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Purpose: The current study proposed a model to predict the response of brain
metastases (BMs) treated by Gamma knife radiosurgery (GKRS) using a machine
learning (ML) method with radiomics features. The model can be used as a decision
tool by clinicians for the most desirable treatment outcome.

Methods and Material: Using MR image data taken by a FLASH (3D fast, low-angle
shot) scanning protocol with gadolinium (Gd) contrast-enhanced T1-weighting, the local
response (LR) of 157 metastatic brain tumors was categorized into two groups (Group I:
responder and Group II: non-responder). We performed a radiomics analysis of those
tumors, resulting in more than 700 features. To build a machine learning model, first, we
used the least absolute shrinkage and selection operator (LASSO) regression to reduce
the number of radiomics features to the minimum number of features useful for the
prediction. Then, a prediction model was constructed by using a neural network (NN)
classifier with 10 hidden layers and rectified linear unit activation. The training model was
evaluated with five-fold cross-validation. For the final evaluation, the NN model was
applied to a set of data not used for model creation. The accuracy and sensitivity and the
area under the receiver operating characteristic curve (AUC) of the prediction model of LR
were analyzed. The performance of the ML model was compared with a visual evaluation
method, for which the LR of tumors was predicted by examining the image enhancement
pattern of the tumor on MR images.

Results: By the LASSO analysis of the training data, we found seven radiomics features
useful for the classification. The accuracy and sensitivity of the visual evaluation method
were 44 and 54%. On the other hand, the accuracy and sensitivity of the proposed NN
model were 78 and 87%, and the AUC was 0.87.

Conclusions: The proposed NN model using the radiomics features can help physicians
to gain a more realistic expectation of the treatment outcome than the traditional method.
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INTRODUCTION

Approximately 5 to 40% of cancer patients are diagnosed with a
metastatic brain tumor during their treatment. Furthermore,
patients have brain metastases (BMs) ten times more often than
primary malignant tumors of the brain (1, 2). Consequently, BM is
the most common brain tumor treated by radiation therapy.
Whole-brain radiation therapy (WBRT) and stereotactic
radiosurgery (SRS) are regularly offered to manage BMs. The
techniques are effective with improved local control of tumors and
more prolonged survival of patients (3). The RTOG-9508 study
compared the treatment responses ofWBRT alone, SRS alone, and
WBRT plus SRS for the BMs (4). For the WBRT alone or WBRT
plus SRS, the total prescribed dose ofWBRT was 37.5 Gy with 2 to
5 Gy per fraction. For the SRS treatment, the prescribed dose was
assigned from an earlier dose-escalation RTOG radiosurgery trial
(90–05) (5). The mean survival time did not differ much among
the three techniques. The local control rate at three months after
WBRT plus SRS or WBRT alone ranged from 71 to 82%,
indicating about 20 to 30% failure rate. Hence, a predictive
capability of the radiation therapy outcome of BMs may provide
a decision tool to clinicians for the effective management of patient
care with the most desirable treatment outcome. If the local failure
is predicted for radiotherapy, the treatment plan can be modified
to improve the local control by, for example, increasing the dose.

There are several prognostic tools or prognostic indices,
specially developed for the radiation therapy of BMs such as
the RTOG Recursive Partitioning Analysis (RPA), the Score
Index for Radiosurgery (SIR), the Basic Score for Brain
Metastases (BSBM), and the Graded Prognostic Assessment
(GPA) (6). These indices are proven to have clinical value for
predicting the treatment outcome. The addition of more detailed
clinical information to the pretreatment characteristics used by
the existing prognostic indices might improve the predictive
performance. Such new information includes the biological data
(i.e., biological markers and genomics) specific to the patient (7)
and the quantitative imaging data obtained by radiomics (8–10).

Radiomics analyzes the medical image quantitatively to explore
features unique to a patient (11). It has been used for classifying
patients and evaluating their risk to customize oncological
treatments (12, 13). Some researchers used radiomics to find the
correlation between radiomics signatures and radiation treatment
outcome (14–16). Zhou et al. tried to predict survival after
chemotherapy of glioblastoma patients using several imaging
features based on MR image (17). Ryu et al. performed a
prognostic prediction using features obtained from functional
images (18). Other studies have combined radiomics with
genomics to associate radiomics features with gene mutations
that are clinically proven to predict therapy response (19). A
recent study reported that radiomics features could potentially be
used as surrogate biomarkers for predicting tumor prognosis
following Gamma Knife radiosurgery (GKRS) (20).

Goodman et al. categorized brain tumor images into three
groups: homogeneous, heterogeneous, or ring-enhancing (21).
They found that these enhancement patterns are significant
prognostic factors in the response of brain metastases after
radiosurgery. A drawback of their approach is the subjective
Frontiers in Oncology | www.frontiersin.org 2
nature of the classification technique. Visual classification into
one of the three patterns is often neither possible nor accurate
because real images do not display clear ring-like features or
completely uniform pixel colors throughout the tumor.

In the current study, therefore, we proposed the application of
radiomics and a machine learning (ML) technique to create a
more reliable and accurate method than the decision with the
visual evaluation for predicting the treatment outcome, in
particular, the local response of the tumor to radiation therapy.
Primarily, we built a model to predict the response of metastatic
tumors treated with GKRS.
MATERIALS AND METHODS

Patients
Previously, we analyzed the treatment outcome of 88 patients
with either renal cell or melanoma cancer as the primary disease,
who underwent GKRS at the University of Minnesota from 2005
to 2012 for their BMs (22). For the current study, we selected a
subset of the patients, 45 melanoma patients with a total of 115
tumors, for model building. Furthermore, we obtained the new
data of nine melanoma patients with a total of 42 tumors from
the database of GKRS patients treated from 2013 to 2017 for the
final evaluation of the model. The characteristics of the patients
and their tumors are presented in Table 1.

Image Acquisition
All patients were scanned with a 1.5T MRI (Siemens Syngo MR)
scanner. The total scanning time was about 15 min for the whole
brain scan. We used the Siemens 12 channel head matrix coils.
The scanning protocol was a FLASH (3D fast, low-angle shot)
with gadolinium (Gd)-contrast enhanced T1-weighting. The
scan parameters are shown in Table 2.

Treatment
We treated patients with the Leksell Gamma Knife Model 4C
(Elekta AB, Stockholm, Sweden). The prescription dose was
decided based on tumor size according to the RTOG 90-05
trial protocol (5). The prescription isodose level varied from 40 to
January 2021 | Volume 10 | Article 569461
TABLE 1 | Patient characteristics.

Model building
dataset

Model evaluation
dataset

Number of patients 45 9
Number of tumors 115 42
Age (years) Median 61.5 59.5

[Range] [32–86] [42–71]
Gender Male 23 (53%) 5 (56%)

Female 20 (47%) 4 (44%)
Local Response
(LR)

Group I: CR +
PR
Group II: SD +
PD

83
32

35
7

Tumor volume
(cc)

<4.2 102 (89%) 40 (95%)
≥4.2 to ≤14.1 12 (10%) 2 (5%)
>14.1 1 (1%) 0 (0%)
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80%, with a medium of 50%. The prescribed dose to the gross
tumor volume (GTV) was 24 Gy for the tumor volume <4.2 cc,
18 Gy for the tumor volume ≥4.2 cc to ≤14.1 cc, 15 Gy for the
tumor volume >14.1 cc. Table 1 shows the number of tumors in
these three-volume ranges.

Follow-Up
Patients after GKRS were followed at 3-month intervals with
MRI performed at each visit. The time from the first SRS to the
last follow-up imaging study or death was defined as patient
follow-up duration.

Treatment Response Evaluation
To evaluate the local response (LR) of the tumors to the treatment,
we measured the maximum lengths of a tumor in three orthogonal
directions using pretreatment and follow-up MRI images. Tumor
volumes were calculated with the ellipsoid volume formula. The LR
status of treatment was determined by using the latest available
follow-up imaging study at the time of the data collection. The
medium follow-up length was 7.6 months. The status of each tumor
was evaluated based on modified RECIST criteria (23). A tumor
was defined as progressive disease (PD) if there was a relative
increase in tumor volume on follow-up MRI by greater than 20%
compared to pretreatment MRI. Lesions in which volume increased
less than 20% or decreased less than 30% of pretreatment were
considered a stable disease (SD). The tumor, whose size fell more
than 30%, but it was still visible on the follow-up MRI, was
categorized as a partial response (PR). Any lesion which
disappeared on the MRI was considered as complete repose
Frontiers in Oncology | www.frontiersin.org 3
(CR). We accepted only conservative management of cancer
during the follow-up period to be included in the analysis. To
enhance the predictive performance, we classified the LR into two
groups as follows: response group (CR + PR) and non-response
group (SD + PD). The LR data of the patients are presented
separately for model building and model evaluation datasets in
Table 1.

For the patients in the current study, we did not do either
additional imaging study to delineate necrotic areas or took
tissue samples for a histopathological examination. Instead, to
minimize the volume measurement error due to the necrosis, we
examined the available T1-weighted Gd-contrast enhanced MRI
to identify necrosis by the existence of the edema around the
enhanced lesion or clear hemorrhage inside the lesion, or by
checking the patient’s neurologic symptom. We did not see these
indications among the patients and their tumors, which we used
for the current study. Thus, our tumor volumes might contain
necrosis or hemorrhage inside the volume unless it was present
clearly outside of the tumor.
Radiomics Analysis
The process of the radiomics analysis is shown in Figure 1. The
pixel values of the MRI data were rescaled by using the
RescaleSlope and RescaleIntercept tags from the DICOM
header as follows:

Image Data

= (Image Data) � RescaleSlope + RescaleIntercept

+ 1000 (1)

Before calculating radiomics features, we applied the medium
smooth filter to the rescaled image data. All treatment planning
MRI images were analyzed to extract textural features from the
GTVs contoured for the radiotherapy plans. The GTV was
manually contoured for the radiosurgery treatment planning
by radiation oncologists. The feature extraction was performed
using IBEX software (24). It is noted that the tumors smaller than
4 mm diameter or volume of 33.5 mm3 were excluded from
further study because of its limited number of pixels available for
the texture analysis. We used the following six different
TABLE 2 | MRI scan parameters of the Fast Low Angle Shot (FLASH) pulse
sequence.

Parameter Values

TE 4.76 ms
TR 9.4 ms
Echo train length 1
Number of acquisitions 1
Bandwidth 260 kHz
Flip angle 25°
FOV 256 mm × 256 mm
Voxel size 0.5 mm × 0.5 mm × 1.0 mm
Slice thickness 1 mm
FIGURE 1 | The process for generating a prediction model using a machine learning method with the radiomics feature. The radiomics feature was extracted from
the treatment planning MRI data with IBEX. LASSO analysis provided a more regularized model by reducing the number of features. The machine learning model
used neural networks.
January 2021 | Volume 10 | Article 569461
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radiomics feature classes: Gradient Orient Histogram (GOH) (35
features), Gray-Level Co-occurrence Matrix (GLCM) (594),
Gray-Level Run Length Matrix (GLRLM) (33), Intensity Direct
(ID) (55), Neighbor Intensity Difference Matrix (NIDM) (5), and
Shape (18). The resulting 740 features were considered in this
study. When there was an option of 2.5D or 3D analysis for
texture calculations, we selected 2.5D.

The least absolute shrinkage and selection operator (LASSO)
regression was performed in the MATLAB program (Mathworks,
Natick, MA, USA) to select the suitable features for the prediction.
The LASSO regression performs feature selection during model
construction by penalizing the respective regression coefficients.
As this penalty is increased, more regression coefficients shrink to
zero, resulting in a more regularized model. The most significant
predictive features were selected from among all the candidate
features for the subsequent training session to build an ML-based
prediction model.

Machine Learning-Based Prediction Model
Figure 2 shows an overview of the prediction model generation.
A machine learning (ML)-based model was built by using a
neural network (NN) with ten hidden layers and rectified linear
unit activation (ReLU), as implemented in the MATLAB
program. For the classification of local response, tumors in the
response group (PR + CR) were labeled as 1, and tumors in the
non-response group (SD + PD) were labeled as 0. For the model
training, we used the data in the model building dataset (115
Frontiers in Oncology | www.frontiersin.org 4
tumors of 43 patients) shown in Table 1. Tumors were randomly
partitioned into a training set (55% tumors), a validation set
(15% tumors), and a testing set (30% tumors). The predictive
model for the classification was created with the training set and
the validation set. The performance of the predictive model was
evaluated by the testing set by calculating the accuracy and
sensitivity of the prediction. The training-validation-testing
processes were repeated five times for the five-fold cross-
validation. Then, a model that was the closest to the average
accuracy of five-fold cross-validation was selected for the final
evaluation. We performed the final assessment with the data in
the model evaluation dataset (42 tumors of nine patients), as
shown in Table 1. The predictive performance of the models was
assessed using the area under the receiver operator characteristic
(ROC) curve, AUC, as well as the accuracy and sensitivity.

Visual Evaluation
Goodman et al. classified the lesion characteristics into
homogeneous, heterogeneous, or ring-enhancing by the
pattern of enhancement (20). The uniform enhancement of
the entire lesion was defined as homogeneous. If there were any
areas of nonhomogeneous enhancement, it was defined as the
heterogeneous. Additionally, if there was a rim or ring of contrast
enhancement surrounding a central non-enhancing low-signal
intensity area, it was identified as a ring-enhancing. In the
current study, an experienced radiation oncologist classified the
tumors into three types of patterns (homogeneous, heterogeneous,
FIGURE 2 | Generation and testing of the prediction model. The proposed NN model with five-fold cross-validation was built in the model training section. Then, the
model, which was the closest to the average accuracy of the five prediction models, was selected. The selected model was used for the final evaluation with 42
tumors in the model evaluation dataset.
January 2021 | Volume 10 | Article 569461
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or ring-enhancing) by visually inspecting the MR images. The
treatment outcome was predicted based on the image. Nieder et al.
showed that important prognostic factors for complete remission
were the small volume and no necrosis (25). Based on the well-
accepted knowledge (20, 25), we assigned the predicted response of
the homogeneous tumors to the response group (group I) and
tumors with heterogeneous or ring enhancement to the non-
response group (group II). We compared the visual evaluation
method and the ML method using the data in the model building
dataset (115 tumors of 42 patients).
RESULTS

First, a total of 740 radiomics features were extracted from the BM
MRI images. Then, the number was reduced to seven features by
using the LASSO regression method. Figure 3 shows the binomial
deviation (a) and the coefficients (b) as a function of the tuning
penalization parameter l for the LASSO linear regression. As l
increased, only a few coefficients of 740 features remained non-zero,
indicating only parameters important for an accurate model. The
selected features were 45-7ClusterShade, 225-7ClusterShade, 45-
7InformationMeasureCorr-1, 225-7InformationMeasureCorr-1,
90-4InformationMeasureCorr-2, 225-7Energy, and 315-5Energy.

Table 3 shows the performance of the NN models. There
were five models generated in the five-fold cross-validation step.
Those models were evaluated with the training and testing
datasets separately. The average accuracy of the five models
Frontiers in Oncology | www.frontiersin.org 5
was 0.80, with the training data. The model closest to the average
accuracy was model 3. Hence, the final evaluation was performed
with the model 3. The accuracy and sensitivity of the final model
were 0.78 and 0.87 with the model evaluation dataset. Figure 4
shows the performance of the classifier according to the ROC
metrics for the training and testing datasets. The AUC score was
0.89 for the training data and 0.82 for the testing data in the
model training section. When we applied the selected model to
the final evaluation of 42 tumors in the model evaluation dataset,
we obtained the AUC score of 0.87.

Table 4 compares the visual evaluation method and the NN
prediction model by accuracy and sensitivity. The former
method was applied to the 115 tumors used for the NN model
training. The latter was applied to the testing data in the model
training section, and the values in the table were the average of
the five models. The results showed that the NN model was
superior to the visual evaluation for accuracy and sensitivity.
DISCUSSION

Goodman et al. reported that the pattern of tumor images seen
on the Gd-contrast enhanced T1-weighted MR images is
valuable for predicting the response of a tumor to radiosurgery
(20). The current study used radiomics features extracted from
radiotherapy planning MRI (Gd-contrast enhanced T1-
weighted) to predict the local response (LR) by a machine
learning (ML) method with a neural network (NN) classifier.
A B

FIGURE 3 | Radiomics feature selection using the Lasso logistic regression model. (A) Tuning penalization parameter lambda (l) and minimum criterion in the Lasso
model. The binomial deviance was plotted versus log (l). (B) Lasso coefficient profiles of the 740 radiomics features. The green line showed the optimal lambda in
the LASSO method with the least partial likelihood deviance.
TABLE 3 | Model performance.

Training Test Final evaluation

Accuracy Sensitivity Accuracy Sensitivity Accuracy Sensitivity

Model 1 0.74 1.00 0.75 0.76 –

Model 2 0.79 0.60 0.81 0.75 –

Model 3 0.80 0.83 0.79 0.78 0.78 0.87
Model 4 0.81 0.60 0.76 0.68 –

Model 5 0.81 0.70 0.86 0.74 –

Average 0.80 0.75 0.81 0.75 –
Januar
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We compared the predictive performance of the NN model and
the visual evaluation method. The accuracy of the new method
using the radiomics features yielded a higher prediction accuracy
(80%) than the visual approach. Thus, the ML method, such as
NN, would be useful for predicting the response of the BMs
to GKRS.

The LASSO regression analysis resulted in seven radiomics
features, which were useful for the classification, among 740
features initially included in the radiomics analysis. The selection
of these features can be understood by the mathematical
implication of those features. Cluster shade is a measure of the
skewness of the matrix and is believed to gauge the perceptual
concepts of uniformity. It may be correlated with lesion
characteristics that are heterogeneous or ring-enhancing.
Informational Measure of Correlation-1 and Measure of
Correlation-1 assess the correlation between the probability
distributions using mutual information, which means quantifying
the complexity of the texture. Energy is a measure of the
magnitude of voxel values in the image. The current study
revealed that these were useful features for predicting the
response of BMs to GKRS.

The prediction of the LR of BMs to SRS has important practical
implications for patients and clinicians. Our prediction model
could be useful in clinics. Although the current study created the
prediction model of the LR for the radiosurgery, the same
approach can be used for all of the treatment methods.

In this study, the comparison betweenour predictivemodel and
the visual method was made to demonstrate the high predictive
performance of the current approach. Goodman et al. (20) tried to
identify the necrosis inside the tumor by classifying the tumor into
three groups based on the enhancement pattern. However, there is
no reliable technique to quantify the amount of necrosis only by
visual examination. Hence, the visual classification method suffers
Frontiers in Oncology | www.frontiersin.org 6
from a large uncertainty. Consequently, we expect a large variation
amongobservers for distinguishing three image patterns. Surely,we
cannot exclude a potentially better performance of some observers
than our method. But, the overall performance of our method
should be better than the visual method. Our method does not
classify the image pattern into only three types, but it uses more
information of images for the decision making than the visual
approach. Furthermore, the visual method is applied to only one
transverse image since classifying the images into three patterns of
the three-dimensional data is time-consuming and almost
impossible. As a result, the method should be more accurate for
outcome prediction.

There are several recent studies, in which radiomics features
were used for more accurate distinction of necrosis from tumor
progression and early detection of adverse radiation events (ARE)
after radiotherapy of brain tumors (26–29).We used only the GTV
(Gd contrast enhanced area) for radiomics analysis in the current
study. Suppose we extend the region-of-interest (ROI) by including
the volume surrounding the Gd-contrast enhanced area or add
other types of imaging data such as PET, for example. In that case,
wemight beable topredict brain injuries afterGKRS. Sucha study is
interesting and can be undertaken in the future.

There are five limitations to the current study. First, the LR of
BMs depends on the prescribed dose. For our GKRS treatment,
we prescribed the dose based on the tumor size following the
RTOG 90-05 protocol (5). Hence, the LR can be affected not only
by the radiomics features but also by the prescribed dose.
Secondarily, other clinical factors are statistically significant,
but we did not consider in the current study. To improve the
prediction performance, therefore, the radiomics features can be
combined with the standard biomarkers. Thirdly, the present
study used the radiomics features extracted from only
radiotherapy planning MRI scans (Gd-contrast enhanced T1-
weighted). But, the prediction accuracy may improve by utilizing
images taken by other imaging modalities. For example, Wu et al.
combined the radiomics features of CT and FDG-PET for
predicting distant metastasis in early-stage non-small cell lung
cancer after stereotactic body radiation therapy (30). Ordering
additional imaging studies other than standards requires
additional funding and a special protocol, but it may be an
A B C

FIGURE 4 | The performance of the NN model was validated according to the ROC metrics for (A) the training data in model training section, (B) the testing data in
model training section, and (C) for the final evaluation dataset. The AUC score was 0.89 for the training data, 0.82 for the testing data, and 0.87 for the final
evaluation dataset.
TABLE 4 | The assessment of the predictive performance of the visual
evaluation and NN model for the testing data used for the NN model training.

Visual evaluation NN model

Accuracy 0.44 0.80
Sensitivity 0.54 0.74
January 2021 | Volume 10 | Article 569461
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important step for more accurate predictions. Fourth, the current
predictive model was built using only the metastatic brain
tumors of patients with melanoma as the primary, mainly due
to the availability of the treatment follow-up data. Lastly, only
one experienced radiation oncologist classified the tumors into
three MR image patterns for the visual evaluation. For a fair
comparison of the ML-based method with the visual evaluation
method, we need to recruit more experts to study the effects of
inter-observer variation on the outcome prediction.

To overcome the first three limitations, we plan to improve
the prediction model by adding radiomics features of other MR
imaging protocols, dosimetric parameters such as prescribed
dose and standard biomarkers. Extending the model to BMs
with different primary cancer types is straightforward as long as
the necessary data for model training are available. The versatile
prediction model will be created by including multi-institution
and other brain metastases patients. The uncertainty of the inter-
observer with visual evaluation is a serious problem. However,
we believe that the prediction model proposed in the current
study decreases the uncertainty with the visual evaluation.
CONCLUSION

The proposed NN model using the radiomics features of tumor
image was more accurate than the visual evaluation method
using the image pattern information in predicting the local
response of brain metastases to GKRS. Because of the excellent
prediction ability of the method, the method can be used to help
physicians to gain a more accurate prediction of the treatment
outcome than the traditional method.
Frontiers in Oncology | www.frontiersin.org 7
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