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P-glycoprotein (also known as multidrug resistance protein 1 (MDR1) or ATP-binding
cassette sub-family B member 1 (ABCB1) plays a crucial role in determining response
against medications, including cancer therapeutics. It is now well established that p-
glycoprotein acts as an ATP dependent pump that pumps out small molecules from
cells. Ample evidence exist that show p-glycoprotein expression levels correlate with drug
efficacy, which suggests the rationale for developing p-glycoprotein inhibitors for treatment
against cancer. Preclinical and clinical studies have investigated this possibility, but mostly
were limited by substantial toxicities. Repurposing FDA-approved drugs that have p-
glycoprotein inhibition activities is therefore a potential alternative approach. In this review,
we searched the Drugbank Database (https://www.drugbank.ca/drugs) and identified 98
FDA-approved small molecules that possess p-glycoprotein inhibition properties. Focusing
on the small molecules approved with indications against non-cancer diseases, we query
the scientific literature for studies that specifically investigate these therapeutics as cancer
treatment. In light of this analysis, potential development opportunities will then be
thoroughly investigated for future efforts in repositioning of non-cancer p-glycoprotein
inhibitors in single use or in combination therapy for clinical oncology treatment.

Keywords: p-glycoprotein, repurposing, cancer, drug resistance, chemotherapy
INTRODUCTION

Chemotherapy has been the mainstay of cancer treatment for several decades, and is still an
indispensable treatment component in current standard of care. The ability of cancer cells to
acquire resistance against cytotoxic chemotherapy is one of the basis for cancer progression. One
major mechanism for chemotherapy resistance formation is drug efflux by the ATP-binding cassette
(ABC) transporter family of transmembrane proteins (1). These proteins share a common ability to
pump chemotherapy agents across the plasmamembrane with no prerequisite for structure similarity.
The discovery of outward efflux of daunorubicin led to the first report of chemotherapy resistance
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mechanism by an ABC transporter family protein in 1973 (2).
Further work demonstrated that this protein was a cell surface
glycoprotein that was later on named P-glycoprotein (p-gp) (3). In
the upcoming years, several other proteins of the ABC transporter
family were identified that shared a common mechanism of
conferring chemotherapy resistance by drug efflux (4). However,
p-gp remains the best studied and most potent ABC transporter to
induce chemoresistance. The drugs that are amenable to p-gp
transport includes many of the most commonly used
chemotherapy agents such as anthracyclines, taxenes, vinca
alkaloids, and many others (5). In the human body, p-gp is
widely expressed in a variety of organs including the liver,
kidney and gastrointestinal tract (6), and upregulation of p-gp is
closely linked with increased chemoresistance in cancer (7).
EARLY DEVELOPMENT EFFORTS OF
FIRST GENERATION P-GP INHIBITORS
IN CANCER TREATMENT

With strong mechanistic evidence for p-gp in mediating
chemoresistance, a logical therapeutic approach would be to
utilize p-gp inhibitors against cancers, with the rationale of
enhancing chemotherapy efficacy. Indeed, in the past decades,
many efforts have been made to incorporate p-gp inhibitors in
clinical trials for cancer patients. Earliest efforts of p-gp inhibitors in
cancer included trials using verapamil (8) and cyclosporine (9) but
they were unsuccessful and demonstrated many adverse effects (10).
Verapamil is a phenylalkylamine that blocks voltage-dependent L-
type calcium channels and is used for treatment of hypertension. In
a randomized phase II clinical trial in patients diagnosed with small
cell lung cancer receiving cyclophosphamide, doxorubicin,
vincristine, and etoposide (CAVE), a daily dose of 480 mg was
given in combination with chemotherapy, with hypotension as a
dose limiting toxicity for verapamil (11). Even at this high dosage,
clinical trials failed to demonstrate a benefit for verapamil (11, 12).
Further analysis demonstrated that blood levels of verapamil was
significantly lower than the dosage proven efficacious in preclinical
studies (11), despite already nearing maximum tolerated doses
(MTD). Verapamil is representative of the so called “first
generation” p-gp inhibitors that utilize drugs with known
mechanism of action (MOA). These agents include cyclosporine
(13, 14), quinidine (15), tamoxifen (16), and others. In summary,
first generation p-gp inhibitors suffer from low therapeutic window,
poor efficacy in combination with chemotherapy, and generally low
potential for further development (10).
SECOND GENERATION P-GP INHIBITORS

Second generation p-gp inhibitors aimed to improve the
therapeutic window of first generation agents. Dexverapamil is
the R-form of verapamil with reduced potency in inhibiting p-gp
but also with reduced cardiotoxicity. In a phase I/II trial (17),
dexverapamil was combined with vinblastine in treatment of
renal cell carcinoma. The toxicity profile was tolerable in
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comparison to trials using verapamil, with the majority being
mild or asymptomatic cardiac related side effects. No partial or
complete responses were seen, which is not unexpected given the
poor chemosensitivity of renal cell carcinoma. A phase II study
tested the hypothesis of dexverapamil in reversing chemoresistance,
by adding dexverapamil to cancer patients who had disease
progression on anthracyclines (18). Among 21 patients, 2 had
partial responses and 2 had stable disease, with a disease control
rate (DCR) of 19%, demonstrating a modest activity. It should be
highlighted that this trial used the same anthracycline backbone and
added dexverapamil upon documented progression, therefore
demonstrating the anticipated drug resistance reversal abilities of
p-gp inhibition.

S9788 is another p-gp inhibitor that showed MDR reversal in
a phase I trial in combination with doxorubicin in colorectal
cancer and renal cell carcinoma patients, although cardiac
arrhythmia was a major dose limiting toxicity (19). In another
phase I trial, also in combination with doxorubicin, arrhythmia
including AV-block, QT prolongation, ventricular arrhythmia
and torsade de pointes precluded further development of the trial
and essentially for the drug altogether (20).

PSC-833, an analog of cyclosporine with a significantly
improved toxicity profile and enhanced p-gp inhibitory ability
(21, 22), underwent several clinical trials for development as a
potent second generation agent. In phase I trials, PSC-833
demonstrated acceptable toxicity profiles (23), and was further
developed in combination with chemotherapy, mainly in
leukemia patients with the aim to delay ensuing drug
resistance from first line MEC (mitoxantrone, etoposide, ara-
C) induction chemotherapy (24–26). Some degree of success was
observed in these earlier phase trials, leading to several phase III
trials utilizing PSC-833 in leukemia (27) and solid tumor or
multiple myeloma (28, 29). However, no benefit was seen in any
of these phase III trials with addition of PSC-833, dampening the
initial excitement and expectations for this drug.
THIRD GENERATION P-GP INHIBITORS

With the unsuccessful attempts in clinical development for p-gp
inhibitors, medicinal chemistry work developed newer agents
with high selectivity and efficacy, including zosuquidar,
elaquidar, laniquidar (R101933), and tariquidar (XR9576) (30).
Although currently no p-gp inhibitors have been approved for
cancer treatment, the clinical development of these novel agents
are worth mentioning in detail, which may lead to further
understanding of how to utilize MDR reversal in oncology
therapy. In the following sections, we discuss the properties of
each agent and their clinical development, with a focus on future
perspectives for further development.
ZOSUQUIDAR

Zosuquidar trihydrochlorid, previously known as LY335979, was
developed as a potent and selective inhibitor against p-gp, with
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minimal inhibitory effect on other MDR proteins (MRP1,
MRP2) (31). A phase I trial investigated oral zosuquidar alone
and in combination with doxorubicin in advanced malignancies
to determine its safety profile (32). Dose limiting toxicities
included cerebellar dysfunction, hallucinations, and palinopsia,
but overall the drug was well tolerated. Subsequently, another
phase I trial investigated the intravenous form of zosuquidar in
combination with doxorubicin in cancer (33). In this trial,
neurotoxicity was markedly less severe and less frequent,
suggesting a different pharmacokinetic profile between oral and
intravenous formulation of zosuquidar. It must be noted that
although phase I trials were not designed for efficacy, further
analysis for these 2 trials did not demonstrate a striking
improvement in response. A phase II trial investigated the
addition of zosuquidar to docetaxel in metastatic breast cancer.
Although the combination was safe, the conclusion of the trial
did not demonstrate any difference in progression free survival
(PFS), overall survival (OS), or objective response rate (ORR) in
patients with metastatic breast cancer.

Zosuquidar was also investigated in the setting of hematological
cancers. In a phase I trial with acute leukemia patients, zosuquidar
was combined with standard induction chemotherapy using
daunorubicin and cytarabine (34). In a small sample size of 16
patients, grade 3/4 adverse effects including respiratory failure,
hypokalemia, arrhythmia, and febrile neutropenia were present.
Seven patients achieved a complete response (CR), with a CR rate of
43.7%. Considering that standard induction chemotherapy in AML
already has a well-established ORR of 50–60% (35), it is difficult to
conclude that zosuquidar provided significant additional benefit
(although it must be highlighted that this is a relatively small study).
In further analysis, 2 out of 4 patients with p-gp negative cancers
(according to IHC staining) had CR (50%) while 5 out of the 12
patients with p-gp positive cancers had CR (41.6%), further
suggesting that zosuquidar might not provide anticipated efficacy
when added to standard induction chemotherapy to AML (acute
myeloid leukemia). A confirmatory phase III trial was performed in
elderly (over 60 years old) AML patients, receiving standard
cytarabine and daunorubicin in addition to either zosuquidar or
placebo (36). The response rate and median 2-year OS were similar
(20 vs 23%, 7.2 months vs 9.4 months, respectively for with versus
without zosuquidar). In an accompanying editorial, the authors
rechallenged the validity of using p-gp as the target for leukemia
based on this trial and other accumulated trial results (37). They
suggest that although p-gp and other MDR proteins including
MRP, LRP, and BRCP were indeed expressed by leukemia cells in
the majority of patients in the trial, there was no correlation
between the expression status of MDR proteins and survival (37).
This editorial came to the conclusion that further MDR inhibition
in the setting of AML should be highly reconsidered in light of the
result from these well designed clinical trials.
ELACRIDAR

Elacridar is a potent and specific inhibitor of p-gp that works by
modulating the ATPase activity (38). The efficacy of elacridar in
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inhibiting p-gp and its effect in plasma concentrations of other
drugs have been extensively characterized in multiple studies [for
a comprehensive review, please refer to (39)]. Phase I studies for
elacridar demonstrated very minor side effects and good
pharmacokinetic properties (40). In another early phase trial,
elacridar was shown to increase the plasma levels of oral
paclitaxel (41), by inhibiting intestinal p-gp activity.
Interestingly, when these patients were switched to intravenous
paclitaxel in subsequent cycles, the area under curve (AUC) of
plasma paclitaxel when using oral paclitaxel plus elacridar was
still significantly lower compared to intravenous paclitaxel (41).
This suggested a modest effect of elacridar to augment oral
paclitaxel levels in patients. Similarly, in another early phase
trial, elacridar significantly elevated the oral bioavailability of
topotecan to more than 2 fold when used in combination with
oral topotecan (42), although blood topotecan levels was still
lower than the levels of intravenous topotecan. Nonetheless, this
result implicated a potential application for elacridar to be
combined with oral chemotherapy for long-term use. Similar
conclusions were made in another phase I trial (43). When
combining with intravenous chemotherapy Elacridar was
demonstrated to be safe with relatively mild side effects in
combination with doxorubicin in solid cancers (44). The most
common toxicity was neutropenia. Despite the acceptable safety
profile of these early phase trials, elacridar was not further
developed in later clinical trials.
TARIQUIDAR

Tariquidar is a potent and specific inhibitor of p-gp, acting as an
ATPase inhibitor (45). After demonstrating preclinical efficacy,
early clinical trials demonstrated good tolerability with minimal
side effects in healthy individuals (46). A phase I study
combining tariquidar and vinorelbine demonstrated good
tolerability, and more importantly, the lack of pharmacokinetic
interactions between tariquidar and vinorelbine, as this was
found to be a common issue with p-gp inhibitors in human
trials (47). However, there was overall a lack of response in this
trial. In a phase II study tariquidar was added to the standard
chemotherapy (anthracyclines or taxanes) in breast cancer
patients’ refractory on these regimens. Tariquidar was added to
the current regimen to observe if drug resistance could be
reversed. A total of 17 patients were enrolled, and only one
patient demonstrated a partial response (ORR: 6%). 5 out of the
17 patients had a positive p-gp staining before treatment,
including the patient with response. Therefore, it could be
estimated that in p-gp positive patients, the response rate was
20%, albeit a very small sample size (n=5). Interestingly, this trial
measured the uptake of technetium-99m (99MTc) as a surrogate
for whether the anticipated biology effect of improving drug
influx is seen. The strongest increase of 99MTc occurred in the
single patient with the response. This suggested that 99MTc might
be a viable indicator of patients that could benefit from tariquidar
and other p-gp inhibitors. This phenomenon led to an
unexpected development of tariquidar into a potential
November 2020 | Volume 10 | Article 561936
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radiotracer when coupled with radioactive [11C] labeling (48).
This has become an active area of research for tariquidar and
other p-gp inhibitors (49–51). Another phase I trial combined
tariquidar with docetaxel in patients with lung, ovarian and
cervical cancer (52). This trial confirmed that tariquidar was
associated with increased 99MTc sestamibi uptake, however this
finding did not translate into a significant increase in ORR as
only 10% of patients had a response in this trial. A more recent
phase I trial combined tariquidar with doxorubicin, vinorelbine,
or docetaxel in children and adolescents with refractory solid
tumors (53). An ORR of approximately 10% was observed.
Overall, tariquidar clinical trials were similar to other third
generation p-gp inhibitors, demonstrating relatively tolerable
safety profiles, but with unimpressive anticancer efficacy. We
summarize the pg-inhibitors in Table 1.
REPURPOSING OF FDA APPROVED
DRUGS WITH P-GP INHIBITOR ACTIVITY
IN CANCER TREATMENT

Rationale
In light of previously reviewed clinical development history, small
molecules specifically designed for p-gp inhibition were largely
unsuccessful in clinical trials. Early generations of p-gp inhibitors
were burdened with significant side effect toxicities, while newer
generations of p-gp inhibitors generally had a more acceptable
safety profile, yet still demonstrated limited efficacy.

We then sought to investigate current FDA approved drugs
for their p-gp activity. We propose two rationales for this
approach. First, FDA approval as well as real world experience
indicates the safety profile of these drugs, therefore minimizing
further development issues. Additionally, repurposing of these
drugs in combination with current anti-cancer therapeutics may
provide an additive effect to enhance efficacy.

Discovery of Candidates for p-gp
Inhibitor Repurposing
We queried the Drugbank database (https://www.drugbank.
ca/) (54) for FDA approved drugs with demonstrated activity
towards p-gp (gene symbol: ABCB1). The search resulted in
508 candidates. We then filtered out drugs without inhibitor
activity for p-gp, leaving 116 drugs. We further filtered out
drugs that had the “inducer” label, meaning that at least one
reference reported upregulation of p-gp by this drug under
specific circumstances. The final result was 98 FDA approved
drugs with reported p-gp inhibition activity (Figure 1).

Interestingly, many drugs approved for anti-cancer properties
were on this list of p-gp inhibitors. The known anticancer drugs
included tyrosine kinase inhibitors (imatinib, sorafenib, dasatinib,
gefitinib, nilotinib, erlotinib, and afatinib), PARP inhibitors
(olaparib, rucaprib), CDK4/6 inhibitors (palbociclib, abemaciclib),
taxanes (paclitaxel, cabazitaxel) and others. This finding leads to
several observations: first, multiple agents with the samemechanism
concomitantly inhibit p-gp suggest that this is a class effect, with a
potential undiscovered mechanism. Secondly, the drugs of the same
Frontiers in Oncology | www.frontiersin.org 4
class that are not reported to possess p-gp inhibitor property
(barring undiscovered p-gp inhibitor ability) may therefore
possess a novel, unique chemical biological characteristic. For
instance, two of the three approved CDK4/6 inhibitors
(palbociclib, abemaciclib) inhibit p-gp, while ribociclib was not
annotated with this property. Is the p-gp inhibition function not
yet discovered in ribociclib, or does ribociclib possess a specific
structural aspect that abolishes this possible ability? Third, these
drug that intrinsically possess p-gp inhibitory functions suggest that
additional p-gp inhibition with specific small molecules might
provide limited additional benefit. This may be the case of
taxanes, as several p-gp inhibitors were tested in combination
with paclitaxel. It must be emphasized that the intrinsic p-gp
inhibitory ability is uncharacterized for most of these drugs, so we
cannot assess whether they possess strong p-gp inhibition function
or otherwise.

We then excluded drugs that were approved for or possessed
well established anti-tumor activities, filtering down the list to 67
agents. A summary of the final 67 drugs is shown in Table 1. Again,
different agents of the same class appear, including proton pump
inhibitors (Pantoprazole, omeprazole, lansoprazole, and
esomeprazole), histamine blockers (ranitidine and loratadine),
quinolones (levofloxacin and grepafloxacin), calcium channel
blockers (amlodipine and nicardipine), phenothiazine
(chlorpromazine) and others, hinting at possible class effect of p-
gp inhibition. Interestingly, this feature may explain some previous
observational studies. For instance, quinolones (ciprofloxacin or
ofloxacin) when given in combination with doxorubicin as
intravesicular treatment, significantly enhanced the cytotoxicity of
doxorubicin towards cancer cells (55). We queried Clinicaltrials.gov
database (https://clinicaltrials.gov/ct2/home) to search for ongoing
or completed trials that used of these drugs with a cutoff date of July
2020. Specifically, we included the trials that investigate the
therapeutic effect of these drugs in cancer, summarized in Table
2. In the following sections, we highlight some of the compounds
that have been reported or investigated in combination with
chemotherapy for anticancer treatment. We summarize the
highlighted compounds in Table 3.
CHLORPROMAZINE

Chlorpromazine is a phenothiazine drug with p-gp inhibiting
abilities. Clinically it possesses anti-emetic properties as well
as antipsychotic properties. Interestingly, antipsychotics were
another class of drug that were overrepresented in our p-gp
inhibitor l ist ( including paliperidone, haloperidol) .
Chlorpromazine is a p-gp inhibitor with an EC50 10 fold
weaker than PSC833, but nevertheless is in low micromolar
range (58). There has been much active research relating to
chlorpromazine and its anticancer properties, as it has been
reported to suppress the Hippo pathway related YAP signaling
and cancer stemness (59), suppress chemoresistant cancer
growth (60, 61), epigenetic anticancer mechanisms (62), and
many other abilities. The ability to inhibit cancer stem cells
seems to be a class effect of phenothiazines, and many novel
November 2020 | Volume 10 | Article 561936
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TABLE 1 | FDA approved drugs with p-gp inhibition activities.

e Reference

I https://clinicaltrials.gov/ct2/show/NCT03563248

I https://clinicaltrials.gov/ct2/show/NCT00003688
I https://clinicaltrials.gov/ct2/show/NCT00002489

II https://clinicaltrials.gov/ct2/show/NCT00005590
N/A
N/A
N/A

II https://clinicaltrials.gov/ct2/show/NCT00068445
II https://clinicaltrials.gov/ct2/show/NCT00750737

https://clinicaltrials.gov/ct2/show/NCT01901172
I https://clinicaltrials.gov/ct2/show/NCT00936117
I https://clinicaltrials.gov/ct2/show/NCT04189588
II https://clinicaltrials.gov/ct2/show/NCT04237090
V https://clinicaltrials.gov/ct2/show/NCT03145012

https://clinicaltrials.gov/ct2/show/NCT01539655
N/A
https://clinicaltrials.gov/ct2/show/NCT01992016
https://clinicaltrials.gov/ct2/show/NCT01430351

N/A
https://clinicaltrials.gov/ct2/show/NCT01575782

I https://clinicaltrials.gov/ct2/show/NCT02333890
https://clinicaltrials.gov/ct2/show/NCT02071537

I https://clinicaltrials.gov/ct2/show/NCT00002487
N/A
https://clinicaltrials.gov/ct2/show/NCT00428909
N/A
N/A

II https://clinicaltrials.gov/ct2/show/NCT02771405
N/A

/II https://clinicaltrials.gov/ct2/show/NCT02940496

I https://clinicaltrials.gov/ct2/show/NCT02836925

N/A
N/A
N/A
N/A
https://clinicaltrials.gov/ct2/show/NCT02129829

I https://clinicaltrials.gov/ct2/show/NCT02311569
II https://clinicaltrials.gov/ct2/show/NCT02236806
I https://clinicaltrials.gov/ct2/show/NCT00706810
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DrugBank
ID

Name MOA (mechanism of
action)

Recruitment
status

Cancer type Combined
treatment

Pha

DB00678 Losartan Angiotensin II receptor
antagonist

Recruiting Pancreatic cancer Nivolumab Phase

DB00970 Dactinomycin Antibacterial Completed Gestational Trophoblastic Tumor N/A Phase
Completed Extragonadal Germ Cell Tumor

Ovarian Cancer
Chemotherapy Phase

DB01137 Levofloxacin Antibacterial Completed Solid Tumors or Lymphoma N/A Phase
DB00027 Gramicidin D Antibacterial N/A N/A N/A N/A
DB00365 Grepafloxacin Antibacterial N/A N/A N/A N/A
DB11753 Rifamycin Antibacterial N/A N/A N/A N/A
DB00555 Lamotrigine Antiepileptic Completed Unspecified Adult Solid Tumor N/A Phase
DB01263 Posaconazole

(Multiple)
Antifungal Completed Hematologic Malignancies N/A Phase

Completed Solid Tumor Idasanutlin Phase
Completed Leukemia N/A Phase

DB00341 Cetirizine Antihistamine Recruiting Oncology Patients Receiving Chemotherapy N/A Phase
Recruiting Solid Tumor N/A Phase

DB00863 Ranitidine Antihistamine Active, not
recruiting

Cancers N/A Phase

Completed Medullary Thyroid Cancer N/A Phase
DB00455 Loratadine Antihistamine N/A N/A N/A N/A
DB00243 Ranolazine Anti-ischemia Completed Prostate Cancer N/A N/A
DB00358 Mefloquine Antiparasite Active, not

recruiting
Glioblastoma N/A Phase

DB00468 Quinine Antiparasite N/A N/A N/A N/A
DB00608 Chloroquine Antiparasite Terminated Small Cell Lung Cancer N/A Phase

Unknown Breast Cancer N/A Phase
Completed Solid Tumor N/A Phase

DB00975 Dipyridamole Antiplatelet Unknown Ovarian Cancer methotrexate Phase
DB08816 Ticagrelor Antiplatelet N/A N/A N/A N/A
DB00316 Acetaminophen Antipyretic Completed Chronic Myeloid Leukemia (CML) Imatinib Phase
DB11586 Asunaprevir Antiviral N/A N/A N/A N/A
DB05521 Telaprevir Antiviral N/A N/A N/A N/A
DB06290 Simeprevir Antiviral Unknown Hepatocellular Carcinoma N/A Phase
DB09102 Daclatasvir Antiviral N/A N/A N/A N/A
DB11574 Elbasvir Antiviral Active, not

recruiting
Advanced Refractory Liver Cancer N/A Phase

DB11613 Velpatasvir Antiviral Active, not
recruiting

Hepatitis C virus-associated indolent B-cell
lymphoma

Sofosbuvir Phase

DB12026 Voxilaprevir Antiviral N/A N/A N/A N/A
DB13878 Pibrentasvir Antiviral N/A N/A N/A N/A
DB13879 Glecaprevir Antiviral N/A N/A N/A N/A
DB12070 Letermovir Antiviral N/A N/A N/A N/A
DB00300 Tenofovir

disoproxil
Antiviral Active, not

recruiting
Hepatocellular Carcinoma N/A N/A

DB08893 Mirabegron Beta agonist Completed Myeloproliferative Neoplasm N/A Phase
DB00612 Bisoprolol Beta blockers Recruiting Breast Cancer N/A Phase
DB00661 Verapamil Calcium channel blocker Completed Brain Cancer

Meningioma
Hydroxyurea Phase
s

I

I
I

I

I
I
I
I
I
I
I

I

I

I
I
I
I

I

I

I

I

I
I
I
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https://clinicaltrials.gov/ct2/show/NCT00706810
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e Reference

https://clinicaltrials.gov/ct2/show/NCT01480050
https://clinicaltrials.gov/ct2/show/NCT01951950

/II https://clinicaltrials.gov/ct2/show/NCT02834403
N/A
N/A
N/A
N/A

N/A
I/III https://clinicaltrials.gov/ct2/show/NCT03021486

ble
https://clinicaltrials.gov/ct2/show/NCT01539733

I/III https://clinicaltrials.gov/ct2/show/NCT03743649
N/A
N/A

/II https://clinicaltrials.gov/ct2/show/NCT04092179

I https://clinicaltrials.gov/ct2/show/NCT04281498

/II https://clinicaltrials.gov/ct2/show/NCT02273739

I https://clinicaltrials.gov/ct2/show/NCT04056910

https://clinicaltrials.gov/ct2/show/NCT02074839
I https://clinicaltrials.gov/ct2/show/NCT04278781

https://clinicaltrials.gov/ct2/show/NCT00983424
I https://clinicaltrials.gov/ct2/show/NCT00003950
I https://clinicaltrials.gov/ct2/show/NCT00005941

I https://clinicaltrials.gov/ct2/show/NCT00185640
https://clinicaltrials.gov/ct2/show/NCT00003625

N/A
I https://clinicaltrials.gov/ct2/show/NCT02852083

https://clinicaltrials.gov/ct2/show/NCT02117648
https://clinicaltrials.gov/ct2/show/NCT00461084

II https://clinicaltrials.gov/ct2/show/NCT02248428

N/A
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DrugBank
ID

Name MOA (mechanism of
action)

Recruitment
status

Cancer type Combined
treatment

Pha

DB01388 Mibefradil Calcium channel blocker Completed Brain and Central Nervous System Tumor Temozolomide Phase
DB00622 Nicardipine Calcium channel blocker Completed Brain Tumor N/A Phase
DB00381 Amlodipine Calcium channel blocker Recruiting Metastatic Triple Negative Breast Cancer N/A Phase
DB00343 Diltiazem Calcium channel blocker N/A N/A N/A N/A
DB11712 Tezacaftor CFTR drug N/A N/A N/A N/A
DB15444 Elexacaftor CFTR drug N/A N/A N/A N/A
DB04348 Taurocholic

acid
Cholerectic N/A N/A N/A N/A

DB01200 Bromocriptine Dopamine agonist N/A N/A N/A N/A
DB00477 Chlorpromazine Dopamine antagonist Active, not

recruiting
Advanced, Metastatic or
Recurrent Cancer

Haloperidol Phase

DB00502 Haloperidol Dopamine antagonist Completed Advanced Cancer N/A Not
Applica

Recruiting Advanced Cancer Lorazepam Phase
DB01267 Paliperidone Dopamine inhibitor N/A N/A N/A N/A
DB11979 Elagolix GnRH inhibitor N/A N/A N/A N/A
DB13874 Enasidenib IDH inhibtor Not yet

recruiting
Acute Myeloid Leukemia Venetoclax Phase

Not yet
recruiting

Accelerated/Blast-phase Myeloproliferative
Neoplasm
Chronic-phase Myelofibrosis

Ruxolitinib Phase

Completed Solid Tumor
Glioma
Angioimmunoblastic T-cell Lymphoma
Intrahepatic Cholangiocarcinoma
Chondrosarcoma

N/A Phase

DB14568 Ivosidenib IDH inhibtor Not yet
recruiting

Advanced Solid Tumor Nivolumab Phase

Recruiting Advanced Hematologic Malignancies N/A Phase
Recruiting IDH1 Mutant Chondrosarcoma N/A Phase

DB00091 Cyclosporine Interleukin inhibitor Completed Metastatic Breast Cancer Nab-paclitaxel Phase
Completed Colorectal Cancer CPT-11 Phase
Completed Cervical Cancer

Vaginal Cancer
N/A Phase

Completed Leukemia N/A Phase
Completed Brain Tumors

Central Nervous System Tumors
N/A Phase

DB00199 Erythromycin Macrolide N/A N/A N/A N/A
DB01211 Clarithromycin Macrolide Unknown Squamous Cell Lung Cancer

Non-Squamous Cell Lung Cancer
Non-Small Cell Lung Cancer

Treosulfan
pioglitazone

Phase

Completed Neoplasm Abemaciclib Phase
Completed Lymphoma N/A N/A
Recruiting Multiple Myeloma Thalidomide

Cyclophosphamide
Dexamethasone

Phase

DB00207 Azithromycin Macrolide N/A N/A N/A N/A
s

I
I
I

I

I

I

I

I

I

I
I
I
I
I

I
I

I

I

I

https://clinicaltrials.gov/ct2/show/NCT01480050
https://clinicaltrials.gov/ct2/show/NCT01951950
https://clinicaltrials.gov/ct2/show/NCT02834403
https://clinicaltrials.gov/ct2/show/NCT03021486
https://clinicaltrials.gov/ct2/show/NCT01539733
https://clinicaltrials.gov/ct2/show/NCT03743649
https://clinicaltrials.gov/ct2/show/NCT04092179
https://clinicaltrials.gov/ct2/show/NCT04281498
https://clinicaltrials.gov/ct2/show/NCT02273739
https://clinicaltrials.gov/ct2/show/NCT04056910
https://clinicaltrials.gov/ct2/show/NCT02074839
https://clinicaltrials.gov/ct2/show/NCT04278781
https://clinicaltrials.gov/ct2/show/NCT00983424
https://clinicaltrials.gov/ct2/show/NCT00003950
https://clinicaltrials.gov/ct2/show/NCT00005941
https://clinicaltrials.gov/ct2/show/NCT00185640
https://clinicaltrials.gov/ct2/show/NCT00003625
https://clinicaltrials.gov/ct2/show/NCT02852083
https://clinicaltrials.gov/ct2/show/NCT02117648
https://clinicaltrials.gov/ct2/show/NCT00461084
https://clinicaltrials.gov/ct2/show/NCT02248428
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TABLE 1 | Continued

bined
ment

Phase Reference

Phase I/II https://clinicaltrials.gov/ct2/show/NCT02935205

Phase IV https://clinicaltrials.gov/ct2/show/NCT00473980
Phase I https://clinicaltrials.gov/ct2/show/NCT02950259

in/ Phase II/III https://clinicaltrials.gov/ct2/show/NCT00752115

ib Phase I https://clinicaltrials.gov/ct2/show/NCT02466802
Phase I https://clinicaltrials.gov/ct2/show/NCT01950923
Phase II https://clinicaltrials.gov/ct2/show/NCT00165295

in Early Phase
I

https://clinicaltrials.gov/ct2/show/NCT02279992

N/A N/A

Phase I https://clinicaltrials.gov/ct2/show/NCT00849329
Phase II https://clinicaltrials.gov/ct2/show/NCT00474903
Phase IV https://clinicaltrials.gov/ct2/show/NCT00473980
Phase II https://clinicaltrials.gov/ct2/show/NCT01748500

in Phase I https://clinicaltrials.gov/ct2/show/NCT01163903
Phase II https://clinicaltrials.gov/ct2/show/NCT04337580

Phase II https://clinicaltrials.gov/ct2/show/NCT02518373
e Phase I https://clinicaltrials.gov/ct2/show/NCT00420615

Phase II https://clinicaltrials.gov/ct2/show/NCT04188119

N/A N/A
Phase I/II https://clinicaltrials.gov/ct2/show/NCT04073680

N/A N/A
N/A N/A
N/A https://clinicaltrials.gov/ct2/show/NCT00667121

N/A N/A
Phase III https://clinicaltrials.gov/ct2/show/NCT04026230
Early Phase
I

https://clinicaltrials.gov/ct2/show/NCT01980823

te Phase II https://clinicaltrials.gov/ct2/show/NCT00490698
N/A https://clinicaltrials.gov/ct2/show/NCT02084784

N/A N/A
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DrugBank
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Name MOA (mechanism of
action)

Recruitment
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Cancer type Com
trea

DB00328 Indomethacin NSAID Recruiting Recurrent or Metastatic Hormone-Resistant
Prostate Cancer

N/A

Completed Colorectal Cancer N/A
Active, not
recruiting

Early Stage Breast Cancer
Triple Negative Breast Cancer

N/A

DB00203 Sildenafil PDE5 inhibitor Completed Non-small Cell Lung Cancer Carbopla
Paclitaxe

Completed Solid Cancer Regorafe
Completed Kidney Cancer N/A
Completed Waldenstrom’s Macroglobulinemia N/A

DB00862 Vardenafil PDE5 inhibitor Terminated Glioma
Brain Metastasis

Carbopla

DB14057 Valinomycin Potassium channel
transporter

N/A N/A N/A

DB00736 Esomeprazole Proton pump inhibitors Completed Metastatic ErbB2 Positive Breast Cancer Lapatinib
Completed Esophageal Cancer N/A
Completed Colorectal Cancer N/A

DB00213 Pantoprazole Proton pump inhibitors Active, not
recruiting

Prostate Cancer N/A

Completed Advanced Solid Tumor Doxorub
DB00338 Omeprazole Proton pump inhibitors Not yet

recruiting
Prostate Cancer N/A

Completed Colorectal Cancer N/A
Completed Solid Tumor Patupilon

DB00448 Lansoprazole Proton pump inhibitors Not yet
recruiting

Breast Cancer Aveluma

DB11732 Lasmiditan Serotonin receptor agonist N/A N/A N/A
DB08907 Canagliflozin SGLT-2 inhibitor Not yet

recruiting
Advanced Solid Tumors N/A

DB00285 Venlafaxine SNRI N/A N/A N/A
DB00908 Quinidine Sodium channel inhibitor N/A N/A N/A
DB00215 Citalopram SSRI Active, not

recruiting
Breast Cancer N/A

DB00457 Prazosin Statin N/A N/A N/A
DB01076 Atorvastatin Statin Recruiting Prostate Cancer N/A

Recruiting Breast Cancer Metformi

Completed Kidney Cancer Zoledron
DB09241 Methylene blue Treat methemoglobinemia Completed Sentinel Lymph Node (SLN) detection rate of Early

Breast Cancer
N/A

DB06212 Tolvaptan V2 antagonist N/A N/A N/A

Ongoing and completed clinical trials that test the drug for therapeutic efficacy are listed. MOA, mechanism of action; N/A, not applicable.
t

t
l
n

t

ic

b

n

a
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FIGURE 1 | Flowchart of discovery of repurposing FDA approved drugs with p-gp inhibition abilities.
TABLE 2 | Summary of major pg-1 inhibitors in clinical development.

Drug name MOA Phase Adverse effects Outcomes References

First generation
Verapamil Calciumchannel

blocker
phase II Hypotension,

cardiotoxicity
No clinical benefit (11, 12)

Second generation
Dexverapamil calcium channel

blocker
Phase II Cardiotoxicity ORR 9%, DCR 19% (18) (18)

S9788 p-gp inhibitor Phase I arrhythmia Further development limited by severe arrythmia (20)
PSC-833 p-gp inhibitor Phase III NS No benefit seen in phase III trials (21–29)

Third generation
Zosuquidar p-gp inhibitor Phase III neurotoxicity No clinical benefit seen in solid and hematological cancers (31–37)
Elacridar p-gp inhibitor Phase I neutropenia Demonstrated increase in bioavailability of accompanying chemotherapy drug (oral

topotecan, oral paclitaxel)
(38–44)

Tariquidar p-gp inhibitor Phase II NS Modest ORR in pretreated patients (5–10% in most trials)
Demonstrated potential for development as radiotracer coupled with radioactive
[11C] labeling

(45–53)
Frontiers in On
cology | www.frontie
rsin.org
 November 2020 | Volume 10 | A8
MOA, mechanism of action; ORR, Objective response rate; DCR, disease control rate (combination of response rate and stable disease rates); NS, Not significant.
TABLE 3 | Summary of highlighted compounds that have been reported or investigated in combination with chemotherapy for anticancer treatment.

Compound
name

Type Approved clinical use Clinical trials for anticancer
treatment

Treatment regimen Efficacy Reference

Chlorpromazine Phenothiazine Nausea, vomiting,
schizophrenia

N/A N/A N/A N/A

Clarithromycin Macrolide Antibiotics Lung cancer Treosulfan pioglitazone
Clarithromycin

Mild OS benefit (HR:
0.86)

(56)

Sildenafil PDE inhibitor Erectile dysfunction Waldenstrom’s
macroglobulinemia

Sildenafil 17 at least minor
response

(57)
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derivatives are currently being developed towards this goal
(63). It remains to be seen whether the ability to inhibit p-gp
of phenothaizaines such as chlorpromazine will be a positive
factor in enhancing antitumor activity either in monodrug use
or in combination with other cytotoxic agents.
MACROLIDES: ERYTHROMYCIN,
AZITHROMYCIN, AND CLARITHROMYCIN

The FDA approved macrolide antibiotics (erythromycin,
azithromycin, and clarithromycin) were all reported as
p-gp inhibitors. This has been supported by many studies in the
literature (64–66). Macrolides are well known CYP3A4 inducers
(67, 68), thus it may interfere with pharmacokinetics with various
results, since CYP3A4 and p-gp would both play a role in drug-drug
interaction. Indeed, investigations regarding macrolides upon
anticancer drugs have been made to further clarify whether
efficacious drug effect can be adequately delivered (69). The
macrolide clarithromycin has been studied in multiple clinical
trials with cancer subjects, in combination with metronomic
chemotherapy, abemaciclib, etc. (see Tables 2, 3). In these trials,
the rationale was mainly to study the CYP3A inhibitor activity of
clarithromycin and its impact on the accompanying drug, but some
have shown promising efficacy with possible potential for further
follow up clinical trials.
PHOSPHODIESTERASE INHIBITORS:
SILDENAFIL AND VARDENAFIL

Two FDA approved phosphodiesterase inhibitors, sildenafil and
vardenafil were reported to possess p-gp inhibition activities. Both
sildenafil and vardenafil are potent PDE5 inhibitors that are widely
used in erectile dysfunction. Interestingly, sildenafil has been
actively studied for its role in anticancer treatment (70, 71), and
has been proposed to potentiate cisplatin mediated tumor killing
(71–73). While multiple mechanisms have been proposed for this
phenomenon, the role of p-gp inhibition remain a very likely
explanation. The anticancer roles of PDE5 inhibitors in single use
and in combination with chemotherapy remains an active area of
research and we anticipate more results to be reported on
this topic.
CONCLUSIONS

The clinical development of bona fide p-gp inhibitors has been
rather disappointing in the past two decades. Although much
Frontiers in Oncology | www.frontiersin.org 9
progress has been made in medicinal chemistry to develop newer
generation p-gp inhibitors, failure in clinical trials suggest that solely
targeting p-gp may not be an efficacious strategy for cancer. A lot of
the early generation p-gp inhibitors suffered from toxicity, while
newer generation agents largely failed from lack of clinical response.
A silver lining from these failed clinical trial is the development of
the p-gp inhibitor tariquidar in nuclear tracer uptake enhancing
agents for improvement in medical imaging. As we have
demonstrated here, this is a promising field of research that may
lead to clinical usefulness of p-gp inhibitors in the near future.

Repurposing current FDA approved drugs as a strategy for
cancer development offers the benefit of well-known toxicity profile
and mechanism of action, minimizing unexpected setbacks in
clinical development. From the brief review of FDA approved
drugs that possess p-gp inhibition activity, we highlight several
candidates such as chlorpromazine and sildenafil that could have
potential for further development, utilizing its role of p-gp inhibitor
to enhance the potency of tumor cytotoxic agents. As highlighted in
Table 2, many of these drugs have underwent clinical trials, either as
monotherapy or in combination for cancer patients. Repurposing
“old” currently common drugs for cancer treatment is an area of
heightened interest, andmany drugs with long history of clinical use
have been discovered for novel mechanisms. One example is
metformin (FDA approved in 1998), which has recently been
reported to have promising roles for anticancer therapies in both
preclinical and clinical studies. Metformin is now being investigated
in numerous active clinical trials for discovering a positive role in
cancer. We are hopeful that future research would define a role of
repurposed p-gp inhibitors in cancer treatment and in improving
patient survival.
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