (anti-PD-1)
treatment, the pembrolizumab responders exhibited a relatively
lower expression of LINK-A and a higher CD8+ T cell infiltration
compared with non-responders (45), concluding that the CD8+ T
cell infiltration in TNBC is negatively correlated with LINK-A
expression (45). In breast cancer, lncRNA T-cell leukemia/
lymphoma 6 (TCL6) is correlated with the infiltration of CD8+ T
cells, CD4+ T cells, neutrophils, DCs, and the frequency of tumor-
infiltrating lymphocytes (TILs) (35). Thus, more efforts to show
direct evidence of whether and how lncRNAs function in immune
cell infiltration are in urgent need.
lncRNAs IN THE RECOGNITION AND
ATTACK OF CANCER CELLS

Cell-cell recognition ability helps cells distinguish one type of
neighboring cells from another. This ability requires
complementary molecules of the different cellular surfaces to
October 2020 | Volume 10 | Article 550987
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recognize each other, such as a receptor and its specific ligand.
For example, programmed cell death 1 (PD-1) is an immune
checkpoint receptor on the T cell surface. PD-1 binds to its
ligands, programmed cell death 1 ligand 1 (PD-L1) and PD-L2
on cancer cell surface, functionally causing immune inhibition
(17, 62). Overexpression of PD-L1 associates with poor
prognosis and enables cancer cells to escape from immune
surveillance in various cancer types. Of note, lncRNAs,
including lncRNA AFAP1-AS1 and lncMX1-215, have been
found to regulate PD-1/PD-L1 signaling. LncRNA AFAP1-AS1
can induce increased expression of PD1 in tumor
microenvironment of nasopharyngeal carcinoma (36).
Moreover, there is a positively expressing correlation between
lncRNA AFAP1-AS1 and PD1 in nasopharyngeal carcinoma
(NPC) (36). LncMX1-215, a novel IFNa-induced long
noncoding RNA, significantly inhibits IFNa-induced
expression of PD-L1 and galectin-9 in head and neck
squamous cell carcinoma (37). In addition, in diffuse large B-
cell lymphoma, MALAT1 sponges miR-195 to upregulate PD-
L1 expression to promote cancer cells migration and immune
escape. Inhibition of MALAT1 can rescue these events and
attenuate epithelial-mesenchymal transition-like process (38).
In esophageal squamous cell carcinoma, Small nucleolar RNA
host gene 20 (SNHG20) promotes PD-L1 expression via ataxia
telangiectasia mutated kinase (ATM)/JAK-PD-L1 pathway
(39). In gastric cancer, UCA1 (Urothelial Cancer-Associated 1)
promotes PD-L1 expression by repressing miR-26a/b, miR-193a,
and miR-214, which contributes to immune escape of gastric
cancer cells (40). These findings point out that lncRNAs are
involved in the regulation of immune checkpoints in cancer
immunity cycle, indicating that these lncRNAs may be
synergistic targets for immunotherapy.
DISCUSSION

Immunotherapy has gained a lot of interest from researchers
and clinicians due to its great potential for effectively treating
cancer. The immune checkpoint inhibitors in the clinic, like
PD1, PD-L1, and CTAL-4, have made great clinical
achievements (63, 64). But some of the cancer patients do not
respond to these immune checkpoint inhibitors, pointing out
the need for more investigation of the cancer immune system.
LncRNAs exhibit multiple and powerful functions in the tumor
microenvironment, including tumorigenesis, tumor metastases,
and immune disorders (10, 14, 33, 37). LncRNAs interact with
DNA, mRNA, ncRNAs, and proteins to alter cellular
physiology. LncRNAs have high tissue- and cell-specificity
indicating a wholely different range of diagnosis and treatment of
cancer (65). Some combination therapies, including combination
of immunotherapy with chemotherapy, combination of surgery
with chemotherapy, and even drug combination therapy, have
attained obvious clinal progress (18, 62, 64, 66). Thus,
consideration of a combination of targeting on lncRNAs and
immunotherapy is attractive for cancer treatment. With the rapid
Frontiers in Oncology | www.frontiersin.org 5
development of RNA-targeting technologies, there are many
approaches targeting lncRNAs emerging, like aptamers, small
molecule inhibitors, natural antisense transcripts (NATs), an
antisense ligonucleotide (ASO), synthetic lncRNA mimics, and
other constructs (67). The off-target effect in systemic nucleic acid
based therapies is a main problem in lncRNA therapies. CRISPR-
Cas13a, a programmable RNA editing system that allows for
temporal modulation of genetic variants in transcripts, may be a
potential candidate for manipulation RNA expression with low off-
target efficiency in lncRNA therapies. These approaches enable us
to target lncRNAs to modulate their functions for clinical purposes.
However, as for utilizing lncRNAs to aid in cancer diagnosis and
therapy, the biggest challenge in lncRNAs research is the lack of
conservation for many lncRNA species. Some cancer-related
lncRNAs are well conserved, but most human cancer-related
lncRNAs do not exhibit sequence conservation across
mammalian species. This will impede preclinical research for
therapeutic targeting in animals. By far, the patient-derived
tumor organoids serve as a powerful model to explore the role of
lncRNA in a patient-specific manner. Moreover, due to the
complexity of the immune system, the functional investigation of
lncRNAs in cancer immunity is just beginning, and their roles as
both biomarkers and targets in cancer immunity cycle need
further study.
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