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Background: It is widely accepted that the oxygen level in tumor tissue is significantly
lower than the adjacent normal tissue, thus termed hypoxia. Intratumoral hypoxia
represents a major driving force in cancer progression, recurrence, metastasis, and
decreased survival. Though multiple gene signatures reflect the complex cellular response
to hypoxia have been established in several cancer types such as head and neck, breast,
and lung cancers, the hypoxic panorama in colorectal cancer (CRC) remains poorly
understood.

Methods: A hypoxic signature constituted by a total of 356 genes, including canonical
hypoxia-responsive ADM, ANGPTL4, CA9, and VEGFA, was established based on
systemic literature search. A total of 1,730 CRC samples across four independent
cohorts were used for nonnegative matrix factorization clustering and subtyping.
Prognosis, molecular signatures, pathways, and tumor-infiltrating lymphocytes were
compared between the subtypes.

Results:CRCsmainly fell into two subgroups, one indicated as hypoxia and the other one
designated as normoxia. Hypoxia was correlated with poor outcomes in CRC and will
increase the risk of a subset of stage II patients to the level of normoxic stage III.
Additionally, hypoxia was closely associated with activation of RAS signaling pathway
independent of KRAS mutation. More M2 macrophage infiltration was another hypoxic
marker indicated that subsets of patients with high M2 macrophages may benefit from
macrophage-targeting therapy.

Conclusions: These findings will facilitate the development of a hypoxia-oriented therapy
strategy to enhance the treatment effect in the near future.

Keywords: colorectal cancer, HIF-1, hypoxia, KRAS mutation, M2 macrophages
INTRODUCTION

Tumor hypoxia is correlated with advanced progression, treatment resistance and poor clinical
outcomes (1, 2). It is widely accepted that the oxygen level in hypoxic tumor tissue is significantly
lower than the oxygenation of the respective normal tissues and on average it is between 1%–2% O2

and below (3). Intratumoral hypoxia is a well established resistance factor for radiotherapy and is
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increasingly recognized as promoting resistance to systemic cancer
therapies. Hypoxia promotes a more aggressive and resistant
cancer phenotype, primarily mediated by hypoxia-inducible
factor 1 (HIF-1), a transcription factor that is stable only in low-
oxygen condition, which leads to cell cycle arrest, angiogenesis,
and accelerated glycolysis (3). Nevertheless, tumor oxygen level
largely depends on the initial oxygenation of the tissue, the size
and stage of the tumor, and the method of oxygen measurement.
In addition, different measurement methods often yield discrepant
result and diagnose methods such as oxygen electrode and
phosphorescence quenching and near-infrared spectroscopy are
tedious and not suit to large numbers of samples.

Given the close relationship between hypoxia and cancer
progression and metastasis, multiplex markers such as gene
signatures potentially better reflect the complex cellular
response to hypoxia have been established in several solid
tumor types such as head and neck, breast, and lung cancers
(4, 5). However, the hypoxia-inducible gene signature in
colorectal cancer (CRC) remains poorly understood.

Here, we use TCGA, GSE14333, GSE17538, and GSE39582 four
independent cohorts to explore the potential clustering of CRC
samples based onmanually curated hypoxia markers. We found that
hypoxia correlated with poor outcomes in CRC. In addition, hypoxia
is closely associated with activation of RAS signaling pathway
independent of KRAS mutation and M2 macrophage polarization.
MATERIALS AND METHODS

Multi-Omic Data for CRCs in TCGA
CRC somatic mutational profiles and clinical information were
downloaded from The Cancer Genome Atlas (TCGA) data portal
(06/02/2018). Silent mutations, RNA mutations, and any mutation
located within the intron, flanking sequence, 5’ untranslated region
(UTR), and 3’UTR were discarded. Then, clinical information of
each patient was added tomutational information via unique sample
ID. This study was approved by the Ethics Committee of the Second
Affiliated Hospital, School of Medicine, Zhejiang University.

Curation of Hypoxic Signature
To build a robust hypoxia signature, we collected a list of well-
annotated gene expression signatures across different cancer types,
including the well-known pancancer hypoxia 15-gene (5), 26-gene
hypoxia signature in laryngeal cancer (6), 24-gene hypoxia signature
in high-risk bladder cancer (7), 20-gene that showed the greatest
fold induction following hypoxic exposure in MCF7 cells (8), 28-
gene hypoxia-related prognostic signature for localized prostate
cancer (9), hypoxia gene expression classifier in head and neck
cancer (4, 10), 27-gene that was found as hypoxia induced, pH
unaffected in human squamous cell carcinomas (11), nine-gene
derived from Caco-2 CRC cells in response to hypoxia (12), and
200-gene under hypoxia hallmark inMolecular Signatures Database
(MSigDB) (13). Then, a hypoxia-signature constituted by a total of
356 genes (Table S1), including canonical hypoxia-responsive
ADM, ANGPTL4, CA9, and VEGFA, was used for subsequent
non-negative matrix factorization (NMF) clustering.
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Gene Expression Data Processing and
Normalization
All level 3 tumor RNASeqV2 mRNA expression datasets were
obtained from TCGA (October 2015). Genes with expression
levels < 1 (RSEM-normalized counts) in more than 50%
samples were removed. The GSE14333, GSE17538, and
GSE39582 (Affymetrix HG U133 Plus 2.0 arrays) datasets were
downloaded from the Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/). Raw CEL files were processed using
the affy package of BioConductor (14). Then, MAS5 algorithm was
used for background correction, normalization, and
summarization of single probes for all probe sets, which was
performed similar as in our previous work (15). NMF was
performed using the NMF package for R (16). Differentially
expressed genes (DEGs) were identified using the DEGSeq
package for R/Bioconductor according to a false discovery rate
(FDR)-adjusted P value < 0.05 and fold change > 2 conditions
(17). Gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed using the
clusterProfiler package from BioConductor (18). Significantly
enriched GO terms and pathways were selected according to an
FDR-adjusted P value < 0.05.

Functional Enrichment in CRC Under
Hypoxia
Hallmark gene sets from molecular signatures database were
used for determining whether any signatures were enriched
under hypoxic condition by gene set enrichment analyses
(GSEA) (19). Significantly enriched hallmarks were selected
according to a FDR q-value < 0.05.

Survival Analysis
Survival differences between the hypoxic and normoxic groups were
tested by the Kaplan-Meier method and analyzed with the log-rank
test with functions survfit and survdiff in the survival package for R
(20). Cox univariate model was performed with function coxph in
the R package survival. A P value < 0.05 was considered significant.

Deciphering Tumor Infiltrated
Lymphocytes (TILs) in CRCs
To quantify the relative amount of distinct TILs, CIBERSORT was
used to calculate the proportions of 22 lymphocytes in tumor tissue
(21). The permutations were set to >=100, and quantile
normalization (QN) of the input expression mixture was set
to FALSE for TCGA RNAseq data. Samples with CIBERSORT
P value > 0.05 were discarded from further comparison.
RESULTS

Classification of CRCs Based on Hypoxic
Gene Expression Signature
NMF consensus clustering of 614 TCGA CRC samples using the
established 356 gene hypoxia signature revealed that it mainly fell
into two subgroups, one indicated as hypoxia hereafter and the
other one designated as normoxia (Figures 1A, B). To validate the
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two subgroups identified in TCGA cohort, we also examined three
other datasets GSE39582 (French Ligue Nationale Contre le
Cancer), GSE17538 (61 from Vanderbilt Medical Center and 177
patients from the Moffitt Cancer Center), and GSE14333 (Royal
Melbourne Hospital, Western Hospital and Peter MacCallum
Cancer Center in Australia, and the H. Lee Moffitt Cancer Center
in the United States), each with more than 200 CRC samples.
Consistent with the findings in TCGA, the two hypoxia-driven
subgroups held true in all of the three GEO datasets, suggesting the
discriminative robustness of our collected hypoxic signature.

Considering some well-established factors such as KRAS/
BRAF mutation, microsatellite stable (MSS)/microsatellite
instability (MSI) status, right-sided colon cancer (RCC), and
American Joint Committee on Cancer (AJCC) stages are
associated with CRC patients’ outcomes, we tried to determine
whether hypoxia tend to correlate with above indicators.
Somewhat unexpectedly, no biased tendency of KRAS/BRAF
mutation, MSS/MSI, and stage distributions under hypoxia was
observed (Figure 1C). However, we found that younger patients
(< 60 year) had a preference with hypoxia, while an opposite
tendency was observed for RCC in TCGA samples (Figure 1C,
Table S2).

Hypoxia Was Correlated With Poor
Outcomes
Given that hypoxia tends to associate with aggressive
phenotypes, we then asked whether clinical outcomes differed
Frontiers in Oncology | www.frontiersin.org 3
greatly between these two groups. As our expected, hypoxia led
to an obvious shorter OS and earlier relapse or progression in
CRC. We found that hypoxia was significantly correlated with
unfavorable overall survival (OS) in TCGA (five-year survival,
0.5 vs. 0.72, 95% confidence interval (CI) 0.37–0.69 vs. 0.63–
0.81), GSE17538 (0.43 vs. 0.7, 95% CI 0.33–0.55 vs. 0.61–0.79),
and GSE39582 (0.63 vs. 0.71, 95% CI 0.57–0.71 vs. 0.67-0.77) and
adverse disease-specific survival (DSS) in GSE17538 (0.53 vs. 0.8,
95% CI 0.42–0.66 vs. 0.71–0.9). Furthermore, hypoxia led to
poorer disease free survival (DFS) or relapse-free survival (RFS)
was observed in GSE17538 (0.61 vs. 0.85, 95% CI 0.5-0.75 vs.
0.78-0.93), GSE14333 (0.61 vs. 0.87, 95% CI 0.5–0.74 vs. 0.81–
0.93), and GSE39582 (0.66 vs. 0.73, 95% CI 0.59–0.74 vs. 0.69–
0.78, Figures 2A–G). In addition, hypoxia was an independent
significant OS prognostic factor in CRC with a hazard ratio of 1.7
(95% CI 1.37–2.1) compared to the normoxic group (Figure
2H). In view of the score of hazard ratio, hypoxia contributed
more to the prognosis than gender and TNM stage II
(Figure 2H).

Increased Risk of a Subset of Stage II
CRCs Under Hypoxic Condition
As hypoxia potentially had a larger effect to poor survival of
CRCs (Figure 2H), to better quantify the weight of known
survival factors, a nomogram model was constructed to solve
this problem. Nomogram showed that hypoxia had a higher risk
than the score between stage II and stage III (Figure 3A), we thus
A

B

C

FIGURE 1 | Colorectal cancer (CRCs) clustered into two gene expression-based subtypes based on hypoxic signature. (A) Rank survey of the parameter r in non-
negative matrix factorization (NMF). (B) Clustering of 617 CRCs in the The Cancer Genome Atlas (TCGA) by NMF. (C) Association of clinical characteristics and
hypoxic subtypes.
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attempted to understand whether a part of high-risk stage II
CRCs were hypoxia-related. Then, stage II and III CRC patients
were stratified into the hypoxic and normoxic groups. Kaplan-
Meier plot showed that the hypoxic group had a significant
poorer survival than the normoxic group in both stage II and III,
hypoxic stage II CRCs even had a worse prognosis than the
normoxic stage III group (five-year survival, stage II normoxia
0.79, 95% CI 0.74–0.85; stage II hypoxia 0.70, 95% CI 0.62–0.79;
stage III normoxia 0.73, 95% CI 0.66–0.81; stage III hypoxia 0.62,
95% CI 0.53–0.72; Log rank P = 0.001, Figure 3B). This result
indicated that hypoxia was a high-risk factor for a subset of stage
II CRC patients, like big tumor size, vascular, and lymphatic
vessel invasion, and may be a clinical index that should be
considered for adjuvant therapy in future clinical practice.
Frontiers in Oncology | www.frontiersin.org 4
Hypoxia-Associated Molecular Signatures
in CRC
To explore whether specific hallmark signatures were enriched
subject to hypoxia that associated with poor outcomes, GSEA
was performed to determine the hypoxia-oriented molecular
characteristics. Intriguingly, we found majority of significant
signatures were concerned with hypoxia (Figure 4A).
Aggressive tumor features, such as KRAS signaling up (NES =
2.04, FDR q-value = 0.014), EMT (NES = 1.94, FDR q-value =
0.026), myogenesis (NES = 1.82, FDR q-value = 0.033), apical
junction (NES = 1.87, FDR q-value = 0.037), angiogenesis
(NES = 1.73, FDR q-value = 0.047), IL6/JAK/STAT3 pathway
(NES = 1.71, FDR q-value = 0.047), and TGFb signaling (NES =
2.02, FDR q-value = 0.012) were the most significantly enriched
A B

FIGURE 3 | Hypoxia is linked to increased risks of a subset of stage II colorectal cancer (CRCs). (A) Nomogram showed that hypoxia had a higher weigh than the
difference between stage II and III. (B) KM plot showed that hypoxic stage II CRCs even had a worse prognosis than the normoxic stage III group.
A B D
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FIGURE 2 | Prognostic analysis of hypoxic and normoxic groups in The Cancer Genome Atlas (TCGA), GSE14333, GSE17538, and GSE39582 datasets. (A) KM
plot of overall survival (OS) status for TCGA samples. (B) KM plot of OS status for GSE17538 samples. (C) KM plot of disease free survival (DFS) status for
GSE17538 samples. (D) KM plot of disease-specific survival (DSS) status for GSE17538 samples. (E) KM plot of DFS status for GSE14333 samples. (F) KM plot of
OS status for GSE39582 samples. (G) KM plot of relapse-free survival (RFS) status for GSE39582 samples. (H) OS hazard ratio of different clinical characteristics
based on pooled TCGA, GSE17538, and GSE39582.
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hallmarks under hypoxia (Figure 4A). Contrast to the hypoxic
subgroup, oxidative phosphorylation (NES = -2.27, FDR
q-value = 0) was the most significant hallmark in the normoxic
subgroup. These trends were basically held in all other three
datasets GSE14333 (Figure 4B), GSE17538 (Figure 4C), and
GSE39582 (Figure 4D).

To better clarify the underlying mechanism of tumor adaption
to hypoxia, we sought to identify the DEGs between the two
subtypes. Intriguingly, majority of DEGs were upregulated by
hypoxia in all examined datasets: GSE14333 (85.5%, 506 out of
592 DEGs were upregulated by hypoxia), GSE17538 (95.6%, 326
out of 341 DEGs were upregulated by hypoxia), GSE39582 (90.6%,
778 out of 859 DEGs were upregulated by hypoxia), and TCGA
(76.7%, 1,013 out of 1,320 DEGs were upregulated by hypoxia).
GO enrichment interrogation based on the hypoxia-upregulated
DEGs revealed that hypoxia was closely associated with
extracellular matrix/structure organization and collagen fibril
organization (Figure S1). KEGG pathway enrichment further
confirmed the significant association of hypoxia with ECM-
receptor interaction, focal adhesion, and cell adhesion molecules
(Figure S1).

Activation of RAS Signaling Under Hypoxia
Was Independent of KRAS Mutation
GSEA revealed that activation of RAS signaling under hypoxia was
one of the most significant signatures (Figure 4). However, no
significant frequency of KRAS mutational difference was observed
between the hypoxic and normoxic groups (Figure 1C). Then, we
speculated that hypoxia activated the RAS signaling casade
without KRAS mutation. To test our hypothesis, we performed
clustering of CRC samples with wildtype (WT) KRAS status.
Intriguingly, we found that CRCs with WT KRAS also fell into
two groups, the proportion of hypoxia and normoxia was
consistent with the abovementioned whole CRC cohort. GSEA
consolidated the activation of RAS signaling in the hypoxic group
without KRASmutation both in GSE39582 (NES = 2.28, FDR q =
0, Figure 5A) and TCGA (NES = 2.07, FDR q = 0.0038, Figure
5B) cohorts. Additionally, ETS1, a genome-wide effector of RAS/
ERK signaling in epithelial cells and involvement in the
upregulation of hypoxia-inducible genes (22, 23), was found
significantly unregulated in the hypoxic group compared to the
Frontiers in Oncology | www.frontiersin.org 5
normoxic group (Figures 5C, D, Table S3). These results
indicated that RAS signaling pathway may be triggered by ETS1
in a KRASmutation-independent manner by hypoxia (Figure 5E),
suggesting that CRC patients with WT KRAS status should
consider hypoxia-target therapy or combination with EGFR
inhibitor if failure of mono-EGFR inhibitor treatment.

Hypoxia Was Associated With More
M2 Macrophage Infiltration
Considering the unfavorable outcomes and aggressive phenotype
under hypoxic conditions, we then asked whether the tumor
immune microenvironment (TIME) differed greatly between
these two groups. CIBERSORT was used to quantify the
relative amount of 22 tumor lymphocytes in all four CRC
datasets. Of note, CD8 T cell and CD4 memory resting T cell
were less infiltrated under hypoxic conditions (Figure S2). On
the contrary, we found that hypoxia was significantly associated
with neutrophil and macrophage infiltration and polarization.
Both M0 macrophages and M2 macrophages were much more
infiltrated under hypoxic conditions (e.g., M2 macrophages
median 15.5% versus 11.5%, GSE14333; 15.4% versus 9.6%,
GSE17538; 13.2% versus 11%, GSE39582; 15.7% versus 13%,
TCGA; Figure 6A), however, this trend was not held for M1
macrophages. In addition, the aggregate amount of M2
macrophages was much larger than M1 macrophages (Figure
S2). Two canonical markers of M2 macrophages, CD163 and
CD206, had much higher expression levels in the hypoxic
subgroup than in the normoxic subgroup in all four datasets
(Figures 6B, C). Further correlation exploration between
different lymphocytes observed that M2 macrophages had a
negative correlation with plasma cells (Figure S3). TAMs were
reported to promote EMT of CRC cells via IL6/JAK/STAT3
pathway (24). Given IL6/JAK/STAT3 was featured under
hypoxic condition (Figure 4), it is tempting to believe that it
had a close association with more M2 macrophage infiltration.
IL6ST (gp130), the receptor for IL6 initiating signal
transmission, exhibited a significant positive correlation with
M2 macrophage infiltration under hypoxic conditions (Figure
S4). Thus, the suppressive TIME orchestrated by hypoxia further
exacerbated the tumor malignancy and, undoubtedly, a
worse outcome.
A B DC

FIGURE 4 | Functional enrichment signatures of colorectal cancer (CRCs) under hypoxic conditions. (A–D) Gene set enrichment analyses (GSEA) enrichment
hallmarks visualized as volcano plots in The Cancer Genome Atlas (TCGA), GSE14333, GSE17538, and GSE39582, respectively. Hallmarks significantly correlated
with hypoxia or normoxia were labeled with red and blue dots, respectively. NES, normalized enrichment score.
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DISCUSSION

Hypoxia is characteristic for solid tumors and has been known to
contribute to tumor aggressive phenotypes including enhanced
motility, invasiveness, and immune escape (25). In this study, we
systematically analyzed four independent datasets covering
different races and found that hypoxia was widely present
in CRC. Hypoxic CRCs was characterized by enhanced
angiogenesis, EMT, TGF-beta signaling, and undoubtedly, had
worse OS, DFS, DSS, and RFS compared with the normoxic
group. Notably, activation of the RAS signaling was one of
typical characteristics under hypoxia and this association may
through EST1 to activate the RAS pathway in a non-KRAS
mutation-dependent manner to promote tumor proliferation
and metastasis. In other words, not all CRCs with WT KRAS
were suitable for solely cetuximab treatment. The mechanism of
Frontiers in Oncology | www.frontiersin.org 6
cetuximab resistance in KRAS-WT CRC patients remains poorly
understood (26). It’s reported that increased DDX3 promoted by
HIF-1a could induce cetuximab resistance via YAP1/SIX2 axis
in KRAS-WT CRC cells (27). These evidences coupled with our
findings indicated that in combination of hypoxia-targeted
inhibitors such as TH-302 (a hypoxia-activated prodrug) may
enhance drug susceptibility in cetuximab resistant KRAS-WT
CRC. In this case, patients with WT KRAS may still need to
determine oxygenation status before applying EGFR inhibitors
since activation of the RAS signaling pathway via hypoxia may
lead to EGFR inhibitor treatment failure according to
our finding.

Furthermore, another interesting finding in this study was the
hypoxic group of stage II CRCs had a worse outcome than the
normoxic group of stage -II and even –III (Figure 3B). This
finding provided a novel stratified basis for future CRC clinical
A B C

FIGURE 6 | Hypoxia correlated with more M2 macrophage infiltration. (A) Comparison of M2 macrophage infiltration proportion between the hypoxic and normoxic
groups. (B) CD163 had a significant higher expression level in the hypoxic group than in the normoxic group. (C) CD206 had a significant higher expression level in
the hypoxic group than in the normoxic group.
A B

D

E

C

FIGURE 5 | Hypoxia may activate the RAS signaling pathway through up-regulating ETS1. (A) Enrichment plot of RAS signaling up in GSE39582 under hypoxic
condition. (B) Enrichment plot of RAS signaling up in The Cancer Genome Atlas (TCGA) under hypoxic condition. (C) ETS1 had a significant higher expression level
in the hypoxic group than the normoxic group using GSE39582 dataset. (D) ETS1 had a significant higher expression level in the hypoxic group than the normoxic
group using TCGA dataset. (E) Schematic diagram of KRAS pathway activation by hypoxia-induced upregulation of EST1 in KRAS WT CRCs.
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treatment. In current clinical practice, postoperative adjuvant
chemotherapy is required when stage II CRC patients have high-
risk factors such as pT4 Tumors, obstruction or perforation, and
lymphovascular and perineural invasion (28). Hypoxia, in this
context, may also be taken into consideration when applying
preoperative or postoperative adjuvant chemotherapy for
selected stage II CRC patients.

It is also important to keep in mind that a better
understanding of the interactions within the hypoxic tumor
microenvironment is crucial for developing optimal new
combination strategies. Through interrogating the constitution
of TILs within CRCs, more M2 macrophage infiltration and a
significant correlation with IL6/JAK/STAT3 pathway were
revealed in the hypoxic group (Figures 4 and 6). Macrophages
are the main infiltrating immunosuppressive cells within the
tumor microenvironment (29). The M2 macrophage has been
reported to promote tumor proliferation, angiogenesis (30),
metastasis (31), and resistance to anti-cancer therapies (32). In
breast cancer and pancreatic adenocarcinoma, hypoxia has been
shown to positively regulate the expression of CD47, leading to
cancer cell escape from phagocytosis mediated by macrophages
(33). Blockade of the well-known CD47-SIRPa “don’t eat me
signal” using monoclonal antibodies increases macrophage-
mediated phagocytosis and elimination of various solid tumors
(34–36), however, this therapeutic schedule may be not suit to
hypoxic CRC because the expression of CD47 showed
uncorrelated trend with hypoxia. In non-small cell lung cancer
(NSCLC), direct depletion of tumor-associated macrophages
(TAM) by clodronate was sufficient to abrogate aerobic
glycolysis and tumor hypoxia, thereby improving tumor
response to anti-cancer therapies (37), this therapeutic regimen
may be also fit for CRC but warrants further investigation.
Hypoxic CRC patients may also benefit from sarilumab (IL-6
receptor (IL-6R)-blocking antibody), which is approved for
treatment of Castleman syndrome by the FDA (38), since IL6/
JAK/STAT3 pathway was closely associated with M2
macrophages although their implication in oncogenesis was
less well characterized (24). Anyway, a safe, subtle, and flexible
combination treatment should be designed in order to extend the
clinical benefit of cancer therapy to high intratumoral hypoxic
CRC patients.

The limitation of our study is the retrospective design of our
analysis of gene expression data from public databases. However,
the strength of this study is that different platforms (TCGA:
RNAseq, GEO: microarray) and different cohorts (TCGA:
USA, GSE14333: Australia, GSE17538: USA, GSE39582:
France) yielded consistent results, which is likely to overcome
Frontiers in Oncology | www.frontiersin.org 7
underlying biases. Our study requires further validation in larger
CRC patients by using protein expression data.
CONCLUSIONS

Collectively, we revealed that hypoxia contributed to an
unfavorable prognosis of CRC by activating RAS signaling
pathway in a KRAS mutation independent manner and
activating IL6/JAK/STAT3 signaling pathway via more M2
macrophage infiltration. These results suggested that before
EGFR-targeted inhibitor was intentionally applied, it’s best to
test oxygenation status in advance, especially for the young CRC
patients (< 60y).
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