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Background: Despite the important role of radiotherapy in cancer treatment, a subset
of patients responds poorly to treatment majorly due to radioresistance. Particularly the
role of radiotherapy has not been established in gastric cancer (GC). Herein, we aimed
to identify a radiosensitivity gene signature and to discover relevant targets to enhance
radiosensitivity in GC cells.

Methods: An oligonucleotide microarray (containing 22,740 probes) was performed
in 12 GC cell lines prior to radiation. A clonogenic assay was performed to evaluate
the survival fraction at 2 Gy (SF2) as a surrogate marker for radiosensitivity. Genes
differentially expressed (fold change > 6, q-value < 0.025) were identified between
radiosensitive and radioresistant cell lines, and quantitative reverse transcriptase-
polymerase chain reaction (qRT-PCR) was performed for validation. Gene set and
pathway analyses were performed using Ingenuity Pathway Analysis (IPA).

Results: Radiosensitive (SF2 < 0.4) and radioresistant cell lines (SF2 ≥ 0.6) exhibited
a marked difference in gene expression. We identified 68 genes that are differentially
expressed between radiosensitive and radioresistant cell lines. The identified genes
showed interactions via AKT, HIF1A, TGFB1, and TP53, and their functions were
associated with the genetic networks associated with cellular growth and proliferation,
cellular movement, and cell cycle. The Akt signaling pathway exhibited the highest
association with radiosensitivity. Combinatorial treatment with MK-2206, an allosteric
Akt inhibitor, and radiotherapy significantly increased cell death compared with
radiotherapy alone in two radioresistant cell lines (YCC-2 and YCC-16).

Conclusion: We identified a GC-specific radiosensitivity gene signature and suggest
that the Akt signaling pathway could serve as a therapeutic target for GC
radiosensitization.
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INTRODUCTION

Gastric cancer (GC) is the third leading cause of cancer-
related death worldwide (1, 2). In operable cases, surgery and
chemotherapy form the mainstay of treatment. However, 5-year
disease-free survival rates of patients with stage III GC ranges
from 50 to 60% with standard treatments. Therefore, treatment
intensification in patients with locally-advanced GC may be
needed to improve the treatment outcomes.

A combination of radiotherapy and chemotherapy has been
widely investigated in preoperative as well as postoperative
settings as a strategy to improve GC treatment (3–5). However,
recent trials suggest that the survival benefit of adding
radiotherapy to the treatment regimen is modest (4). The limited
efficacy of radiotherapy in GC can be explained by the intrinsic
radiation resistance and suboptimal dose delivered due to the low
radiation tolerance of organs at risk that surround the stomach.
A variety of radiation resistance mechanisms have been studied,
such as the DNA repair system, increased receptor tyrosine
kinase signaling, decreased radiation-induced apoptosis, tumor
hypoxia, and angiogenesis (6). The most widely used agents
for radiosensitization are cytotoxic chemotherapeutics, such as
5-fluorouracil, and cisplatin (7). Combinations of radiotherapy
with these agents have already been investigated with marginal
effects and not negligible toxicities. Therefore, new classes of
radiosensitizing agents are needed to improve the treatment
outcomes in GC patients. One of the candidates can be relevant
to a radiosensitivity mechanism.

Gene expression profile analysis to predict response to
radiation therapy has been performed in various types of cancers
(8–14). It has been shown that a gene expression-based model
can predict patient-specific radiation sensitivity (15). These gene
expression data can not only be used in predicting patient
radiosensitivity but also in screening for new possible targets in
addition to previously suggested predictive markers (16).

In this study, we measured the radiosensitivity, analyzed the
mRNA expression profile of GC cells before radiotherapy, and
identified differentially-expressed genes and relevant signaling
pathways involved in the development of radiosensitivity
by comparing radiosensitive and radioresistant GC cell
lines. Especially, the Akt pathway was evaluated as a crucial
pathway in determining radioresistance of GC cells, and
an Akt inhibitor markedly increased radiosensitivity in
radioresistant GC cell lines.

MATERIALS AND METHODS

Cell Lines and Culture
Twelve GC cell lines (AGS, MKN-1, MKN-74, SNU-216, SNU-
484, SNU-638, YCC-1, YCC-16, YCC-2, YCC-3, YCC-6, and
YCC-7) were used. The SNU-series of cell lines were obtained
from the Korean cell line bank, and the YCC-series represented
cell lines that were established using samples from Korean GC
patients at the Songdang Institute for Cancer Research (SICR,
Yonsei University College of Medicine, Seoul, South Korea). Cells
were incubated in RPMI supplemented with 10% heat inactivated

fetal bovine serum, 1% penicillin/streptomycin at 37◦C in a
5% CO2 humidified atmosphere, following the institutional
protocol (17).

Clonogenic Assay
Radiosensitivity was defined as the survival fraction at 2 Gy of
radiation (SF2). To evaluate radiation sensitivity in GC cells,
cells were seeded in triplicate and were incubated overnight at
37◦C to enable them to adhere to the wells. Cells were then
irradiated with X-rays (2 Gy), and cell viability was evaluated 7–
10 days post-irradiation. After fixation, colonies containing over
50 cells were calculated. Experiments were replicated three times
independently, and the average number of colonies was used. SF2
was determined by the following formula:

SF2 =
number of colonies

total n. of seeded cells × seeding efficiency

where seeding efficiency is defined as the number of colonies
formed divided by expected colony number. SF2 ranged from 0
to 1, wherein a lower SF2 represents higher radiosensitivity.

RNA Preparation and Oligonucleotide
Microarrays
Microarray data were obtained from GC cells in the unirradiated
condition. The total RNA was extracted from each cell
line using the TRIzol reagent (Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s instructions. The
Yonsei reference RNA was prepared as previously described
(18). The quantity and quality of RNA were confirmed
using an ND-1000 spectrophotometer (NanoDrop Technologies,
United States) and gel electrophoresis. An oligonucleotide
microarray was performed using a human oligo chip (SICR-GT,
Seoul, South Korea) containing 22,740 oligonucleotide probes
(70 bases each with a reference design). The test samples
(RNA from each GC cell line) were labeled with Cy5 and
individually co-hybridized with the Cy3-labeled reference RNA
(SICR, Seoul, South Korea). Gene expression data were deposited
in the Gene Expression Omnibus (GEO) database (accession
number: GSE39747).

Gene Expression Analysis
Microarray data extraction and analysis were performed using
the BRB-ArrayTools1 for gene identification and gene set
analysis. For normalization, the linear models for the microarray
data (LIMMA) package were applied using R (version 3.6.1).
Genes for which less than 20% of expression data exhibited
at least a 1.5-fold change in either direction from the median
value of the gene were excluded in the filtering process. Genes
differentially expressed between radiosensitive and radioresistant
cells were identified by a two-sample t-test using a random-
variance model (q-value < 0.025 and fold change more than
2-fold). The P value was adjusted for multiple hypothesis testing
using the q-value as suggested by Story (19).

1http://linus.nci.nih.gov/BRB-ArrayTools.html
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The genetic network was generated through the use of
Ingenuity Pathways Analysis (IPA, Ingenuity Systems,
www.ingenuity.com). Differentially expressed genes (DEGs)
were overlaid onto a global molecular network developed based
on the information contained in the Ingenuity Knowledge
Base. Networks of network-eligible molecules were then
algorithmically generated based on their connectivity. In the
genetic network, molecules were represented as nodes, and the
biological relationship between two nodes was represented as an
edge. All edges were supported by at least one reference from
the literature, a textbook, or canonical information stored in the
Ingenuity Pathways Knowledge Base.

A heatmap was generated using the BRB-ArrayTools.
Principal component analysis was performed for data reduction
and simplifying datasets to three dimensions for plotting
purposes. Principal component analysis was conducted using
R statistical software2, using the “princomp()” function and
default options.

Quantitative RT-PCR
DIRAS3, CDKN2B, POF1B, ALDH1A1, and ANTXR2 were
selected for the validation of the microarray data by quantitative
RT-PCR (qRT-PCR) performed on the 12 GC cell lines. In brief,
4 µg of total RNA from each sample was reversely transcribed
using the SuperScript II Reverse Transcriptase (Invitrogen,
Carlsbad, CA, United States). Two hundred nanograms of
synthesized cDNA were PCR-amplified using QuantiTect SYBR
Green PCR (QIAGEN, Valencia, CA, United States). Each
reaction was run in a Stratagene MX3005P (Stratagene, La
Jolla, CA, United States). Expression values for each gene were
determined using a standard curve constructed from Human
Genomic DNA (Promega, Madison, WI, United States). The
house-keeping gene hypoxanthine phosphoribosyltransferase
(HGPRT, HPRT1) was selected for the normalization and
construction of the standard curve. Non-template control
wells without cDNA were included as negative controls. The
primer sets designed for PCR amplification are shown in
Supplementary Table S3.

Whole Exome Sequencing
To identify somatic mutations in TP53, KRAS, and PIK3CA,
whole exome sequencing (WES) data of the 12 GC cell lines were
obtained from the genome database of the SICR and the Yonsei
University College of Medicine (Seoul, South Korea). Briefly,
single nucleotide variants (SNVs) were evaluated using WES data
as previously described (17).

AKT Inhibitor Treatment
A highly selective AKT inhibitor, MK-2206 was purchased
from Selleckchem (Houston, TX, United States). To assess the
radiosensitizing effect of AKT pathway inhibition in combination
with radiation, clonogenic assays with or without the AKT
pathway inhibitor MK-2206 were performed using radioresistant
YCC-16 cells, which harbor the PIK3CA mutation, and YCC-
2 cells, which harbor the KRAS mutation. Clonogenic assays

2www.r-project.org

were performed as described previously. Cells were seeded in
triplicate for 24 h to allow attachment to wells. Cells were
treated with MK-2206 (1.0 µM) or the vehicle control for
1 h, followed by 2 Gy or mock irradiation. Immediate growth
medium exchange was not performed after radiation. Plates
were incubated to allow for colony formation (7 d). Colonies
containing over 50 cells were then calculated and experiments
were repeated three times.

Statistical Analysis
Statistical analyses were performed using the GraphPad Prism
7 and R software (v.3.5.1). For continuous variables, student’s
t-test was applied when comparing two groups which are non-
paired. When comparing continuous variables among more
than two groups, analysis of variance (ANOVA) was applied
and Tukey’s post hoc analysis was performed to identify which
groups exhibit significant difference among the multiple groups.
The statistical tests used are specified in the figure legends.
A Pearson’s correlation analysis was used to evaluate the
correlations between parameters. P values < 0.05 indicated
statistical significance.

RESULTS

Association of SF2 With Genetic
Variation in GC Cells
The study design is summarized in Figure 1. First, to
determine the radiosensitivity of gastric cells, twelve
GC cell lines were irradiated at 2 Gy and a clonogenic
assay was performed to calculate the SF2 (Table 1 and

FIGURE 1 | Design of the present study utilizing 12 GC cell lines.
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TABLE 1 | Characteristics of the 12 gastric cancer (GC) cell lines.

Cell line SF2 ± SD Doubling
time (h)

Mutation status

TP53 PIK3CA KRAS

SNU-638 0.127 ± 0.038 25 + − −

MKN-1 0.143 ± 0.032 31 + + −

YCC-3 0.431 ± 0.067 34 + − −

YCC-1 0.445 ± 0.070 40 + − −

AGS 0.449 ± 0.051 20 + + +

YCC-6 0.485 ± 0.098 48 − − −

SNU-216 0.509 ± 0.057 36 + − −

SNU-484 0.512 ± 0.031 34 + − −

MKN-74 0.553 ± 0.071 32 + − −

YCC-2 0.609 ± 0.046 43 + − +

YCC-16 0.620 ± 0.091 22 + + +

YCC-7 0.667 ± 0.192 35 + − −

SF2, survival fraction at 2 Gy of radiation; SD, standard deviation.

Supplementary Figure S1). SNU-638 and MKN-1 cells
were highly radiosensitive with an SF2 < 0.4 (0.127 and 0.143,
respectively). The YCC-2, YCC-16, and YCC-7 cell lines were
radioresistant with an SF2 ≥ 0.6 (0.609, 0.620, and 0.667,
respectively). No significant difference in SF2 was observed
according to genetic mutations in TP53, PIK3CA, and KRAS
(Supplementary Figure S2A). In addition, no significant

correlation between doubling time and SF2 was observed
(Supplementary Figure S2B).

Differential Expression of Genes
Between Radiosensitive and
Radioresistant GC Cells
To identify individual genes and functions relevant to
radiosensitivity, gene expression profiling was performed.
Two-sample t-tests between radiosensitive (SF2 < 0.4) and
radioresistant cell lines (SF2 ≥ 0.6) identified 613 genes showing
expression levels with differences greater than 2-fold and q-value
of less than 0.025 (Figure 2A). Cell lines with intermediate
radiosensitivity were excluded from DEG-analysis to drive
a more radiosensitivity specific gene set. Of these genes, 68
showed differences in expression with more than a 6-fold change
(Supplementary Table S1). To validate the microarray results, we
selected five genes (DIRAS3, CDKN2B, POF1B, ALDH1A1, and
ANTXR2) for analysis by qRT-PCR. Similar to the microarray
results, these genes exhibited a greater than 6-fold difference
between radiosensitive and radioresistant GC cells (Figure 2B).
Moreover, we confirmed that the cell lines with intermediate
radiosensitivity exhibited an intermediate gene signature
between sensitive and resistant cell lines (Supplementary
Figure S3). In addition, principal component analysis (PCA)
was performed to assess the transcriptional landscape of the GC
cell lines. The PCA plot well distinguished the radiosensitive

FIGURE 2 | Comparison of the gene expression profile between radiosensitive and radioresistant gastric cancer (GC) cell lines. (A) Microarray was performed in
radiosensitive (SF2 < 0.4; SNU-638; and MKN-1) and radioresistant cells (SF2 ≥ 0.6; YCC-2, YCC-16, and YCC-7). A heatmap showing differences in gene
expression levels greater than 2-fold change. Genes whose expression levels increased more than 2-fold are shown in red, whereas those whose expression
decreased more than 2-fold are shown in green. (B) Comparison of qRT-PCR with microarray-based gene expression levels among radiosensitive (SF2 < 0.4;
SNU-638; and MKN-1), intermediate (0.4 ≤ SF2 < 0.6; YCC-3, YCC-1, AGS, YCC-6, SNU-216, SNU-484, and MKN-74), and radioresistant cells (SF2 ≥ 0.6;
YCC-2, YCC-16, and YCC-7) of DIRAS3, CDKN2B, ANTXR2, and ALDH1A1. (C) Principal component analysis with gene expression profiles of the GC cell lines.
Each cell line is represented as a radiosensitive group (SF2 < 0.4; red), an intermediate group (SF2 between 0.4 and 0.6; black), or a radioresistant group
(SF2 ≥ 0.6; blue).
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cell lines (SNU-638 and MKN-1) from radioresistant cell lines
(YCC-2, YCC-16, and YCC-7) while the intermediate cell lines
(YCC-3, YCC-1, AGS, YCC-6, SNU-216, SNU-484, and MKN-
74) were placed between the radiosensitive and radioresistant
cell lines (Figure 2C).

Akt Pathway as a Candidate for
Regulating Radiosensitivity in GC Cells
Functional annotation and pathway analysis of the identified
68-gene signature was performed using Ingenuity Pathway
Analysis (IPA) to assess which pathways are involved in
the development of radiosensitivity in GC cells. Figure 3
displays the top four genetic networks found to be enriched
in IPA. Each genetic network showed interactions via major
signaling pathway molecules, including AKT, HIF1A, TGFB1,
and TP53 (Figure 3D). Functions associated with the genetic
networks included cellular growth and proliferation, cellular
movement, and cell cycle (Table 2). The Akt-centered network
exhibited the highest IPA score, and nine genes of the 68
identified genes were related to the Akt signaling pathway
(Supplementary Table S2).

Increase in Radiosensitivity as a Result
of Akt Pathway Inhibition
Considering the potential role of the Akt pathway in determining
the radiosensitivity based on gene network analyses, we
further investigated whether the Akt pathway could serve as a
druggable target to decrease radiosensitivity in GC cells. The
radioresistant cell lines, YCC-2 and YCC-16, were subjected to
combinatorial treatment with 2 Gy of radiation and allosteric Akt
inhibitor, MK-2206. Although a decrease in SF2 was observed
after monotherapy with either MK-2206 or radiotherapy, a
combinatorial treatment of MK-2206 and radiotherapy resulted
in a significant decrease in SF2 compared to that observed on
using either treatment alone (Figure 4).

DISCUSSION

Herein, we describe the gene signature of radiosensitive and
radioresistant GC cells, and demonstrate the role of the Akt
pathway in determining the radiosensitivity of GC cells. We
used 12 GC cell lines and found that radioresistant GC cell

FIGURE 3 | Genetic networks associated with genes differentially expressed between radiosensitive and radioresistant gastric cancer (GC) cell lines. (A–D) Ingenuity
Pathway Analysis (IPA) revealed AKT (A), HIF1A (B), TGFB1 (C), and TP53 (D) as core genetic networks associated with radiosensitivity.
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TABLE 2 | Results of the Ingenuity pathway network analysis (IPA) using the 68 differentially-expressed genes

ID Molecules in the network IPA score No. of genes from
68-genes

Top functions

1 Akt, Vegf, ERK1/2, Tgf beta, NFkB, 26s Proteasome, Histone h3,
Mmp, FSH, Lh,
↑CCND2, ↑CD74, ↑CDK16, ↑CDKN2B, ↑CFB, ↑CPE, ↑GFPT2,
↑HBE1, ↑HOXD10, ↑ID3,
↑IL32, ↑IL27RA, ↑LCN2, ↑LOX, ↑MAGEA11, ↑PMAIP1,
↑SERPINE1, ↑SFRP1, ↑TIMP3,
↑TNFRSF8, ↑ZDHHC11
↓ENC1, ↓NTS, ↓S100P

56 24 Cancer, cellular movement, cellular growth and
proliferation

2 PI3K, HIF1A, MDM2, IL11, Interferon alpha, IRF3, ADAM10, Mapk,
AR, CBLC, NOD1, NOD2, NOV, RNF216, S100B, SNURF,
↑OLFM4, ↑ARMCX2, ↑ATP8A2, ↑CCND2,
↑CD38, DDX58, FHL1, ↑FHL2, FOXO4,
↑GABRA2, ↑IGLL1/IGLL5, ↑KAL1, ↑PCDH10, ↑PMAIP1,
↑UBE2L6
↓CLDN1, ↓CYP4F3, ↓RAB20

28 15 Cell-To-Cell signaling and interaction, cellular
movement, gene expression

3 TGFB1, ITGB6, PTPRK, ACVRL1, beta-estradiol, BIK, CAMK2G,
FCGR3A, FOSB, miR-24, MPP1, MXD1, MXI1, MYF5, NAB2,
PDLIM5,
↑ANTXR2, ↑C10orf116, ↑CD3G, ↑CSRP2,
↑DZIP1, ↑GYPC, ↑ID2, IL3, ↑KLF9, ↑PDPN,
↑RRAD, TNFSF8, ↑TSPAN5,
↓KYNU, ↓NTS

26 13 Cell cycle, cellular function and maintenance,
cell-to-cell signaling and interaction

4 TP53, HMGB1, HNF4A, ACSL3, EZH2, F2, HLA-DQA1, CCNG1,
CRK, HSD17B4, miR-222/miR-221/miR-1928, miR-26a/miR-26b,
Pkc, TFPI2, TLE3, WTAP, RPS20, SEC23A,
↑NDRG1, ↑C15orf48, ↑C7orf10, ↑DIRAS3,
↑EPHB6, ↑HOXD10, ↑HOXD11, ↑PRG2,
↑PTPN22, ↑SERPINB10, ↑TMSB15A,
↓ALDH1A1, ↓C17orf81

23 13 Cellular movement, cancer, cellular growth and
proliferation

5 TGFB3, ↓TSPAN13 2 1 Embryonic development, tissue morphology,
cellular development

6 TCEB3B, ↑SOHLH2 2 1 Gene expression

lines exhibit contrasting gene expression profiles compared with
radiosensitive GC cell lines. Further gene network analyses
revealed Akt as a central pathway regulating radiosensitivity.
Blocking the Akt signaling pathway through a clinically available
Akt inhibitor, MK-2206, significantly enhanced radiosensitivity
in radioresistant GC cell lines, which implies that Akt pathway
could serve as a potential therapeutic target.

This is the first study to describe the SF2 of multiple
GC cell lines and correlate gene expression profiles with
radiosensitivity. From our gene network analyses, we discovered
major signaling pathways, including molecules such as Akt,
VEGF, HIF-1α, TGF-β, and p53. These gene networks are known
to regulate cellular growth, proliferation, movement, and cell
cycle. We further focused on the role of Akt as the Akt-
centered network exhibited the highest IPA score. Akt is a
serine/threonine protein kinase and a major signaling molecule of
the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway,
which activates downstream molecules involved in cell survival,
cell cycle, and proliferation (20). Amplification of AKT1 and
a somatic mutation of AKT2 have been previously reported in
GC, and about 80% of tumors have been found to have elevated
levels of Akt and phosphorylated Akt, which showed a statistically
significant correlation with poor patient outcomes in GC (21).

Akt-mediated radioresistance has been suggested to occur via the
activation of the DNA-dependent protein kinase catalytic subunit
(DNA-PKcs), which is a major enzyme involved in DNA-double
strand break repair, and is responsible for decreased degradation
of cyclin D1 (which is crucial for cell cycle progression), and the
vial up-regulation of miR-214 (22–24).

In our study, although we observed anti-tumor effects of MK-
2206 as monotherapy, the anti-tumor effect was significantly
enhanced when combined with radiotherapy. In clinical settings,
the safety and therapeutic efficacy of the MK-2206 monotherapy
as a second-line agent were evaluated in GC patients who
progressed after first-line treatment (25). Although the treatment
was well tolerated, the therapeutic effect was modest with a
response rate of 1%. This is in contrast to the in vitro data
from our study, where MK-2206 treated as a single agent
induced similar tumor cell killing effects as radiotherapy. The
discrepancy may come from the lower efficacy of in vivo drug
delivery to tumor compared to in vitro treatment, which may
result in a suboptimal drug dose in tumor to kill cancer cells.
This implies that although Akt itself may be a therapeutic
target in GC, development of combination treatments is needed
considering the poor therapeutic efficacy as monotherapy. The
combination of radiotherapy and Akt inhibitors has mostly
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FIGURE 4 | AKT signaling inhibitor MK-2206 enhances the effect of
radiotherapy. YCC-16 and YCC-2 cell lines were treated with MK-2206
(1.5 µM) for 1 h prior to radiation, and the clonogenic assay was performed to
measure SF2 in each treatment condition (n = 9 for each experiment).
Statistical analysis by ANOVA with post-hoc Tukey’s multiple comparison test.
****P < 0.0001.

been tested in preclinical models, with Akt inhibitors having
a radiosensitizing effect (26, 27). However, such combinations
have been rarely tested in clinical studies. Recently, several phase
I trials were conducted to evaluate the safety of combining
an Akt inhibitor with chemoradiation or stereotactic body
radiotherapy in solid tumors (28, 29). Combination treatments
of Akt and radiotherapy were well tolerated in these trials. Future
studies are needed to evaluate the therapeutic efficacy of this
novel combination.

Along with Akt, we also found other major signaling pathways
that may be involved in radiosensitization, including VEGF,
HIF-1α, TGF-β, and p53. Although p53 is not druggable, target
agents blocking VEGF, or TGF-β pathway have been developed.
The radiosensitizing effect of anti-angiogenic therapy has been
demonstrated from many studies where the radiosensitizing
effect is mediated through normalization of tumor vasculature
leading to increase in oxygenation of the hypoxic tumor (30).
Not only through tumor vasculature, but VEGF may also
induce cancer cell intrinsic radioresistance through VEGFR2
expressed on cancer cells, which can be reversed by interfering
VEGF/VEGFR2 signaling (31). TGF-β has also been suggested to
exhibit synergistic therapeutic effects with radiotherapy (32, 33).
TGF-β can mediate radioresistance by inducing a mesenchymal
phenotype in cancer cells (33) or by inhibiting radiotherapy-
induced anti-tumor immunity (32). Therefore, combination of
TGF-β inhibitors with radiotherapy could also be a promising
combination. In a clinical trial, fresolimumab, a TGF-β blocking
antibody, in combination with radiotherapy was tested in breast
cancer patients who failed at least one line of treatment (34).
A marked increase in CD8 central memory pool was observed,
although the therapeutic response was modest. Other classes
of TGF-β inhibitors, such as galunisertib and vactosertib, are
also being tested in combination with chemotherapy (35) or
immunotherapy (NCT03724851). Taken together, it would be of
great interest to investigate the effects of VEGF, HIF-1α, TGF-β,
and p53 pathways on radiosensitization. Future trials should also

consider the possible radiosensitizing effect of drugs targeting
these pathways and test the combination with radiotherapy.

Using gene expression analyses on the 12 GC cell lines,
we identified 68 genes that were differentially expressed
between radioresistant and radiosensitive cell lines. Expression
of selected genes in cell lines according to radiosensitivity
were also validated by qRT-PCR (DIRAS3, CDKN2B, POF1B,
ALDH1A1, and ANTXR2). We identified other candidates
responsible for the development of radiosensitization among
the 68 genes. Expression of DIRAS3 and CDKN2B was markedly
increased in radiosensitive cell lines. DIRAS3 expression
has been shown to be associated with chemosensitization to
paclitaxel via cell cycle arrest at the G2/M stage in breast
cancer cells (36). CDKN2B encodes a cyclin-dependent kinase
inhibitor and controls cell cycle G1 progression, which
has a radiosensitizing potential since cells at late G1 stage
are known to be radiosensitive (37). Similarly, agents that
selectively block CDK4/6 have been reported to enhance
radiosensitivity in cancer cells (38). In contrast, expression
of ALDH1A1 and POF1B were significantly increased in
radioresistant cell lines. ALDH1A1 (aldehyde dehydrogenase
1 family member A1) has been used as a cancer stem cell
marker and is associated with chemoresistance in ovarian
cancer (39). Moreover, a previous study found that ALDH1A1-
silencing sensitized ovarian cancer cells to chemotherapy (40).
POF1B has a function in actin binding, and this adhesion-
related molecule has been suggested to be important for
radioresistance through an interaction with the extracellular
matrix (41). Although we only focused on the Akt pathway,
other molecules may also serve as promising targets for
enhancing radiosensitivity and could be investigated in
further studies.

The 68 DEGs may also provide an opportunity to evaluate the
radiosensitivity of tumors by gene expression analysis. Although
further validation in human tumor samples is required, the 68
DEGs may be used to develop a radiosensitivity scoring platform
for predicting response to radiotherapy in GC patients. Oncotype
DX is already being widely used in breast cancer patients to
properly identify candidates for chemotherapy (42). Scott et al.
have reported that a gene-expression-based radiation-sensitivity
index derived from the NCI-60 database can predict treatment
outcome in patients with solid tumors (15, 43). Selecting the
proper candidates and radiation dose for patients based on their
gene expression data may improve the therapeutic efficacy of
radiotherapy. Future trials exploring the role of radiotherapy
in GC patients may need to integrate the gene signature for
radiosensitivity to predict tumor-intrinsic radiosensitivity in
order to aid in selecting the right patients for enrollment.

Limitations were also present in this study. The number of
cell lines used in this study was limited to 12 cell lines which
may be inadequate to draw clear conclusions. In addition, we
did not perform in vivo studies to evaluate the effect of Akt
inhibition on radiosensitivity. Further investigations utilizing a
larger number of cell lines along with in vivo studies are required
for adequate conclusions.

In conclusion, we report a unique radiosensitivity gene
signature in GC cells and describe the role of the Akt pathway

Frontiers in Oncology | www.frontiersin.org 7 September 2020 | Volume 10 | Article 562284

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-562284 September 10, 2020 Time: 19:32 # 8

Kim et al. Radiosensitivity in Gastric Cancer

in radiosensitizing GC cells. Our findings suggest Akt pathway
as a potential therapeutic target to enhance radiosensitivity in
GC. The predictive power of our radiosensitivity gene signature
and the therapeutic efficacy of combining Akt inhibitors to
radiotherapy should be validated in future clinical studies.
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