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Purpose: To establish and validate a radiomics model to estimate the malignancy of
mediastinal lymph nodes (LNs) based on contrast-enhanced CT imaging.

Method: In total, 201 pathologically confirmed mediastinal LNs from 129 patients were
enrolled and assigned to training and test sets. Radiomics features were extracted from
the region of interest (ROI) delineated on venous-phase CT imaging of LN. Feature
selection was performed with least absolute shrinkage and selection operator (LASSO)
binary logistic regression. Multivariate logistic regression was performed with the
backward stepwise elimination. A model was fitted to associate mediastinal LN
malignancy with selected features. The performance of the model was assessed and
compared to that of five other machine learning algorithms (support vector machine, naive
Bayes, random forest, decision tree, K-nearest neighbor) using receiver operating
characteristic (ROC) curves. Calibration curves and Hosmer-Lemeshow tests were
used to assess the calibration degree. Decision curve analysis (DCA) was used to
assess the clinical usefulness of the logistic regression model in both the training and
test sets. Stratified analysis was performed for different scanners and slice thicknesses.

Result: Among the six machine learning methods, the logistic regression model with the
eight strongest features showed a significant association with mediastinal LN status and
the satisfactory diagnostic performance for distinguishing malignant LNs from benign
LNs. The accuracy, sensitivity, specificity and area under the ROC curve (AUC) were
0.850/0.803, 0.821/0.806, 0.893/0.800, and 0.922/0.850 in the training/test sets,
respectively. The Hosmer-Lemeshow test showed that the P value was > 0.05,
indicating good calibration, and the calibration curves showed good agreement
between the classifications and actual observations. DCA showed that the model
would obtain more benefit when the threshold probability was between 30% and
90% in the test set. Stratified analysis showed that the performance was not affected
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by different scanners or slice thicknesses. There was no significant difference (DeLong
test, P > 0.05) between any two subgroups, which showed the generalization of the
radiomics score across different factors.

Conclusion: The model we built could help assist the preoperative estimation of
mediastinal LN malignancy based on contrast-enhanced CT imaging, with stability for
different scanners and slice thicknesses.
Keywords: mediastinal lymph nodes, malignant, benign, radiomics, machine learning, classification
INTRODUCTION

Mediastinal lymph nodes (LNs) are the most common metastatic
targets of lung cancer, esophageal cancer and other malignant
tumors. LN metastasis has been suggested to be very important
for tumor staging, treatment plan selection and prognosis
prediction (1–4). Preoperative staging of the mediastinum is an
essential task (5). Preoperative staging is helpful for clinicians to
fully understand the patient’s condition and to make better
diagnosis and treatment decisions. However, it is difficult to
estimate mediastinal LN metastasis before surgery in the clinic.
Metastasis does not necessarily cause lymphadenopathy. Some
LNs less than 1 cm are finally confirmed as metastasis, while
some with obvious enlargement are confirmed as chronic
lymphadenitis or reactive hyperplasia.

Endobronchial ultrasound-guided transbronchial needle
aspiration (EBUS-TBNA) is the most effective diagnostic
method for estimating the malignancy of mediastinal LNs (6–
9). However, EBUS-TBNA is not popular enough in developing
countries. It is also an invasive procedure with the possibility of
complications (10–12) and false negative results (13–16). It is
meaningful to find a method to assist clinicians in determining
the status of mediastinal LNs preoperatively.

It is worth noting that CT scan can be performed before
surgery. Some researchers point out that radiomics is very
promising in preoperative staging of the mediastinum
(5). “Radiomics” refers to an approach that can extract
innumerable quantitative features using advanced feature
analysis with high throughput from digital medical images,
including computed tomography (CT), magnetic resonance
(MR), and positron emission tomography (PET) images (17).
Radiomics has been indicated to be effective for the diagnosis,
treatment evaluation and prognosis prediction of tumors (18–
20), as well as tumor phenotype decoding (18, 21). Recent
evidence suggests that radiomics features have the capability to
predict the distant metastasis of lung adenocarcinoma (22) and
LN metastasis of colorectal cancer (23). Several researchers have
attempted to estimate the malignancy of primary lung lesions
with radiomics (22, 24) or mediastinal LNs with texture (25, 26).
The results were promising. A recent research confirms that the
CT radiomics models show good performances for the diagnosis
of LN metastasis in non-small cell lung cancer patients (27).
However, with different equipment and scanning protocols in
different studies, the repeatability and applicability of the model
is relatively low.
2

In our study, a robust model with validation by stratified
analysis (28) was established for malignant estimation based on
the radiomics analysis of mediastinal LNs on contrast-enhanced
CT. We hypothesized that the robust model could be effective in
distinguishing the malignancy of LNs, and it could be generally
applied on different scanners or slice thicknesses with
stable performance.
MATERIALS AND METHODS

Patients
The retrospective study was approved by the institutional review
board of the First Affiliated Hospital of China Medical
University, and the requirement for informed consent was
waived. A review of medical records was performed in
accordance with the guidelines of the ethical review committee
of the institution. One hundred and twenty-nine patients (73
men, 56 women, age: 18–93, mean age: 56, median: 57) with both
EBUS-TBNA and contrast-enhanced chest CT from July 2014 to
July 2018 were included. The inclusion criteria were as follows:
(i) patients with pathological results from EBUS-TBNA; and (ii)
contrast-enhanced chest CT performed within two weeks before
EBUS-TBNA. The exclusion criteria were as follows: (i) patients
with primary malignancy but negative EBUS-TBNA results; (ii)
lesions difficult to delineate; and (iii) lesions difficult to match
with the biopsy on the image. Most of the biopsied LNs were at
4R, 4L and 7 (4R, right lower paratracheal; 4L, left lower
paratracheal; 7, subcarina). LNs were classified as benign or
malignant with pathology as the gold standard.

All LNs (N = 201) were randomly divided into 2 subsets in a
7:3 ratio (29–31). Seventy percent (N = 140) were assigned to the
training set by stratified sampling, including 84 malignant cases
(60%, 84/140) and 56 benign cases (40%, 56/140). The remaining
30% (N = 61) were assigned to the test set, including 36
malignant cases (59%, 36/61) and 25 benign cases (41%, 25/61).

The flowchart of the enrollment of patients and data
assignment is shown in Figure 1.

CT Image Acquisition
CT scans were performed on Siemens (SOMATOM Force, 192-
section dual-source CT), GE (Discovery CT 750 HD, 64
multidetector CT system), Toshiba (Aquilion One, 320 slice)
and Philips (Brilliance iCT, 256 slice) systems. The patients were
maintained in the supine position, their arms were raised, and
January 2021 | Volume 10 | Article 558428
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they held breath after deep inhalation for acquisition. The scan
parameters were as follows: 120 kVp, 100-200 mA, 350 mm×350
mm field of view, and matrix of 512 × 512. Venous-phase
contrast-enhanced CT was performed after a 30−40 s delay
following the intravenous administration of 70−90 mL of
nonionic contrast-enhanced medium (Iproamine) and 35-45
mL of normal saline at a rate of 2.5−3.0 mL/s with a power
injector. Images were retrieved separately from the Picture
Archiving and Communication System (PACS) (IMPAX,
AGFA, Belgium).

Feature Extraction
The study workflow is shown in Figure 2. CT images were
extracted from PACS and imported into ITK-SNAP software
(version 3.8.0; http://www.itksnap.org). A thoracic radiologist
(reader 1) with 10 years’ experience, who was blinded to the
pathological results, reviewed the CT images on mediastinal
window settings (W: 350, L: 50) and drew the region of
interest (ROI) on the venous-phase contrast-enhanced images
by using ITK-SNAP. The ROI was manually drawn along the
boundaries of the LN on the maximal 2D axial slice.

Six months after the initial segmentation by reader 1, 50 LNs
were randomly selected and resegmented by reader 2 with 7
years’ experience, who was blinded to the pathological results, in
Frontiers in Oncology | www.frontiersin.org 3
order to assess the interreader agreement in the extracted
radiomics features. The intraclass correlation coefficient (ICC)
was calculated.

Both the raw digital imaging and communications in
medicine (DICOM) images and the corresponding ROIs were
imported into A.K. software (Artificial Intelligence Kit, GE
Healthcare, China) for the automatic quantitation of radiomics
features compliant with the Image Biomarker Standardization
Initiative (IBSI) (32).

Radiomics Model Building
To reduce overfitting, least absolute shrinkage and selection
operator (LASSO) regression analysis with 10-fold cross-
validation was conducted and repeated 100 times before
modeling to identify related features with nonzero coefficients
to differentiate malignant and benign LNs in the training set.
Multivariate logistic regression with the backward stepwise
elimination method was used to select the strongest features
associated with the probability of malignancy of LNs.

The radiomics score was calculated for each LN via a linear
combination of the selected strongest features that were weighted
by their respective coefficients. To compare different machine
learning algorithms in distinguishing malignant LNs from benign
LNs, five other machine learning models, including support vector
FIGURE 1 | Flowchart of the selection of patients and data assignment. EBUS-TBNA, endobronchial ultrasound-guided transbronchial needle aspiration; n: patients,
N: lymph nodes.
January 2021 | Volume 10 | Article 558428
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FIGURE 2 | Workflow of the current study. CT, computed tomography; ICC, intraclass correlation coefficien
AUC, area under the ROC curve.

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dong et al. Radiomics Model of Lymph Nodes
machine (SVM), K-nearest neighbors (KNN), random forest (RF),
decision tree (DT) and naive Bayes (NB), were built.

Radiomics Model Evaluation
The diagnostic performance of different machine learning
models for LN metastasis was evaluated by using receiver
operating characteristic (ROC) curves and calculating the
diagnostic accuracy in both the training and test sets. The
performance of the established radiomics score was evaluated
with discrimination, calibration and clinical application in both
the training and test sets.

1. Discrimination. The discrimination degree (which measures
the ability of model to distinguish malignant and benign LNs)
of the model was assessed by the area under the ROC curve
(AUC). The optimal cutoff of the radiomics score calculated
from the training set was applied in the test set.

2. Calibration. The calibration degree (which measures the
agreement between the observed outcome frequencies and
classified probabilities) of the model was evaluated by
plotting the calibration curve. The Hosmer-Lemeshow test
was used to determine the goodness of fit of the models, and
P values of more than 0.05 were considered well calibrated.

3. Clinical application. To evaluate the potential clinical
application of the estimation model, decision curve analysis
(DCA) was conducted by quantifying the net benefits at
different threshold probabilities.

We used the same machine learning process as above to analyze
the non-enhanced images. The progress included drawing ROI,
features extraction, modeling and model evaluation.

Stratified Analysis
Stratified analysis was performed on subsets of different CT
scanners and slice thicknesses. Based on different scanners, 201
LNs were divided into four subsets: GE (n = 24; malignant: 17,
benign: 7), Philips (n = 91; malignant: 43, benign: 48), Siemens
(n = 14; malignant: 13, benign: 1) and Toshiba (n = 72;
malignant: 47, benign: 25). Based on different slice thicknesses,
61 LNs were divided into four subsets: 1 mm (n = 14; malignant:
7, benign: 7), 2 mm (n = 10; malignant: 8, benign: 2), 5 mm (n =
82; malignant: 40, benign: 42) and 8 mm (n = 95; malignant: 30,
benign: 65). The DeLong test was used to compare the differences
in the AUC values of the established radiomics score between
these subpopulations, and aP value greater than 0.05 indicated that
there was no significant difference in diagnostic performance in
different subpopulations.

Statistical Analysis
All statistical analyses were performed using R studio software
(version 1.2.1335). LASSO regression was performed using the
“glmnet” package. ROC curves were plotted using the “pROC”
package. DCA was performed using the “DecisionCurve”
function. P values of less than 0.05 (two-sided) were
considered statistically significant. The differences in clinical
factors and malignancy-related features between the malignant
group and benign group in both the training and test sets were
Frontiers in Oncology | www.frontiersin.org 5
assessed by independent t tests according to the distribution type
of the data. The chi-squared test was used to compare the
significance of the differences between categorical variables.
The DeLong test was used to compare the differences in the
AUC values of different models.
RESULTS

Pathological Results and Clinical
Information
The pathological results and clinical information of 201
mediastinal LNs in 129 patients are shown in Table 1 and
Table 2. There was no significant difference (P > 0.05) in
malignant and benign LNs between the training set and test
set. Within the training set, there were no significant differences
(P > 0.05) in gender or age between the benign and malignant
groups. Within the test set, the malignant group was older (P =
0.001), and the proportion of males was higher (P < 0.001).

Feature Extraction
A total of 396 quantitative radiomics features were extracted,
including first-order histogram features (N = 42), high-order
texture features, including haralick features (N = 10), gray level
size zonematrix (GLSZM, N = 11) features, gray level cooccurrence
matrix (GLCM, N = 144) features and gray level run length matrix
(GLRLM, N = 180) features, and form-factor features (N = 9).
Details are reported in Supplementary Figure S4.

Radiomics Model Building
To build a robust radiomics model, only the features that showed
high stability remained for the next step. Two hundred and
seventy-four features with an ICC greater than 0.75 remained
(Figure 3).

For feature selection, 26 radiomics features with a nonzero
coefficient after the LASSO regression method remained (shown
in Figure 4). The eight strongest features among the 26 features
were identified after further stepwise elimination in multivariate
logistic regression. Then, the radiomics score was established
based on the eight features (the formula and interpretation are
shown in Supplementary A1), and the calculation was as
follows:
TABLE 1 | Demographic data of training set and test set.

Training Set Test Set P

Age (m, [Q1, Q3]) 56.00 (50.00, 63.00) 55.00 (47.70, 61.30) 0.276
Sex (No, [%]) 0.744
Male 74 (52.86) 30(49.18)
Female 66 (47.14) 31(50.82)

Smoking 0.557
Nonsmoker 74 34
Ex-Smoker 11 8
Current Smoker 35 12
Unknown 20 7
January 202
1 | Volume 10 | Article 5
m, median; No, number.
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Radiomics score = 3:603�Percentile20

� 10:941�ClusterShade _AllDirection _ offset1 _ SD

� 1:599 + GLCMEnergy _ angle135 _ offset7

� 2:592� Inertia _AllDirection _ offset1 _ SD� 1:760

− sumAverage� 1:645

+HighGrayLevelRunEmphasis _AllDirection _ offset7 _ SD

� 2:479

+ LongRunHighGrayLevelEmphasis _ angle135 _ offset4

� 2:281 + SurfaceArea � 2:504
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We additionally used two other methods to select radiomics
features. They were Spearman correlation analysis with
univariate logistic regression, and Spearman correlation
analysis with Gradient Boost Decision Tree (GBDT) and
multivariate logistic regression. The classification performances
of the two methods were similar to those of LASSO regression.
Details are shown in Supplementary A2.

Radiomics Model Evaluation
For all six machine learning algorithms, the AUCs were greater
than 0.65 in the test set (Table 3). We used DeLong test to
compare the classification performances of the six machine
learning algorithms (please see Supplementary Tables S4, S5).
TABLE 2 | Demographic data of benign and malignant group in training set and test set.

Characteristic Training Set P Test Set P

Benign Malignant Benign Malignant

Age (years, mean ± SD) 55.14 ± 11.85 56.92 ± 11.99 0.390 47.12 ± 12.36 58.33 ± 11.42 0.001
Sex (No, [%]) 0.128 <0.001
Male 34 (60.71) 40 (47.62) 2 (0.08) 28 (0.78)
Female 22 (39.29) 44 (52.38) 23 (0.92) 8 (0.22)

Pathological results N/A N/A
Tuberculosis 3 – 3 –

Sarcoidosis 46 – 19 –

Inflammation 7 – 3 –

LAC – 32 – 16
LSCC – 8 – 2
SCLC – 39 – 17
Breast cancer – 3 – 1
Kidney cancer – 2 – 0

Smoking status 0.074 <0.001
Nonsmoker 31 43 24 10
Ex-smoker 5 6 0 8
Current smoker 17 18 1 11
Unknown 3 17 0 7

Contact history of harmful or toxic substances 1.000 1.000
Yes 3 5 2 4
No 53 79 23 32

Family history 0.528 1.000
Pulmonary tumor 0 3 0 1
Extra-pulmonary tumor 3 7 1 3
January 2021 | Volume 10 | Article
SD, standard deviation; No, number; LSCC, lung squamous cell carcinoma; LAC, lung adenocarcinoma; SCLC, small cell lung cancer; N/A, not available.
FIGURE 3 | Histogram of the intraclass correlation coefficient. Histogram of the ICC for the radiomics features between two readers. ICC, intraclass correlation coefficient.
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Both SVM and logistic regression are generalized linear
models, and their performances were similar. Considering
interpretability and generalizability, logistic regression model
was selected as the main result in this study. The performance
of the radiomics score in estimating the status of LNs was
as follows.
Frontiers in Oncology | www.frontiersin.org 7
1. Discrimination. The ROC curves of the radiomics score in
the training set and the test set are shown in Figures 5A, B.
The accuracy, sensitivity, specificity and AUC were 0.850,
0.821, 0.893 and 0.922 [95% confidence interval (95% CI),
0.880 to 0.964], respectively, for the radiomics model in the
training set. The accuracy, sensitivity, specificity and AUC
A

B

FIGURE 4 | Radiomics feature selection based on the least absolute shrinkage and selection operator binary logistic regression model. (A) Ten-fold cross-validation
via minimum criteria was used for tuning the parameter (lambda) in the least absolute shrinkage and selection operator model. The relationship between the binomial
deviance and log (lambda) was plotted. The left dotted vertical line was at the optimal lambda value point by using the minimum criteria, and the right line was at the
optimal lambda value point by using one standard error of the minimum criteria (the 1-SE criteria). A lambda value of 0.01987634, with log (lambda) −3.918, was
chosen (minimum) according to 10-fold cross-validation. (B) The least absolute shrinkage and selection operator coefficient profiles of the 396 radiomics features. A
coefficient profile plot was plotted versus the log (lambda) sequence. A vertical line was drawn at the value selected using 10-fold cross-validation, where the optimal
lambda resulted in 26 nonzero coefficients.
January 2021 | Volume 10 | Article 558428

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dong et al. Radiomics Model of Lymph Nodes
were 0.803, 0.806, 0.800 and 0.850 (95% CI, 0.747 to 0.953),
respectively, in the test set. The accuracy, sensitivity,
specificity and AUC were 0.900, 0.870, 0.926 and 0.957
(95% CI, 0.906 to 1.000), respectively, for reader 2. The
Frontiers in Oncology | www.frontiersin.org 8
distributions of the radiomics score in the training and test
sets are shown in Figure 6.

2. Calibration. The radiomics score showed good agreement
between the actual observations and classifications in both
TABLE 3 | The classification performance of different algorithms.

Set Logistic Regression SVM Naive Bayes RF DT KNN

Training set
AUC 0.922 0.907 0.808 0.999 0.765 0.914
Accuracy 0.850 0.843 0.771 0.986 0.757 0.836
Sensitivity 0.821 0.869 0.810 0.976 0.726 0.845
Specificity 0.893 0.804 0.714 1.000 0.804 0.821
Test set
AUC 0.850 0.853 0.751 0.789 0.661 0.743
Accuracy 0.803 0.803 0.738 0.672 0.672 0.705
Sensitivity 0.806 0.833 0.778 0.833 0.722 0.722
Specificity 0.800 0.760 0.680 0.440 0.600 0.680
January 2021 |
 Volume 10 | Article 5
AUC, area under the receiver operating characteristic curve; SVM, support vector machine; RF, random forest; DT, decision tree; KNN, k-nearest neighbors.
A B

DC

FIGURE 5 | Receiver operating characteristic curves for distinguishing malignancy and benignity using the logistic regression model. (A) The ROC curve of the
training set. The AUC was 0.922. Based on the maximum Youden index, the best threshold of the decision score was determined to be 0.597 in the training set,
and the corresponding specificity and sensitivity were 0.893 and 0.821, respectively. (B) The ROC curve of the test set. The AUC was 0.850. When the best
threshold of 0.597 of the training set was applied to the test set, the corresponding specificity and sensitivity were 0.800 and 0.806, respectively. (C) The ROC
curves of different scanners. (D) The ROC curves of different slice thicknesses. ROC, receiver operating characteristic; AUC, area under the ROC curve; 95% CI,
95% confidence interval.
58428
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the training and test sets (Figures 7A, B). Nonsignificant
statistics were achieved in the Hosmer-Lemeshow test in the
training set (P = 0.6898) and test set (P = 0.1762).

3. Clinical application. DCA showed that the radiomics model
would add more benefit in distinguishing malignant and
benign LNs when the threshold probability was between
10% to 100% in the training set or between 30% to 90% in
the test set (Figures 7C, D).

The classification performances of the model of non-
enhanced images are reported in Supplementary A3. The
classification performances of the model of venous-phase
images were better than those of model of non-enhanced images.

Stratified Analysis
The stratified analysis results are shown in Figures 5C, D. The
AUCs for the GE, Philips, Siemens and Toshiba subsets were
0.891 (95% CI, 0.760 to 1.000), 0.882 (95% CI, 0.808 to 0.955),
0.923 (95% CI, 0.923 to 0.923) and 0.925 (95% CI, 0.868 to
0.983), respectively. The AUCs for the 1 mm, 2 mm, 5 mm and
8 mm subsets were 0.980 (95% CI, 0.923 to 1.000), 1.000 (95% CI,
1.000 to 1.000), 0.888 (95% CI, 0.813 to 0.962) and 0.891 (95%
CI, 0.826 to 0.955), respectively. There was no significant
Frontiers in Oncology | www.frontiersin.org 9
difference (DeLong test, P > 0.05) between any two subgroups,
which showed the generalization of the radiomics score across
different factors.
DISCUSSION

In the present study, we established a robust radiomics model for
distinguishing malignant from benign mediastinal LNs based on
contrast-enhanced CT imaging. Stratified analysis demonstrated
the stable performance of the radiomics model, which was not
affected by different scanners or slice thicknesses. Calibration
curve and DCA suggested good fitness and the potential prospect
of clinical application.

The accurate evaluation of mediastinal LNs before surgery
plays a pivotal role in staging and treatment planning for lung
cancer. Ultrasound, CT and PET/CT are the main methods, with
size, shape, internal structure and contrast uptake as the main
criteria for evaluation. The accuracy for mediastinal LN
evaluation is not satisfactory at present. The reasons are as
follows. (1) Size is not the gold standard, as smaller LNs might
be early metastases. (2) No objective and accurate criteria for
morphological evaluation exist. (3) The visual inspection of the
A

B

FIGURE 6 | Rad-score for lymph nodes. (A) Rad-score for every LN in the training set. (B) Rad-score for every LN in the test set. The y-axis refers to the Rad-score
minus the optimal cutoff value. Up and down bars refer to the classified malignant and benign LNs, respectively. Blue and red bars refer to actual malignant and
benign LNs, respectively. LN, lymph node.
January 2021 | Volume 10 | Article 558428
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internal structure is limited. (4) The enhancement of metastatic
LNs varies. Heterogeneity is an important feature of malignancy,
presumably reflecting infiltration, angiogenesis and necrosis (33–
35). Studies of perfusion CT suggested that the blood flow might
be more heterogeneous in metastatic nodes than in
nonmetastatic nodes (36). However, it was difficult to tell
subtle differences by the naked eye, even for experienced
radiologists. For further evaluation of the distinct information
of the image, including the heterogeneity of the contrast inside
the nodes, contrast-enhanced CT was included, and radiomics
features were extracted in our study.

Eight potential features remained in our model: a first-order
histogram feature (Percentile20), a Haralick feature (Sum
Average), GLCM features (GLCMEnergy, Cluster Shade,
Inertia), GLRLM features [HighGrayLevelRunEmphasis
(HGLRE), LongRunHighGrayLevelEmphasis (LRHGLE)] and a
morphological feature (Surface Area). Surface Area was the only
selected morphological feature with a relatively high coefficient
of 2.504. Surface Area is an approximation of the surface of the
ROI in mm2, which suggests that the larger the maximum cross-
sectional area of the LN, the more likely it is to be malignant. The
other features are calculated based solely on pixel or pixel pairs
and provide meaningful information that is invisible to the naked
eye, which reflects the characteristics of heterogeneity in addition
Frontiers in Oncology | www.frontiersin.org 10
to morphological features. Percentile20 showed the strongest
negative correlation, with a coefficient of -10.941. It was one of
the first-order histogram features used in statistics, indicating
that the image intensity value below 20% of observations in a
group of observations falls. The GLCM features were the most
important radiomics category for the malignancy of LNs, with 3
features included in the model. They represent the joint
probability of certain sets of pixels having certain gray-level
values. GLCMEnergy was the strongest positive feature with a
coefficient of 2.592. Energy measures the homogeneous patterns
in the image. A greater energy implies that there are more
instances of intensity value pairs in the image that neighbor
each other at higher frequencies. Cluster Shade measures the
skewness and uniformity of the GLCM, and a higher cluster
shade implies greater asymmetry about the mean. Inertia reflects
the clarity of the image and the depth of the texture groove, the
contrast is proportional to the texture groove, and high values of
the groove produce more clarity; in contrast, small values of the
groove would result in small contrast and fuzzy images. In our
study, inertia showed a negative relation with malignancy.

To stabilize the performance of the radiomics model, several
steps were performed in our study. (1) Strict inclusion and
exclusion criteria were followed to avoid potential bias. Nine
patients with primary malignancy but negative EBUS-TBNA
A B

DC

FIGURE 7 | Calibration curve and decision curve analysis of the radiomics model. (A) The calibration curve of the training set. (B) The calibration curve of the test
set. The diagonal line represents a perfect classification. (C) DCA of the training set. (D) The DCA of the test set. The y-axis indicates the net benefit. The net benefit
is determined by calculating the difference between the expected benefit and the expected harm associated with each proposed model [net benefit = true positive
rate – (false positive rate × weighting factor); weighting factor = threshold probability/(1-threshold probability)]. The blue line represents the assumption that all LNs
are malignant. The black line represents the assumption that all LNs are benign. DCA, decision curve analysis; LN, lymph node.
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were excluded considering the probability of false negative results
of the EBUS-TBNA. Occasionally, small LNs could be biopsied
during EBUS, but they are difficult to match or delineate on chest
CT. Fifteen patients were excluded for this reason. (2) A.K.
software, which has been used and verified in many studies, was
applied for radiomics feature extraction. (3) The ICC was
calculated to verify the reproducibility of feature extraction
between two readers. (4) Multiple evaluations of the efficiency
and stability of the model were performed. The AUC, classification
probability and DCA were calculated, representing the
discrimination, calibration and clinical application, respectively.
(5) For a robust radiomics model fit for different scanners or slice
thicknesses, the stratified analysis was conducted in the study. The
radiomics model was applied to each subset divided by scanners
and slice thicknesses and shown to be slightly affected by different
scanners or slice thicknesses, suggesting robustness.

Our study had several limitations. First, it was a retrospective
single-center study, and the sample size was relatively small,
although the images were derived from various scanners, and
the stratified analysis was performed among different scanners and
different slice thicknesses. The robustness of the classification
model needs to be tested in a multicenter dataset. Second, for
reproducibility, we manually drew ROIs on one 2D slice instead of
3D slices. It is easy to process and analyze, but it may not represent
all the features and characteristics of LNs. Although the ICC
suggested reliable interreader agreement for the extracted
radiomics features, further study based on 3D images should be
performed. Third, no clinical factors were integrated into the
model, which might further improve the performance. Fourth, we
didn’t use deep learning to investigate our data. In future research,
we will try to use deep learning to investigate our data. Fifth, we
had no external validation set. In order to verify the clinical value
of the classification performances, we need external validation set.
Sixth, in this work, the distribution of age and gender in the
training set and the test set was inconsistent. But there was no
statistical difference in the distribution between the training set
and the test set. Additionally, within the training set, there were no
significant differences in gender and age between the benign and
malignant groups. It largely avoided that the trained model was a
model for diagnosing gender or age, although there were statistical
differences in gender and age within the test set.

In conclusion, we established a robust radiomics model for
distinguishing malignant from benign mediastinal LNs based on
contrast-enhanced CT imaging, with stability for different
scanners and slice thicknesses. The radiomics model has the
potential for clinical application.
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