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Objective: To comprehensively analyze the global N°-methyladenosine (m°A)
modification pattern in ameloblastoma.

Methods: m°A peaks in ameloblastoma and normal oral tissues were detected by
MeRIP-seq. Differentially methylated mCA sites within messenger RNAs (mRNASs), long no-
coding RNA (IncRNAs) and circular RNA (circRNAs) were identified, followed by functional
enrichment analysis. By comprehensively analyzing MeRIP-seq and RNA-seq data,
differentially expressed mRNAs, IncRNAs and circRNAs containing differentially
methylated sites were identified. RNA binding proteins (RBPs) were then identified for
differentially methylated m°A sites.

Results: In total, 3,673 differentially methylated m°A sites within coding genes were
detected, of which 16.2% (704/3,673) were significantly upmethylated sites in
ameloblastoma compared to normal oral tissues. Furthermore, 4,975 differentially
methylated mPA sites within INcRNAs were identified, of which 29.4% (1,465/4,975)
were upmethylated sites in ameloblastoma. We also found 364 differentially methylated
mCA sites within circRNAs, of which 22.5% (82/364) were upmethylated sites in
ameloblastoma. Differentially methylated m°A was most often harbored in the CDS
(54.10%), followed by 5’UTR (21.71%). Functional enrichment analysis revealed that
mCA modification could be involved in the development of ameloblastoma by organism
developmental processes. A total of 158 RBPs within differentially methylated m°A sites
were identified, which were significantly involved in mRNA metabolic process, mRNA
processing, RNA processing, RNA splicing and RNA transport.

Conclusion: Our findings for the first time provide m®A landscape of human
ameloblastoma, which expand the understanding of m®A modifications and uncover
regulation of INcRNAs and circRNAs through m°A modification in ameloblastoma.
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INTRODUCTION

Ameloblastoma is the most common epithelial odontogenic
neoplasm globally, accounting for approximately 36% of all
odontogenic tumors (1). Ameloblastoma has a high risk of
recurrence (90%) and even occurs distant metastasis (2). Surgery
resection is the main treatment option for ameloblastoma, but it
often leads to facial deformity, masticatory function loss, and
psychological burden (3). Thus, it is of importance to develop new
treatment strategies for ameloblastoma. To date, most molecular
studies on ameloblastoma have focused on exploring markers and
genetic variation, which help to ensure diagnosis and better
determine patients’ prognosis (4-6).

m°®A is one of the most popular RNA modifications, which is
widely found in mRNA and non-coding RNA like IncRNA (7)
and circRNA (8). Specific methylation of these RNA molecules
regulates RNA structure and protein-RNA interactions, which
may affect RNA metabolism, cell signaling, cell survival and
differentiation (9, 10). m®A modification provides a critical
transcriptomic mechanism, which regulates RNA metabolism
and function. Increasing studies have confirmed that
dysregulation of RNA modification like m°®A is in association
with severe human diseases including tumors (11, 12). However,
no studies have reported m®A modification in ameloblastoma.

LncRNAs are transcribed RNA molecules with more than 200
nucleotides (13). Growing evidence suggests that IncRNAs are key
regulators of gene expression, which participate in a variety of
physiological and pathological processes during the occurrence and
development of tumors, including ameloblastoma (14). The roles
and potential mechanisms of several IncRNAs in ameloblastoma
have been reported (15). The key role of mPA modified IncRNAs
has been emphasized in cancer. For example, m°A modified
IncRNA THOR regulates the proliferation of tumor cells (16).
m°A reader YTHDF3 negatively mediates IncRNA GAS5 in
colorectal cancer. However, the specific functions of IncRNAs
with m°A modification remain unclear in ameloblastoma.

CircRNAs, a class of ncRNAs, have emerged as mediators of
gene expression. To date, more than 100,000 circRNAs have been
identified, which are expressed in specific tissues or cells and are
associated with various physiological and pathological conditions
(17). The biogenesis of circRNAs is regulated by various molecular
factors such as RNA-binding proteins (RBPs), splicing
components, proteins that affect transcriptional elongation, and
the presence of reverse RNA repeats (18). CircRNAs have been
shown to be functional and can affect gene expression patterns by
acting as a sponge for microRNAs (miRNAs) and RBPs (18). For
instance, Yang et al. found that the most abundant RNA
modification motif m®A was enriched in the circRNA
population (19). It has been demonstrated that m®A-modified
circNSUN2 may facilitate cytoplasmic export and stabilize
HMGA?2, thereby accelerating colorectal liver metastasis (20).

Abbreviations: m®A, N°-methyladenosine; mRNA, messenger RNA; IncRNA,
long no-coding RNA; circRNA, circular RNA; snRNA, small nuclear RNA; GO,
Gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RBPs, RNA
binding proteins; FC, fold change.

Thus, m°A modified circRNAs could be promising therapeutic
targets for tumors. However, little is known about m°A
modification of circRNAs in ameloblastoma. In this study, we
for the first time comprehensively analyzed m®A modification
patterns and uncovered m°A modified IncRNAs and circRNAs
in ameloblastoma.

MATERIALS AND METHODS

Patients and Specimens

A total of three patients with ameloblastoma were involved in
our study. Tumor tissue specimens and corresponding normal
oral specimens were collected during the operation from the
Department of Maxillofacial Surgery, Stomatological Hospital of
China Medical University. All specimens were immediately
stored at —80°C before RNA isolation. Our research was
approved by the Ethics Committee of School and Hospital of
Stomatology, China Medical University (2019012). All
participants signed written informed consents.

RNA Preparation

Total RNA was extracted from tissue specimens using TRIzol
reagent (Life Technologies, Carlsbad, CA) following the
manufacturer’s instructions. RNA quantification and quality
were determined using NanoDrop ND-1000 (Thermo Fisher
Scientific, Waltham, MA, USA). RNA integrity and gDNA
contamination were evaluated via denaturing agarose
gel electrophoresis.

MeRIP-Seq and RNA-Seq

MeRIP-seq and RNA-seq were performed by Cloudseq Biotech,
Inc. (Shanghai, China), in accordance with a previously reported
procedure (21). Briefly, m°A RNA immunoprecipitation was
performed with the GenSeqTM m°A RNA IP Kit (GenSeq Inc.,
China) in line with the manufacturer’s instructions. Both the
input sample without immunoprecipitation and the m®A IP
samples were used for RNA-seq library generation with
NEBNext® Ultra II Directional RNA Library Prep Kit (New
England Biolabs, Inc., USA). The library quality was evaluated
with BioAnalyzer 2100 system (Agilent Technologies, Inc., USA).
Library sequencing was performed on Illumina Hiseq instrument
with 150bp paired-end reads. MeRIP-seq and RNA-seq data
have been uploaded to the Gene Expression Omnibus (GEO)
database (accession number: GSE156886).

Data Analysis

Paired-end reads were collected from Illumina HiSeq 4000
sequencer, followed by quality control via Q30. Then, 3
adaptor-trimming and low-quality reads were removed using
cutadapt software (version: 1.9.3). After that, the clean reads of
all libraries were aligned to the reference genome (UCSC HG19)
by Hisat2 software (version: 2.0.4). CircRNAs were identified by
DCC software according to STAR alignment results. Interested
genes were directly visualized in the Integrative Genomics Viewer
(IGV; http://www.broadinstitute.org/igv/; version: 2.4.10) (22).
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For MeRIP-seq, m°®A sites on RNAs (peaks) were analyzed by
overlapping three pairs of ameloblastoma and adjacent normal
oral tissues using MACS software. diffReps was used to identify
differentially methylated m°A sites between ameloblastoma tissues
and adjacent normal oral tissues with the threshold of |log2 fold
change (FC)|>1 and p-value<0.05. m°A methylation peaks that
were overlapping with transcript exons were figured out and
chosen by home-made scripts. For RNA-seq, raw counts were
obtained based on HTSeq software (version 0.9.1), followed by
normalization using the edgeR software. Differentially expressed
mRNAs, IncRNAs and circRNAs were identified according to p-
value and fold change.

Functional Enrichment Analysis

The Gene ontology (GO) project provides a controlled vocabulary
to describe gene and gene product attributes in any organism
(http://www.geneontology.org). The ontology covers three
domains: biological process (BP), cellular component (CC) and
molecular function (MF). Pathway analysis is a functional analysis
mapping gene to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. In this study, functional enrichment analysis
was presented for the differentially methylated mRNAs. P-value <
0.05 was considered significantly enriched.

RESULTS

Landscape of m®A Modification Patterns

in Ameloblastoma

Ameloblastoma tissues and adjacent normal oral tissues from three
patients were used for MeRIP-seq analysis. Venn diagram showed
that 16,477 m°A peaks within mRNAs (Figure 1A), 5,895 m°A
peaks within IncRNAs (Figure 1B) and 2,808 m°A peaks within
circRNAs (Figure 1C) were overlapped between ameloblastoma
tissues and adjacent normal oral tissues. Noticeably, there were
6,870 nonoverlapping m°A peaks within mRNAs (Figure 1A),
4,558 nonoverlapping m°A peaks within IncRNAs (Figure 1B),
and 1,091 nonoverlapping m°®A peaks within circRNAs (Figure 1B)
in ameloblastoma tissues compared to adjacent normal oral tissues.
The high nonoverlapping percentages of m°A peaks within
mRNAs, IncRNAs and circRNAs suggest the differences in the
m®A modification patterns between the two groups. Furthermore,
8,881 m®A-modified mRNAs (Figure 1D), 5,675 mP®A-modified
IncRNAs (Figure 1E) and 1,844 mP®A-modified circRNAs (Figure
1E) were found within both the two groups.

Most of m®A-motified mRNAs (Figure 1G), IncRNAs
(Figure 1H) and circRNAs (Figure 1I) contained only one
m°A peak, while a small number of them contained two or
more, which was consistent with previous studies such as clear
cell renal cell carcinoma (23). The top ten hypermethylated and
hypomethylated m®A-modified peaks for ameloblastoma tissues
are listed in Tables 1, 2.

Motif analysis was performed by DREME software (version:
5.0.4) (24). Compared to adjacent normal oral samples, the top
consensus motifs in the m°A peaks within mRNAs, IncRNAs and
circRNAs were respectively AAACU, GAACU and AAACC in

ameloblastoma samples (Figure 2A). The distribution of m®A
was further investigated in the whole transcriptome of
ameloblastoma tissues and adjacent normal oral tissues. The
m®A peaks were mainly assigned into 5’UTR, coding sequence
(CDS), start codon, stop codon and 3’UTR. As shown in Figure
2B, m®A peaks were especially enriched in the stop codon both
for ameloblastoma and normal oral samples. Moreover, there
was a higher peak density in the CDS region for normal oral
samples compared to ameloblastoma samples. For all m°A peaks
both in ameloblastoma and normal oral samples, the CDS was
most often harbored (Figure 2C). The distribution of m®A peaks
was consistent with previous mCA results (25).

Abnormal m®A-Modified MmRNAs, IncRNAs
and circRNAs in Ameloblastoma

Abnormal m®A-modified mRNAs, IncRNAs and circRNAs were
identified between ameloblastoma tissues and adjacent normal
oral tissues. With the threshold of |log2FC|>1 and p-value<0.05,
volcano plots depicted 6,429 hypermethylated and 9,225
hypomethylated mRNAs (Figure 3A), 15,512 hypermethylated
and 15,052 hypomethylated IncRNAs (Figure 3B), 1,135
hypermethylated and 12,313 hypomethylated circRNAs
(Figure 3C) in ameloblastoma tissues compared to adjacent
normal oral tissues. Based on |log2FC|>1 and p-value<0.0001,
we identified 1,032 hypermethylated and 3,274 hypomethylated
mRNAs (Figure 3D), 2,012 hypermethylated and 3,774
hypomethylated IncRNAs (Figure 3E), 148 hypermethylated
and 325 hypomethylated circRNAs (Figure 3F) for
ameloblastoma. Then, hierarchical clustering analysis results
suggested that there were significant differences in the m°A
methylation patterns within mRNAs (Figure 3G), IncRNAs
(Figure 3H) and circRNAs (Figure 3I) between ameloblastoma
tissues and adjacent normal oral tissues.

In total, 3,673 differentially methylated m°A sites within
mRNAs were identified, of which 16.2% (704/3,673) were
significantly hypermethylated in ameloblastoma tissues
compared to adjacent normal oral tissues. Furthermore, 4,975
differentially methylated m°®A sites within IncRNAs were
identified in ameloblastoma, of which 29.4% (1,465/4,975)
were hypermethylated. We also identified 364 differentially
methylated mCA sites within circRNAs, of which 22.5% (82/
364) were hypermethylated in ameloblastoma. All differentially
methylated m°A sites within mRNAs, IncRNAs and circRNAs
were mapped to chromosomes to obtain their distribution
profiles. The top five chromosomes harboring the most
hypermethylated and hypomethylated m°®A sites within
mRNAs were 1 (76), 2 (73), 11 (48), 3 (43) and X (40); 1
(338), 3 (195), 19 (189), 17 (179) and 2 (174) in Figures 4A-C.
The top five chromosomes harboring the most hypermethylated
and hypomethylated m®A sites within IncRNAs were 1 (144), 3
(120), 2 (105), 16 (96) and 12 (92); 1 (437), 2 (333), 15 (243), 17
(233) and 11 (209) in Figures 4D-F. Moreover, the top five
chromosomes harboring the most hypermethylated and
hypomethylated m°A sites within circRNAs were 3 (11), 15
(8), 11 (7), 1 (6) and 14 (6); 2 (36), 1 (26), 3 (22), 6 (20) and 7
(20) in Figures 4G-I.
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TABLE 1 | The top ten hypermethylated m®A-modified peaks in ameloblastoma
tissues compared to normal oral tissues.

Chromosome txStart txEnd Gene name Fold
change
20 40706541 40707000 PTPRT 120.5
134074101 134074480 PCDH10 104.9
12 6952161 6952240 GNB3 79.8
9 87488301 87488520 NTRK2 77.6
6 70854809 70854899 COL19A1 751
3 49705481 49705700 BSN 73.4
1 110088121 110088320 GPR61 rans
20 32273809 32273820 E2F1 70.7
2 136566261 136566640 LCT 68.9
1 8386101 8386102 SLC45A1 66.9

TABLE 2 | The top ten hypomethylated m6A-modified peaks in ameloblastoma
tissues compared to normal oral tissues.

The distribution of differentially methylated m®A peaks was
analyzed in ameloblastoma. In Figure 4]J, differentially methylated
m°®A sites were most often harbored in the CDS (54.10%), followed
by 5’UTR (21.71%). Then, these differentially methylated m°A sites
were classified according to the five regions. As shown in Figure 4K,
there were distinct differences in m®A levels within the five regions
between ameloblastoma tissues and adjacent normal oral tissues,
indicating abnormal m°A patterns could be involved in the
development of ameloblastoma.

Protein Coding Genes Harboring
Differentially Methylated m®A Sites Are
Involved in Important Biological Processes
and Pathways

To uncover the potential functions of protein coding genes
harboring differentially methylated m°A sites in ameloblastoma,
differentially methylated m°A sites-contained mRNAs-, IncRNAs-
and circRNAs-associated genes were selected for functional

Chromosome txStart txEnd Gene Fold
name change enrichment analyses. For the BP term, we found that mRNAs
harboring differentially methylated m®A sites were significantly
20 44455884 44455953 ThNG2 5115102 enriched in organism developmental processes such as
14 23859601 23859655  MYH6 347.63572 . g2 velop p u
1 150382941 150383240  CRNN 057 40689~ Multicellular organismal development and system development
11 1940841 1940992 TNNT3 232.68662 (Figure 5A). For the CC term, these mRNAs harboring
16 4292061 4292081 SRL 2199 upmethylated m°®A sites in ameloblastoma were mainly enriched
11 64527301 64527640 PYGM 20714873 ip intrinsic/integral component of plasma membrane,
6 123687279 123687327 TRDN 194.63652 t t b d t b hile th
20 51687161 51687460 PAX] 156.8 postsynaptic membrane and synaptic membrane, while those
17 10297721 10297769 MYHS 156.28189  harboring downmethylated m°A sites were highly involved in
11 62455361 62455580 LRRN4CL 154.4 myofibril, contractile fiber and contractile fiber part (Figure 5B).
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between ameloblastoma and adjacent normal oral tissues. Red represents high methylation and purple represents low methylation.
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FIGURE 5 | Functional enrichment analysis results of protein coding genes harboring differentially methylated mPA sites. The top ten enrichment results of (A) biological process (BP); (B) cellular component (CC);
(C) molecular function (MF) and (D) KEGG.
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For the MF term, these mRNAs were significantly correlated
with DNA binding and protein binding (Figure 5C).
Furthermore, these mRNAs were found to be significantly
enriched in cancer-associated pathways, such as pathways in
cancer, cGMP-PKG signaling pathway and oxytocin signaling
pathway (Figure 5D).

Functional enrichment analyses of differentially methylated
IncRNA-associated genes were performed. For the BP category,
hypermethylated or hypomethylated IncRNAs-associated genes
were in a significant correlation with system development
(Figure 6A). For the CC category, hypermethylated IncRNAs-
associated genes were significantly associated with neuron part,
neuron projection and early endosome membrane (Figure 6B),
while hypomethylated IncRNAs-associated genes were mainly
enriched in contractile fiber part, contractile fiber and sarcomere
(Figure 6B). For the MF category, upmethylated IncRNAs-
associated genes were mainly enriched in cation binding,
ion binding and metal ion binding (Figure 6C), while
downmethylated IncRNAs-associated genes were involved in
structural constituent of muscle, protein binding and actin
filament binding (Figure 6C). KEGG pathway analysis results
showed that hypermethylated or hypomethylated IncRNAs-
associated genes were significantly correlated with transcriptional
misregulation in cancer (Figure 6D).

In Figure 7A, hypermethylated circRNAs-associated genes
were mainly enriched in epithelial or epithelium cell migration
processes, while hypomethylated circRNAs-associated genes
were significantly associated with organismal processes. For the
CC category, these circRNAs-associated genes were involved
in postsynaptic density or membrane, synapse myofibril and
contractile fiber (Figure 7B). For the MF category, upmethylated
or downmethylated circRNAs-associated genes were mainly
enriched in anion binding (Figure 7C). KEGG pathway
analysis results showed that these circRNAs-associated genes
were involved in adherens junction (Figure 7D).

Identification of RNA Binding Proteins
(RBPs) Within Differentially Methylated
m°A Sites

Potential RBPs within differentially methylated m°A sites were
explored using RMBase database (http://rna.sysu.edu.cn/rmbase/;
version: 2.0) (26). In total, 158 RBPs within differentially
methylated m°A sites were identified, which were depicted as
heat maps (Figure 8A). GO and KEGG enrichment analyses were
then performed based on these RBPs. As shown in Figure 8B, for
the BP term, these RBPs were mainly enriched in mRNA
metabolic process, mRNA processing, RNA processing and
RNA splicing. As for the CC term, these proteins were
significantly associated with nuclear, nucleoplasm and
ribonucleoprotein (Figure 8C). For the MF term, RNA binding
was mainly enriched (Figure 8D). KEGG pathway results showed
that these RBPs were significantly associated with spliceosome,
mRNA surveillance pathway, RNA transport and ribosome
biogenesis in eukaryotes (Figure 8E). These results indicated the
key roles of these RBPs in regulation of gene expression, which
could be involved in m°A modifications in ameloblastoma.

Comprehensive Analysis of MeRIP-Seq
and RNA-Seq Data in Ameloblastoma and
Normal Tissues

We comprehensively analyzed MeRIP-seq and RNA-seq data in
ameloblastoma and normal tissues. The results showed that, the
expression levels of 689 hypermethylated genes tended to be up-
regulated in ameloblastoma compared to normal oral tissues
(Figure 9A). Furthermore, 482 hypermethylated genes were up-
regulated in ameloblastoma, while 337 hypomethylated genes
tended to be up-regulated. One thousand two hundred thirty-
one hypomethylated and down-regulated genes were found,
indicating that the expression levels of downmethylated genes
tended to be down-regulated in ameloblastoma compared to
normal oral tissues. We further analyzed the expression levels of
genes containing differentially methylated m°®A sites in five
regions between ameloblastoma and normal oral tissues. As
depicted in Figure 9B, the expression levels of these mRNAs
in five regions were all higher in ameloblastoma tissues than
normal oral tissues. Moreover, the CDS region had the highest
fractions of mRNAs among five different regions (Figure 9C). In
Figures 10A-C, we displayed the general locations of
upmethylated m°A sites in ameloblastoma- or other oral
diseases-related mRNA [HOXCI3 (27)], IncRNA [HOXC13-
AS (27)] and circRNA [hsa_circ_0086414 (28)] in
ameloblastoma compared to adjacent normal oral tissues.

DISCUSSION

mCA is the most abundant mRNA modification in mammals. It
has been well recognized that m®A is involved in a variety of
aspects of mRNA metabolism such as mRNA translation and
mRNA decay (29). Growing evidence emphasizes its important
RNA biology as a hallmark of cancer (30-33). However, RNA
modification in ameloblastoma is rarely reviewed. In this
study, we comprehensively analyzed the differences in m°A
modification between human ameloblastoma and normal oral
tissues. We identified differentially methylated mRNAs and
many important biological pathways. Furthermore, IncRNAs
and circRNAs harboring m®A peaks were identified and these
IncRNA- and circRNA-associated genes were involved in many
key biological processes.

Our MeRIP-seq analysis results revealed that there were
highly overlapping and non-overlapping m°A peaks within
mRNAs, IncRNAs and circRNAs between ameloblastoma
tissues and adjacent normal oral tissues. Consistent with
previous studies, most of m®A-motified mRNAs, IncRNAs and
circRNAs contained only one m°A peak (23). The m°A
modification mainly occurs in the RRACH sequence (where
R=Aor G, H = A, C, or U). Herein, we found that the m°A
peaks within mRNAs, IncRNAs and circRNAs were respectively
enriched in the AAACU, GAACU and AAACC sequences for
ameloblastoma tissues compared to normal tissues. Consistent
with other tumors, m®A was most often enriched in the CDS and
stop codon regions for ameloblastoma (34).
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We identified differentially m®A modified mRNAs between
ameloblastoma and normal oral tissues. To uncover the
functions of m°A in ameloblastoma, we performed functional
enrichment analysis of differentially methylated mRNAs. Our
results revealed that mRNAs with abnormal m°A modification
were significantly enriched in organism developmental
processes, indicating that m°®A could be involved in the
development of ameloblastoma. It has been confirmed that
IncRNAs play critical roles in mediating the regulation of
transcription and post-transcription (35). LncRNAs are
involved in chromatin organization, transcriptional, and
posttranscriptional regulation (36, 37). It has been reported
that IncRNA X-inactive-specific transcript (XIST) may induce
the transcriptional silencing of genes on the X chromosome. As
an example, RBM15 and RBM15B recruited METTL3 to
methylate XIST. Furthermore, silencing RBM15, RBM15B, or
METTL3 may impair XIST-mediated transcriptional repression
both in vitro and in vivo (38). It has been well recognized that
IncRNAs with m®A modification are common in human cancers
(39). Up to date, only a few IncRNAs have been functionally
characterized. As an example, a previous study has found that

demethylated IncRNA inhibits pancreatic cancer cell motility
(40). Herein, we observed the differences in m°A modification
between human ameloblastoma and normal oral tissues,
revealing a potential role for m°A-modified IncRNAs in the
development of ameloblastoma. However, further experiments
should be required to confirm these results. Although m°A is
recognized as an abundant co-transcriptional modification in
mRNAs and ncRNAs (41, 42) including circRNAs (43), it is
involved in many aspects of post-transcriptional mRNA
metabolism (44-46). CircRNAs exhibit patterns of meA
modifications that are distinct from those of mRNAs.
However, little is known about the influences of m°A
modification on circRNA biology in cells. Typically, circRNA
is thought to be a co-transcript produced by canonical linear
mRNA splicing that occurs in the nucleus. Herein, we identified
differentially m°A-modified circRNAs in human ameloblastoma
tissues than oral normal tissues. Recent findings have
demonstrated that the export of circNSUN2 from the nucleus
to the cytoplasm is dependent on m®A modification (20). Thus,
m®A-modified circRNA plays a functional role in the progression
of tumors, which may serve as a potential molecular marker.
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RBPs act as m®A readers or functional factors in m°®A
modification (47). Our data identified 158 RBPs within
differentially methylated m°A sites between ameloblastoma
and normal oral tissues. As shown in functional enrichment
analysis, these RBPs were mainly enriched in various processes
of RNA metabolism. M®A modification changes the expression
of target genes, thereby affecting cellular processes and
physiological functions. In this study, we comprehensively
analyzed MeRIP-seq and RNA-seq data in ameloblastoma and
normal tissues. Our data showed that 689 hypermethylated
and 482 hypermethylated genes was highly expressed in
ameloblastoma compared to normal oral tissues. Furthermore,
among hypomethylated genes, 337 was up-regulated and 1,231
was down-regulated in ameloblastoma tissues in comparison to
normal oral tissues, indicating that m®A could be involved in
regulation of gene expression. For example, our previous
study has confirmed that HOXC13 and HOXC13-AS are both
highly expressed in ameloblastoma tissues (27). Their

BNC2

FIGURE 10 | Representative differentially methylated mRNA, INncRNA and circRNA in ameloblastoma and adjacent normal oral tissues. (A) HOXC13; (B) HOXC13-

hypermethylation was found in ameloblastoma than normal
oral tissues. hsa_circ_0086414 has been detected in oral tissues
(28). In this study, we found that hsa_circ_0086414 was
differentially m°A-modified in ameloblastoma tissues in
comparison to normal oral tissues. Our data indicates that
m°A could participate in tumor progression through the
modification of tumor-related genes.

CONCLUSION

m°A modification is involved in almost every step in mRNA
metabolism. Furthermore, it also affects the processing of
IncRNAs and circRNAs. Our findings provide the first m®A
modification landscape in ameloblastoma. Differentially
expressed mRNAs with hyper-methylated or hypo-methylated
m6A modifications are identified, which may help observe the
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mechanisms of m°®A-mediated gene expression regulation. In
further studies, we will evaluate the biological relevance and
clinical value of m°A in human ameloblastoma.
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