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Clarissa Araújo Gurgel Rocha

clarissa.gurgel@fiocruz.br;
gurgel.clarissa@gmail.com

†These authors share first authorship

Specialty section:
This article was submitted to

Cancer Molecular
Targets and Therapeutics,

a section of the journal
Frontiers in Oncology

Received: 19 May 2020
Accepted: 15 October 2020

Published: 10 November 2020

Citation:
Freitas RD, Dias RB, Vidal MTA,

Valverde LdF, Gomes Alves Costa R,
Damasceno AKA, Sales CBS,

Siquara da Rocha L, dos Reis MG,
Soares MBP, Coletta RD, Pereira TA,

Bezerra DP and Gurgel Rocha CA
(2020) Inhibition of CAL27 Oral
Squamous Carcinoma Cell by

Targeting Hedgehog Pathway With
Vismodegib or Itraconazole.

Front. Oncol. 10:563838.
doi: 10.3389/fonc.2020.563838

ORIGINAL RESEARCH
published: 10 November 2020

doi: 10.3389/fonc.2020.563838
Inhibition of CAL27 Oral Squamous
Carcinoma Cell by Targeting
Hedgehog Pathway With Vismodegib
or Itraconazole
Raı́za Dias Freitas1,2†, Rosane Borges Dias1,3†, Manuela Torres Andion Vidal1,2,
Ludmila de Faro Valverde1,2, Rafaela Gomes Alves Costa1,
Andresa Karen Andrade Damasceno1, Caroline Brandi Schlaepfer Sales4,
Leonardo de Oliveira Siquara da Rocha1, Mitermayer Galvão dos Reis1,2,
Milena Botelho Pereira Soares1, Ricardo Della Coletta5, Thiago Almeida Pereira6,
Daniel Pereira Bezerra1 and Clarissa Araújo Gurgel Rocha1,2,3*
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Oral Squamous Cell Carcinoma (OSCC) presents an important challenge for the health
systems worldwide. Thus, unraveling the biological mechanisms involved in OSCC
pathogenesis is essential to the discovery of new drugs with anticancer potential. The
Hedgehog (HH) pathway has shown promising results as a therapeutic target both in vitro
and in vivo. This study aimed to investigate the effects of vismodegib and itraconazole on
the expression of Hedgehog (HH) genes (PTCH1, SMO, and GLI1), cell cycle and cell
death in OSCC cells. Alamar Blue assay was used to assess the cytotoxicity of
vismodegib and itraconazole in a panel of oral cancer cell lines, including CAL27. The
expression of HH signaling components after treatment with vismodegib and itraconazole,
at concentrations of 25 or 50 mg/ml was evaluated by qPCR. Cell cycle and apoptosis
were evaluated by flow cytometry after 72 h treatment with 50 mg/ml of vismodegib or
itraconazole. HH signaling was activated in OSCC cell lines CAL27, SCC4, SCC9, and HSC3.
Vismodegib and itraconazole significantly reduced CAL27 cell viability after 48 h of treatment.
Gene expression of PTCH1, SMO, and GLI1 decreased in response to 24 h of treatment with
vismodegib or itraconazole. Furthermore, CAL27 cells exhibited alterations in morphology,
cell size, and cellular granularity. An increase in the DNA fragmentation was observed after
treatment and both inhibitors induced apoptosis after 72 h. In conclusion, SMO inhibitors
vismodegib and itraconazole demonstrably reduced the expression of HH genes in CAL27
OSCC cell line. In addition, treatment with vismodegib and itraconazole reduced cellular
viability and altered the morphology of CAL27 cells, and also induced apoptosis.

Keywords: oral squamous cell carcinoma, hedgehog pathway, vismodegib, itraconazole, real-time polymerase
chain reaction
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INTRODUCTION

Head and neck cancers pose a serious public health problem due
to its high incidence, prevalence, and mortality (1–3). Among
these, cancers affecting the oral cavity rank in the top 20 of all
malignant tumors worldwide, with more than 350,000 new cases
reported in 2018 (4). Oral squamous cell carcinoma (OSCC) is
the most frequently histological type, corresponding to 90% of all
diagnoses (5–7). According to the classification criteria for oral
cavity and oropharynx tumors established by the World Health
Organization (8), OSCC is considered an invasive and aggressive
epithelial neoplasia with the potential to promote early
metastasis and extensive lymph node involvement. This disease
mainly affects adult population aged 50 to 60 years old and has a
multifactorial etiology, with the principal risk factors being
tobacco and alcohol use (9–12). A 5-year survival rate has been
reported in approximately 50% of OSCC cases (3, 13).

Despite advances in cancer treatment, the therapeutic options
for OSSC remain limited, with surgery and radiotherapy being
the most common approaches. The lack of robust treatment
options has led to high morbidity, reduced quality of life, and a
high frequency of metastatic disease (14). Accordingly, obtaining
a comprehensive understanding of biology of this type of tumor
is crucial to the development of new therapeutic strategies.
Advances in knowledge will also improve the clinical outcome
and survival of OSCC patients, since morbidities associated with
surgical treatment (e.g. facial deformity, speech problems,
difficulty swallowing, etc.) constitute an important aspect of
this disease, leading to social, emotional, and economic
impacts (e.g. low productivity at work, difficulty in re-entering
the labor market, etc.).

Our group was one of the pioneers in demonstrating that the
Hedgehog (HH) cascade becomes reactivated in OSCC (15).
Considering that, this pathway becomes dysregulated in several
types of carcinomas, such as lung (16–18), breast (19, 20), ovaries
(21, 22), and liver (23, 24), HH molecules can be considered as
potential pharmacological targets in OSCC. Of special interest in
the HH pathway are the Sonic ligand (Shh), the Patched receptor
(PTCH1), the Smoothened co-receptor (SMO), and GLI
transcription factors, which are the major components of the
HH pathway responsible for cellular proliferation, self-renewal,
migration, and stem cell-population maintenance, among others
(25–28). In brief, this cascade is activated by binding one of
secreted ligands (Shh, Ihh, or Dhh) to the PTCH1 or PTCH2
receptor expressed by responsive cells. PTCH1-ligand complex
promotes conformational changes in SMO, resulting in its
activation, signal transduction into cytoplasm and,
consequently, to the activation and nuclear translocation of
GLI transcription factors, which will ultimately activate target
genes (27, 29). HH cascade activation may also occur due to
activating mutations in SMO or inactivating mutations in
PTCH1 (20, 30).

The search for drugs capable of blocking the HH pathway has
already produced important results. Vismodegib (GDC-0449)
was the first HH signaling pathway targeting agent approved by
the US Food and Drug Administration (FDA) and European
Medicines Agency (EMA) for the treatment of advanced local or
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metastatic basal cell carcinomas in patients who are not suitable
candidates for surgical resection or radiotherapy (31–35). Many
clinical studies have investigated the effects of vismodegib, either
as monotherapy or in combination with other drugs, on various
types of cancers, such as advanced chondrosarcoma
(NCT01267955) (36), metastatic breast cancer (NCT01071564)
(37), medulloblastoma (NCT00939484) (38), sarcoma
(NCT01154452) (39), and others (US, NLM, 2018).

Several mechanisms of resistance to vismodegib have been
demonstrated in studies using medulloblastoma and basal cell
carcinoma cells (40, 41), which may be related to its
pharmacokinetic properties, including high affinity for plasma
proteins, limited absorption, and slow elimination (42, 43), or
related to GLI1 activation, which can be mediated by other
signaling pathways (44–46).

Itraconazole, a broad-spectrum antifungal agent that inhibits
lanosterol 14-a-demethylase (14LDM), an enzyme that produces
ergosterol in fungi and cholesterol in mammals (4–8), is also a
known regulator of the HH pathway (47–49). This compound
prevents the accumulation of SMO in the primary cilia (47), and
therefore stands out as a potential agent for combating the
treatment resistance seen in other anti-HH compounds, such
as vismodegib. Moreover, several clinical trials are currently
underway to investigate the inhibitory potential of itraconazole
in various cancer types, including esophageal (NCT02749513)
(50), ovarian (NCT03081702) (51), non-small cell lung
(NCT02357836) (52), and others (US, NLM, 2018).

Despite the promising results seen in several types of cancer
using vismodegib and itraconazole (34, 53), their therapeutic
potential of blocking the HH pathway in OSCC has not been
studied. The present study attempted to demonstrate the in vitro
effects of vismodegib and itraconazole on the expression of HH
pathway genes, as well as OSCC cell proliferation and death.
MATERIALS AND METHODS

Cell Culturing
All human cell lines (Table S1) were cultured in cell culture
flasks (75 cm3, 250 ml volume) in DMEM medium (Life
Technologies, Gibco®; Carlsbad, CA, USA) supplemented with
10% fetal bovine serum (FBS, Life Technologies, Gibco®;
Carlsbad, CA, USA) and 50 mg/ml gentamicin (Novafarma,
Anapolis, GO, Brazil). Cultures were maintained in incubators
under 5% CO2 at 37°C and monitored daily using an inverted
microscope. Cell dissociation with trypsin was performed when
cell growth reached the confluence of 70 to 80% of the total
culture flask volume. Cell lines were tested monthly for
mycoplasma contamination using Hoechst dye (Sigma-Aldrich;
St Louis, USA).

PBMC Preparation
Human peripheral blood mononuclear cells (PBMC) were obtained
from the peripheral blood of healthy non-smokers aged 25–35 years
who had no reported drug or medication use for at least 15 days
prior to collection. The Institutional Review Board of the Oswaldo
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Cruz Foundation (FIOCRUZ, Salvador, Bahia, Brazil) approved the
present experimental protocol (Number 031019/2013). All
participants signed a term of informed consent to participate in
the study. Blood collection (up to a final volume of 5 ml) was
performed in heparinized flasks by trained professionals at Fiocruz
using sterile disposable syringes.

PBMCs were isolated following a standard protocol by
centrifugation using a Ficoll density gradient (Ficoll-Paque
Plus; GE Healthcare Bio-Sciences AB; Chicago, IL, USA). After
separation, cells were washed twice with saline, resuspended
(0.3 × 106 cells/ml) in RPMI medium supplemented with 20%
FBS, 2 mM glutamine, and 50 mg/ml gentamicin. To induce T cell
proliferation, 10 mg/ml concanavalin A (Con A; Sigma Chemical
Co; St Louis, MO, USA.) was added for use as a mitogen.

Gene Expression of HH Pathway
Components in OSCC
To characterize the expression of the studied HH pathway
components (SHH, PTCH1, SMO, and GLI1), OSCCs were
maintained under serum-free condition for 24 h, since FBS is
known to inhibit the expression of HH molecules, as previously
reported (54).

Total RNA Isolation and Reverse Transcription (RT-
PCR)
For total RNA isolation, OSCC cells were plated on 6-well plates at a
density of 0.7 × 105 cells/ml per well in 2.5 ml of complete medium.
After, 24 and 48 h cells were directly collected to the buffer lysis
solution (RLT, Rneasy® Mini Kit, QIAGEN; Hilden, Germany).
RNA was extracted using silica microcolumns (Rneasy® Mini Kit,
QIAGEN; Hilden, Germany) and eluted in 20 µl of water. The
quantity and purity of the RNA preparations was analyzed using
Qubit™ RNA Assay Kit (Thermo Fisher Scientific, USA) in a
fluorometer (QuBit™, Life Technologies; Carlsbad, CA, USA).
Reverse transcription was performed using the Superscript
VILO™ master mix (Invitrogen Corporation, USA) after
elimination of genomic DNA with DNase I, Amplification Grade
(Invitrogen Corporation, USA), during 10 min. All resulting cDNA
samples were stored at −20°C. Experiments were performed under
DNAse/RNAse-free conditions.

HH Pathway Gene Expression
HH pathway component expression was evaluated by qPCR
using inventoried TaqMan Gene Expression Assays™ for genes
SHH (Hs00179843_m1), PTCH1 (Hs00181117_m1), SMO
(Hs01090242_m1), and GLI1 (Hs01110766_m1), as well as for
the reference gene B2M (Hs99999907_m1). Reactions were run
on an ABI ViiA7 system (Applied Biosystems™; Foster City, CA,
USA) using a 96 Fast Well Block with total volumes of 20 ml
containing 1 µg of total RNA. The amplification process
consisted of an initial step at 50°C for 2 min, followed by 95°C
for 10 min, then 40 cycles at 95°C for 15 s and 60°C for 1 min.

After the amplification and dissociation runs, Quantification
Cycle (Cq) values were obtained using the Expression Suite software
(Applied Biosystems; Foster City, CA, USA). For the comparison of
experimental groups and controls by relative quantification, the Cq
Frontiers in Oncology | www.frontiersin.org 3
comparative method (2-DDCQ) was used. The B2M reference gene
was used as a normalizer (55) and reactions were calibrated using
the Cq values of samples treated with dimethylsulfoxide (DMSO
0.2%) as a negative control. All qPCR reactions were performed in
three independent experiments with duplicate samples.

Assessment of Cytotoxicity by Alamar
Blue Assay
To assess the cytotoxicity on tumor and non-tumor cells, Alamar
blue assay was performed following treatment, as described by
Ahmed et al. (56). Tumor and non-tumor cells were distributed
on 96-well plates at a density of 0.7 × 105 cells/ml in 100 ml of
complete medium.

Following dissolution in 0.5% DMSO, each inhibitor was
added and the plates were incubated for 72 h at concentrations
ranging from 0.39 to 50 µg/ml. Doxorubicin and 5-fluorouracil
were used as positive controls at concentrations ranging from
0.03 to 5 µg/ml. Cells treated with the vehicle (DMSO 0.5%) used
to dilute the tested inhibitors were employed as a negative
control. After 68 or 48 h (PBMC) of incubation, 20 ml of
Alamar blue stock solution (0.312 mg/ml) was added to each
well. Absorbance was measured at wavelengths of 570 nm
(reduced) and 600 nm (oxidized) using a microplate reader
(Molecular Devices; Sunnyvale, CA, USA).

The CAL27 cells were selected for use in all following in vitro
assays, which allowed us to better evaluate the effects of
vismodegib and itraconazole on HH pathway component gene
expression, as well as cell viability, cycle, and death patterns.
Additionally, Alamar blue assays were also performed in CAL27
cells following treatment of 6, 12, 24, 48, and 72 h to confirm the
cell response to SMO inhibitors. After determining the IC50
value for SMO inhibitors, all following assays were performed
using two concentrations (25 or 50 µg/ml), in CAL27 cells. All
results were confirmed by at least three independent experiments
with duplicate samples.

SMO Inhibitor Concentrations and
Specifications
For all inhibition assays, the test compounds vismodegib (Selleck
Chemicals; Houston, USA) and itraconazole (Sigma-Aldrich; St.
Louis, MO, USA) were used. Doxorubicin (IMA S.A.I.C. Lab;
Buenos Aires, Argentina) and 5-fluorouracil (5-FU) (Sigma-
Aldrich; St Louis, MO, USA) were used as positive controls, as
both chemotherapeutic agents are approved by the FDA for the
treatment of several cancers, including breast, pancreatic,
ovarian, colon, and stomach (NIH, 2017). All compounds used
in experimentation were dissolved in 0.5% DMSO and diluted in
saline to variable concentrations in accordance with each assay
performed (Table S2). These concentrations were determined
using the IC50 values obtained for each compound in each
evaluated cell line. To evaluate any possible effects of the drug
vehicle, some assays included 0.5% DMSO as a control.

Cell Viability Assay—Trypan Blue
To assess the viability of CAL27 cells, a trypan blue assay was
performed after 24 and 48 h treatment. OSCC cells plated on
November 2020 | Volume 10 | Article 563838
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6-well plates at a density of 0.7 × 105 cells/ml at a final volume of
2.5 ml were incubated with vismodegib and itraconazole for 24
and 48 h. For this analysis, 90 ml was removed from the plate using
trypsin, stained with 10 ml trypan blue and counted in a Neubauer
chamber, under optical microscopy, at 20× magnification
(Olympus CX41, Olympus, Tokyo, Japan). All results were
confirmed by at least three independent experiments.

Morphological Evaluation
For morphological analysis, CAL27 cells were incubated on 6-
well culture plates at a density of 0.7 × 105 cells/ml at a final
volume of 2.5 ml containing the SMO inhibitors. Cells were
observed both before and after treatment using an inverted
microscope (DMi8, Leica; Wetzlar, Germany). Digital images
were captured using Leica software Application Suite X (XLAS X,
Leica Microsystems; Wetzlar, Germany) for the analysis of
morphological changes. Additionally, flow cytometry was
performed to evaluate FSC (forward scatter) and SSC (side
scatter) standards to demonstrate relative size and granularity
or internal cell complexity, respectively.

Cell Cycle and Cell Death Analyses
The effects of vismodegib and itraconazole on cell cycle and cell
death were analyzed using the CAL27 cell line. In all
experiments, 2.5 ml of cell suspension (0.7 × 105 cells/ml) was
plated into each well of 6-well plates and incubated overnight to
allow cell adhesion, followed by a 72 h treatment period with
vismodegib and itraconazole. Doxorubicin and 5-FU were used
as positive controls. Flow cytometry was performed on a BD
LSRFortessa cytometer using the BD FACSDiva Software (BD
Biosciences; Franklin Lakes, NJ, USA) and Flowjo Software 10
(Flowjo LCC; Ashland, OR, USA). Experiments were performed
in duplicate and repeated at least three times.

Analysis of DNA Fragmentation and Cell Cycle With
Propidium Iodide
Nuclear DNA content, which reflects the cell cycle phase, was
evaluated by flow cytometry using propidium iodide (PI) as a
fluorogenic agent. After 72 h treatment with the test compounds,
cells were treated with a permeabilization solution (300 ml)
containing 0.1% triton X-100, 0.1% sodium citrate, 2 mg/ml PI,
and 100 mg/ml RNase in distilled water, in the absence of light
and at room temperature. After 30 min, cell fluorescence was
measured by flow cytometry on a LSRFortessa cytometer using
FACSDiva Software version 6.2 (Becton Dickinson Biosciences;
San Jose, CA, USA). Proportions of fragmented internucleosomal
DNA and cell cycle phases were determined using Flowjo
software, v 10 (Flowjo LCC; Ashland, OR, USA). Cells in the
sub-G1 phase represent internucleosomal DNA fragmentation.
Cellular debris were omitted from the analysis and 10,000 events
were analyzed per sample.

Cell Death Pattern Analysis Using Annexin V and
Propidium Iodide
After 48 and 72 h of treatment with the HH pathway inhibitors,
cells were stained with annexin V-FITC and PI (BD Biosciences;
Franklin Lakes, NJ, USA) to assess cell viability (categories: viable
Frontiers in Oncology | www.frontiersin.org 4
- Q4, early apoptosis - Q3, late apoptosis - Q2, or necrotic - Q1.)
Cell fluorescence was measured by flow cytometry, as above.
Statistical Analyses
Statistical analysis was performed using the GraphPad Prism
program. Data were analyzed according to distribution using a
normal Gaussian curve. IC50 values were obtained by non-linear
regression, considering three independent experiments
performed in duplicate. Differences between groups were
evaluated by ANOVA (analysis of variance), followed by the
Student-Newman-Keuls test (p < 0.05).

Regarding gene expression analysis, relative quantification
(QR) values were obtained with the aid of the Gene Expression
Suite™ program (Applied Biosystems) according to the Cq
comparative method (DD CQ) (57).
RESULTS

The HH Pathway Is Activated in Human
Oral Cancer Cell Lines
Initially, we investigated the transcriptional activity of HH
components by qPCR. HH pathway activity was confirmed via
the constitutive expression of GLI-1 gene, the gold standard for
determining HH pathway activation (58–60), in all OSCC cell
lines tested. The SHH ligand was constitutively expressed in
CAL27 and SCC4 cell lines (Figure S1).
Cytotoxic Activity of Vismodegib and
Itraconazole in OSCC Cell Lines
To evaluate the tumor cytotoxicity of the SMO inhibitors
vismodegib and itraconazole, a cytotoxicity assay was
performed using Alamar Blue after 72 h of treatment.
Vismodegib presented cytotoxicity, with IC50 values ranging
from 34.03 mg/ml in CAL27 and 41.30 in HSC-3. IC50 values
for itraconazole were similar for all cell lines tested (Table 1).
The positive controls doxorubicin and 5-FU demonstrated
cytotoxic activity (<4mg/ml) in all tumor lines. The treatment
and positive-control and compounds were also evaluated in two
non-tumor cell types, HaCaT, an immortalized non-transformed
keratinocyte cell line, and in a primary culture of peripheral
blood mononuclear cells (PBMC). Vismodegib presented an IC50

of 23.81 mg/ml in HaCaT and 31.16 mg/ml in PBMCs, whereas
itraconazole presented IC50 values of 17.66 mg/ml and 15.35 mg/
ml in HaCaT and PBMC, respectively (Table 1).

The CAL27 cell line was selected to determine the optimal
treatment time for vismodegib and itraconazole. Cytotoxicity
was evaluated at the 6, 12, 24, 48, and 72 h time points. At 6 and
12 h, IC50 values of 5-FU and the test compounds were unable to
be determined. However, after 24, and at 48 and 72 h of
treatment, vismodegib presented IC50 values of 54.9, 41.5, and
34.03 mg/ml, respectively. It was not possible to determine IC50

values for itraconazole at any of the time points evaluated. The
IC50 values of 5-FU were 95.6, 28.2 and 5.1 mg/ml at 24, 48 and
72 h of treatment, respectively (Table 2).
November 2020 | Volume 10 | Article 563838
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Vismodegib and Itraconazole Reduce the
Viability of CAL27 Cell Line
Vismodegib is a small-molecule inhibitor of Smoothened (34, 35),
while itraconazole reduces HH pathway activity by inhibiting the
accumulation of SMO in primary cilium (45). We first examined the
effects of vismodegib on the viability of CAL27 OSCC cell line. At
24 h, the greatest effect on cell viability was seen using itraconazole at
50 mg/ml, followed by itraconazole at 25 mg/ml. At 48 h, significant
reductions in the number of viable cells were observed after treatment
with itraconazole and vismodegib at 50 mg/ml in comparison to
untreated and vehicle-treated groups (p < 0.05) (Figure 1).

TreatmentWith SMO Inhibitors Altered CAL27
Cell Morphology, Volume, and Granularity
Analysis of cell populations showed morphology alterations in
cells treated with vismodegib or itraconazole at 24 or 48 h,
TABLE 2 | Cytotoxic activity of 5-FU, vismodegib, and itraconazole in the CAL-
27 cell line.

Treatment time IC50 in mg/ml

5-FU Itraconazole Vismodegib

6 h >25 >50 >50
12 h >25 >50 >50
24 h 95.6

(35.6–257.0)
>50 54.9

(45.5–66.3)
48 h 28.2

(12.4–64.0)
>50 41.5

(34.4–50.2)
72 h 5.1

(3.7–7.2)
>50 34.03

(29.1–39.9)
Data presented as IC50 values in mg/ml with a 95% confidence interval obtained by
nonlinear regression from at least three independent experiments performed in duplicate.
Cytotoxicity measured by Alamar Blue assay, 6, 12, 24, 48, and 72 h after treatment. 5-FU
was used as positive control.
TABLE 1 | Human tumor lineages used in the Alamar Blue cytotoxicity assay.

Cells IC50 in mg/ml

DOX 5-FU Vismodegib Itraconazole

CAL27 1.68
1.21–2.34

5.1
3.7–7.2

34.03
29.1–39.9

>50

HSC 3 0.19
0.05–0.66

2.18
1.37–3.47

41.30
25.26–67.53

>50

SCC 4 0.04
0.03–0.06

N.d. 35.03
25.96–47.29

49.03
35.17–68.35

HaCaT 0.06
0.01–0.30

N.d. 23.81
4.85–116.7

17.66
0.78–399.4

PBMC 2.81
1.39–5.67

>25 31.16
15.02–64.68

15.35
3.68–63.96
November 2020 | Volume 10 |
Data presented as IC50 values in mg/ml with a 95% confidence interval obtained by nonlinear regression from at least three independent experiments performed in duplicate. Cytotoxicity
measured by Alamar Blue assay, 72 h after treatment. Doxorubicin (DOX) and 5-FU were used as positive controls. N.d., not determined.
FIGURE 1 | Effect of SMO inhibitors on CAL27 cell line viability. CAL27 cells were cultured for 24 or 48 h in the absence (CAL27 NT), or presence of vismodegib
(VISMO) or itraconazole (ITRA). One negative control (CTL) was treated with the vehicle (0.2% DMSO) used to solubilize test compounds. Cell viability was
determined using a trypan blue dye exclusion assay. Values represent mean ± S.E.M. from three independent experiments performed in duplicate. *p < 0.05
compared to the CTL group by ANOVA, followed by the Student Newman-Keuls test.
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compared to the untreated and vehicle groups (Figures S2, S3,
S4, and S5). With regard to morphology, an evident aspect
visualized in the treatment groups was reduced numbers and
volumes of tumor islands, with cells exhibiting greater loss of
adhesion and nuclear fading (Figures S2, S3, S4, and S5).
Cellular retraction was also observed, especially in cells treated
for 48 h with itraconazole (Figures S4 and S5).

At only after 72 h, flow cytometry analysis revealed cellular
retraction arising from treatment with the SMO inhibitors, as
evidenced by a decrease in Forward Light Scatter (FSC), and
nuclear condensation due to increased lateral dispersion (SSC), as
demonstrated by the scatterplots in Figure 2A. The positive controls
doxorubicin and 5-FU were found to decrease cell size (p < 0.05). In
addition, these two controls and itraconazole at 50 mg/ml were found
to increase the granularity of CAL27 cells (p < 0.05) (Figure 2).
Frontiers in Oncology | www.frontiersin.org 6
Treatment With Vismodegib or
Itraconazole Reduced the Expression of
SMO, PTCH1, and GLI1
After 24 h of treatment with vismodegib or itraconazole (at 25 or
50 µg/ml), reduced gene expression of SMO, PTCH1, and GLI1
were observed (Figure 3).

Vismodegib and Itraconazole Induce
Apoptosis in CAL27 Cells
After 48 h of treatment with the tested compounds, results did
not show a significant increase of cell death by apoptosis. Only
after 72 h of treatment with vismodegib or itraconazole, an
increase in the number of apoptotic cells was seen in comparison
to the negative control and DMSO groups. The positive control
A

B

FIGURE 2 | (A) Scatterplots and (B) Graphical representation of light scattering characteristics of CAL27 cells treated with vismodegib and itraconazole, as
determined by flow cytometry after 72 h of treatment. FSC (forward scatter) and SSC (side scatter) were used to demonstrate relative size and granularity or internal
cell complexity. FSC and SSC values were normalized with the negative control (DMSO 0.2%). The negative control was treated with the vehicle (DMSO 0.2%) used
to solubilize and dilute the compounds. Doxorubicin (DOX, 1 mg/ml) and 5-FU (10 mg/ml) were used as positive controls. Data is representative of three independent
experiments performed in duplicate. Cellular debris was omitted from the analyses and 10,000 events were analyzed per sample. *p < 0.05 compared to the CTL
group by ANOVA, followed by the Student Newman-Keuls test.
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groups (doxorubicin and 5-FU) also presented significantly
increased populations of apoptotic cells (p < 0.05) (Figures 4
and 5).
Frontiers in Oncology | www.frontiersin.org 7
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Fragmentation
After 72 h of treatment with vismodegib and itraconazole (50 µg/
ml), an increased number of CAL27 cells in the Sub-G1 phase
were found compared to negative controls (CAL27 NT and CTL
groups), as well as reductions in cell populations in the G0-G1
and S phases (Figures 6 and S6).
DISCUSSION

HH pathway activity has been shown to lead to the development
of several human tumors (16–24, 27, 61), including OSCC (15,
62–65) and other cell lineages of this type of tumor (66). The
results presented here corroborate the participation of this
signaling pathway in OSCC, providing a basis for efforts to
investigate and develop targeted pathway inhibitors. As HH
pathway represents a potential pharmacological target in
OSCC, some drugs developed to target SMO may prove useful.
More than 50 compounds have been identified as inhibitors of
HH signaling in cancer (67), and, of these, vismodegib was
approved in 2012 by FDA for the treatment of advanced or
metastatic adult basal-cell carcinoma. Although vismodegib and
itraconazole have been shown to strongly inhibit HH signaling in
several types of cancers (34, 53), the inhibition potential in oral
cancer cells has not been well investigated.

The present study demonstrates that SMO inhibitors,
vismodegib and itraconazole, successfully reduced the gene
expression levels of SMO, PTCH1, and GLI1, reduced the
viability of OSCC CAL27 cells and altered the morphology of
this cell line in a time- and concentration-dependent manner. In
addition, these inhibitors induced apoptosis and increased DNA
fragmentation, demonstrating the therapeutic potential of
inhibiting the expression of HH pathway components in OSCC.

The treatment of CAL27 cells with vismodegib or itraconazole
reduced SMO, PTCH1, and GLI1 gene expression after 24 h,
similarly to what was observed by Hu et al. (49), who reported
reduced HH pathway component expression after treatment with
itraconazole and vismodegib (31, 34, 35, 45, 68). GLI1, a transcription
factor of HH pathway, is believed to regulate the expression of genes
involved in proliferation, survival, and cell viability (69, 70) and the
blockage of HH pathway may inhibit these cancer hallmarks.

In fact, after 72 h of treatment with vismodegib or itraconazole,
alterations in cell cycle distribution and increases in DNA
fragmentation were observed, which seems to indicate apoptosis
(71). In addition, treatment with vismodegib was observed to reduce
the relative quantity of S-phase cells. Other authors showed that
treatment with 50 mM vismodegib led to an increase in the apoptotic
fraction in colorectal (72) and prostate cancer cells (73), whereas
itraconazole also induced apoptosis in gastric cancer cells (49). On
the other hand, cyclopamine, another SMO inhibitor, failed to induce
significant apoptosis in human pancreatic carcinoma cells (74).

Therefore, SMO inhibitors tested here were shown to inhibit
the growth of OSCC cells through the reduction of cell viability,
induction of apoptosis, and alterations of cell cycle phases.
Moreover, we found reduced size and increased granularity in
CAL27 OSCC cells treated with these SMO inhibitors, which
FIGURE 3 | HH pathway component gene expression profiles after 24 h of
treatment with vismodegib or itraconazole (at 25 or 50 µg/ml) in CAL27 cells.
Negative control was treated with DMSO (0.2%), used to solubilize and dilute
tested compounds. Doxorubicin (DOX, 1 mg/ml) and 5-FU (10 mg/ml) were
used as positive controls. The value of relative quantification (RQ) used in
each sample was normalized using the B2M reference gene and calibrated
according to RQ values obtained for the CAL27 treated with DMSO (0.2%).
qPCR reactions were performed in cells treated and non-treated with SMO
inhibitors. *p < 0.05 compared to the CTL group by ANOVA, followed by the
Student Newman-Keuls test.
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FIGURE 4 | Effects of vismodegib and itraconazole on the externalization of phosphatidylserine in CAL27 cells, as determined by flow cytometry using annexin V-
FITC after 48 and 72 h of treatment. Negative control was treated with the vehicle (0.2% DMSO) used to solubilize and dilute test compounds. Doxorubicin (DOX, 1
mg/ml) and 5-FU (10 mg/ml) were used as positive controls. Values are expressed as means ± S.E.M. from three independent experiments performed in duplicate.
Cellular debris was omitted from analyzes and 10,000 events were analyzed per sample. *p < 0.05 when compared to negative controls by ANOVA (analysis of
variance) followed by the Student Newman-Keuls test.
FIGURE 5 | Representative flow cytometry dot plots show the percentage of cells in viable, early apoptotic, late apoptotic, and necrotic stages in CAL27 cells
treated with vismodegib and itraconazole after 72 h of treatment. Negative control (DMSO, 0.2%) was used to solubilize and dilute all tested compounds.
Doxorubicin (DOX, 1 mg/ml) and 5-FU (10 mg/ml) were used as positive controls. Data represents results from three independent experiments performed in duplicate.
Cell debris was omitted from analyses; 10,000 events was analyzed per sample.
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FIGURE 6 | Effects of SMO inhibitors on cell cycle and internucleosomal DNA fragmentation in CAL27 cells after 72 h of treatment. Negative control was treated
with the vehicle (0.2% DMSO) used to solubilize and dilute test compounds. Doxorubicin (DOX, 1 mg/ml) and 5-FU (10 mg/ml) were used as positive controls. Values
are shown as means ± S.E.M. from three independent experiments carried out in duplicate. Cellular debris was omitted from analyzes and 10,000 events were
analyzed per sample. p < 0.05 compared to the CTL group by ANOVA, followed by the Student Newman-Keuls test. * and # indicate significant differences in relation
to negative control (CTL, DMSO 0.2%) and CAL27-NT, respectively.
FIGURE 7 | Summary of therapeutic effects of Vismodegib and Itraconazole treatment in CAL27 cells. Created with BioRender.com.
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indicates the involvement of apoptosis or senescence either of
which cause cells to lose their proliferative potential. This effect
has been observed in the use of chemotherapeutic agents, and
may represent and interesting marker for the selection of new
drugs with anticancer potential (40).

Considering these results, we can indicate that HH pathway is
active in OSCC cells and the pharmacological inhibition of this
pathway in CAL27 OSCC cell lines with SMO inhibitors reduced
the expression of PTCH1, SMO, and GLI1 genes, suggesting a
reduction in the activity of this signaling pathway after 24 h of
treatment. SMO inhibitors were capable of reducing viability and
altering CAL27 OSCC cell line morphology in a time and
concentration-dependent manner. In addition, these inhibitors
have induced apoptosis and increased DNA fragmentation in
this cell type. Figure 7 summarizes our results.

While the in vitro results of the present study are promising in
the CAL27 OSCC cell line, with demonstrated effects on viability,
morphology, HH gene expression, cell cycle, and cell death, the
efficacy of vismodegib and itraconazole in OSCC should be
evaluated in vivo in the future. This data will be highly relevant in
pre-clinical studies designed to assess the potential therapeutic use
of vismodegib and itraconazole in OSCC treatments.
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