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Background: Acute skin toxicity is a common and usually transient side-effect of breast

radiotherapy although, if sufficiently severe, it can affect breast cosmesis, aftercare costs

and the patient’s quality-of-life. The aim of this study was to develop predictive models

for acute skin toxicity using published risk factors and externally validate the models

in patients recruited into the prospective multi-center REQUITE (validating pREdictive

models and biomarkers of radiotherapy toxicity to reduce side-effects and improve

QUalITy of lifE in cancer survivors) study.

Methods: Patient and treatment-related risk factors significantly associated with acute

breast radiation toxicity on multivariate analysis were identified in the literature. These
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predictors were used to develop risk models for acute erythema and acute desquamation

(skin loss) in three Radiogenomics Consortium cohorts of patients treated by breast-

conserving surgery and whole breast external beam radiotherapy (n = 2,031). The

models were externally validated in the REQUITE breast cancer cohort (n = 2,057).

Results: The final risk model for acute erythema included BMI, breast size,

hypo-fractionation, boost, tamoxifen use and smoking status. This model was validated

in REQUITE with moderate discrimination (AUC 0.65), calibration and agreement

between predicted and observed toxicity (Brier score 0.17). The risk model for

acute desquamation, excluding the predictor tamoxifen use, failed to validate in the

REQUITE cohort.

Conclusions: While most published prediction research in the field has focused on

model development, this study reports successful external validation of a predictive

model using clinical risk factors for acute erythema following radiotherapy after

breast-conserving surgery. This model retained discriminatory power but will benefit from

further re-calibration. A similar model to predict acute desquamation failed to validate in

the REQUITE cohort. Future improvements and more accurate predictions are expected

through the addition of genetic markers and application of other modeling and machine

learning techniques.

Keywords: validation, prediction model, early toxicity, radiotherapy, breast cancer

INTRODUCTION

Survivorship issues and quality-of-life (QoL) are becoming
an increasingly important research focus in cancer care (1).
Breast cancer survival has improved markedly, with current
predicted 10-year survival rates in excess of 80% (2). Over
70% of breast cancer patients undergo radiotherapy, usually in
the adjuvant setting following surgery. Radiotherapy reduces
the risk of local recurrence and contributes to a reduction in
overall mortality (3). Nevertheless, breast radiotherapy can be
associated with several side-effects (toxicity). Acute (or early)
toxicity includes breast erythema (reddening) and desquamation
(skin loss) and occurs within 90 days of treatment (4). While late
side-effects of radiotherapy are concerning due to their potential
irreversibility, acute toxicity may cause considerable patient
morbidity and can have adverse effects on the cosmetic outcome
from oncoplastic breast surgery and reconstruction (5, 6). There
is some evidence that if sufficiently severe, early toxicity can be
associated with clinically significant late toxicity (7). Invariably,
surgeons’ treatment recommendations are influenced by their
perception of potential adjuvant treatment complications such
as from radiotherapy (8, 9). Nevertheless, there is considerable
variation between individual patients’ normal tissue reaction to
radiotherapy. Being able to stratify individual patients according
to their risk of radiation toxicity would enable breast surgeons to
take this information into account when advising patients about
the risks and benefits of different surgical treatment options, or
even suggest a change to the sequence of surgery and adjuvant
treatment including radiotherapy (10).

In the field ofmedical physics, many radiobiological predictive
models have been proposed with the aim of preserving

normal tissue, mostly focused on late toxicity. Normal tissue
complication probability (NTCP) models, such as the Lyman-
Kutcher-Burman (LKB) model, incorporate the linear quadratic
(LQ) model of cell killing (11, 12). Many of these dosimetric
models have already been integrated into radiotherapy treatment
planning systems. They generally take the form of simplified
empirical models consisting of dose distribution parameters, and
the risk of toxicity is assumed to depend on the mean dose to the
respective target organ or the amount of damaged tissue (13).

In prostate radiotherapy, it has been shown that dosimetric
models for late rectal toxicity can be improved by including
clinical and other treatment risk factors, such as prior abdominal
surgery, colorectal disease and diabetes (14, 15). In breast
radiotherapy, several studies have investigated the association
of clinical and treatment risk factors with acute skin toxicity,
although none have reported a clinical prediction model as
such (16–25). Integrated clinical prediction models capable
of identifying patients at risk of clinically significant side-
effects have now been developed in different disease sites, the
majority predicting late toxicity with moderate performance
(AUC ranging from 0.60 to 0.75) (26–28). There are also an
increasing number of published models predicting acute toxicity,
although none for breast radiotherapy (29–31).

For surgeons and other clinicians, models that include
common clinical and treatment predictors are of particular
interest because this obviates the need for detailed patient
dosimetry and dose-volume histograms from radiotherapy
planning scans. It would allow clinicians to estimate toxicity risk
at the time of breast cancer diagnosis and before any treatment
is planned. In breast reconstruction surgery, a small number of
clinical risk models for various 30-day complications have been
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published (32, 33), of which some have been validated for select
endpoints (34, 35). However, these models are chiefly designed
to predict surgical side-effects, such as implant loss, surgical
site infection and seroma, and include radiotherapy as a binary
predictor variable only.

In the absence of an available prediction model in the
literature, the aim of this study was to develop and externally
validate predictive models for acute breast radiation toxicity in
the REQUITE study breast cohort using published clinical and
treatment predictors of acute skin toxicity in the REQUITE study
breast cohort.

METHODS

This study was designed using data from patients who underwent
breast-conserving surgery (BCS) and adjuvant external
beam radiotherapy (EBRT) enrolled in three Radiogenomics
Consortium (RGC) studies and the REQUITE cohort study.
Candidate variables associated with acute breast radiation
toxicity were identified from the existing literature. In the
absence of predictive models in the literature, predictive models
for acute radiation toxicity endpoints were first developed in
combined RGC patient cohorts, then validated in the REQUITE
patient cohort. This was a TRIPOD type 3 study, representing
model development and validation using a separate dataset (36).

Model Development Cohorts
The German ISE cohort (16) included 478 breast cancer patients
treated with conventional 3D conformal whole breast EBRT plus
either photon or electron tumor bed boost (except for 19 patients)
recruited into a prospective patient cohort at four centers in
Southwest Germany between 1998 and 2001, with documented
acute radiotherapy toxicity at baseline, at cumulative doses of 36–
42Gy and 44–50Gy, at the end of radiotherapy, and 6 weeks
following radiotherapy. None of the patients in ISE received
chemotherapy. All patients from the ISE cohort were included in
this study. The ISE study was approved by the Ethical Committee
at the University of Heidelberg, Germany (reference No. 37/98).

The LeND cohort (37) consists of 633 breast cancer patients
treated with conventional 3D conformal whole breast EBRT
using tangential fields and documented normal tissue toxicity
recruited at varying time points (up to several years) after
breast radiotherapy± boost in Leicester, Nottingham and Derby
(UK) between 2008 and 2010. Acute toxicity was collected from
medical records. After excluding the first 154 patients without
data on acute toxicity, and 119 patients who had chest wall
radiotherapy following mastectomy, 390 patients treated with
EBRT following BCS from the LeND cohort were included in
this study. The LeND study was approved by the Research Ethics
Committee (reference no. 08/H0405/57).

The Cambridge cohort (19) comprised 1,144 women who
received adjuvant whole breast EBRT following BCS as part of
the Cambridge IMRT trial (UK) following the standard hypo-
fractionated regimen (40Gy in 15 fractions), 411 of whom were
randomized to manual forward-planned intensity-modulated
radiotherapy (IMRT) to improve dose homogeneity (reduce the
volumes receiving >107 and <95% of the prescribed dose) in

the irradiated breast. The remainder of patients were treated
with 3D-conformal radiotherapy using wedged tangential fields.
Toxicity was documented weekly during treatment according to
the RTOG scale. All patients from the Cambridge cohort were
included. The study was approved by the Cambridge Research
Ethics Committee and written consent was obtained from all
patients to use their data for research purposes.

Validation Cohort
The multicenter REQUITE breast cancer patient cohort was
recruited prospectively in seven European countries and the USA
between 2014 and 2016. The REQUITE study was conceived
as an international multicenter validation cohort for predictive
models of radiation toxicity with standardized prospective data
collection (38). Patient baseline characteristics and methodology
have been described in detail elsewhere (39). All 2,057 enrolled
patients were treated with BCS followed by EBRT according to
local protocol, approximately half of whom were treated with
IMRT, with a lower proportion in France and no IMRT at
Italian or US centers. The majority patients received a tumor-
bed boost (64%), ranging from <20% at the French, Italian and
Spanish centers to over 80% at the Belgian center, given either
simultaneously (n = 257) or sequentially (n = 1,138). Patients
with invasive breast cancer in Belgium and the UK were treated
using the START-B hypofractionated regimen. Although late
toxicity was the main endpoint in REQUITE, data collected at the
end of radiation treatment was used to document acute toxicity.
All patients gave written informed consent. The study was
approved by local ethics committees in participating countries
(UKNRES Approval 14/NW/0035) and registered at http://www.
controlled-trials.com (ISRCTN98496463). Characteristics of all
cohorts included in this study are summarized in Table 1.

Endpoint Definition
Radiation toxicity in REQUITE was scored using CTCAE
(Common Terminology Criteria for Adverse Events; Table 2)
v4.0 (40). CTCAE v4.0 has separate scales for radiation dermatitis
(erythema) and skin ulceration (desquamation), both of which
are relevant to the acute response to radiotherapy in the breast.
For both LeND and Cambridge cohorts, acute skin toxicity was
scored according to the RTOG (Radiation Therapy Oncology
Group; Table 2) scale, which is mostly based on target organ
or body region (e.g., larynx, upper GI, skin) (41). The German
ISE study used a modified version of the Common Toxicity
Criteria (CTCAE v2.0) scale for erythema, where grade 2 was
subdivided into three sub-grades, with 2c being defined as ≥1
moist desquamation or interruption of treatment due to side-
effects and grade 2a and 2b comprising moderate and brisk
erythema, respectively.

This raised the issue of how to deal with the use of different
toxicity scales and assessment time points in the previously
assembled cohorts and the REQUITE validation cohort. Where
multiple measurements were available, maximum recorded
toxicity was used. To ensure comparability with previous studies,
the following endpoints were considered where they occurred
within 90 days of the start of treatment (acute toxicity) according
to the different grading systems:
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TABLE 1 | Summary study characteristics of eligible patients from the three RGC derivation cohorts and the REQUITE validation cohort (RT, radiotherapy).

LeND ISE Cambridge REQUITE

Total patients in cohort (n) 663 478 1144 4438

Eligible patients (BCS+EBRT) 409 478 1,144 2,057

Location Leicester, Nottingham,

Derby (UK)

SW Germany Cambridge (UK) Western Europe, United States

Study design Retrospective Prospective Prospective Prospective

Recruitment year (range) 2008–2010 1998–2001 2003–2007 2014–2016

Treatment year (range) 1998–2008 1998–2001 2003–2007 2014–2016

Toxicity assessment scale RTOG Modified CTCAE v2 RTOG CTCAE v4

Toxicity assessment time points (From records)

end-of-RT

Start-of-RT

cumulative 36–42Gy

cumulative 44–50Gy

end-of-RT

6 weeks after RT

Weekly during RT

end-of RT

Start-of-RT

end-of-RT

Age (median, range) 59 (33–87) 61 (27–87) 59 (26–84) 58 (23–90)

Whole breast dose (Gy, median, range) 50 (40–50) 50 (44–56) 40 50 (28.5–56)

Whole breast fractions (median, range) 25 (11–25) 25 (22–29) 15 25 (5–31)

Boost (proportion of patients) 10% 90% 65% 64%

Toxicity scale used RTOG CTCAE v2.0 RTOG CTCAE v4.0

BMI ≥25 (proportion) 66% 48% 63% 54%

Smoker (current or previous) 13% 30% 15% 43%

Chemotherapy 28% None 20% 30%

Diabetes 8% 6% 5% 6%

Hypertension 35% 32% Not available 28%

Cardiovascular disease 6% 16% 10% 7%

Tamoxifen use 75% 80% 66% 76%

TABLE 2 | RTOG and CTCAE v4.0 toxicity scales for acute skin reaction and ulceration.

Toxicity Grade 1 2a 2b 3 4

RTOG Skin Follicular, faint or dull

erythema/epilation/dry

desquamation/decreased

sweating

Tender or bright

erythema ± dry

desquamation

Patchy moist

desquamation;

moderate oedema

Confluent, moist

desquamation other than

skin folds, pitting edema

Ulceration, hemorrhage,

necrosis

CTCAE v4.0

Radiation dermatitis

Faint erythema or dry

desquamation

Moderate to brisk erythema or patchy moist

desquamation (2c*), mostly confined to skin folds

and creases; moderate edema (tenderness is

graded separately in the Pain category)

Confluent moist

desquamation ≥1.5 cm

diameter and not confined

to skin folds; pitting edema

Skin necrosis or ulceration

of full thickness dermis; may

include bleeding not

induced by minor trauma or

abrasion

CTCAE v4.0

Skin ulceration

Combined area of ulcers

<1 cm; non-blanchable

erythema of intact skin with

associated warmth or

oedema

Combined area of ulcers 1–2 cm; partial thickness

skin loss involving skin or subcutaneous fat

Combined area of ulcers

>2 cm; full-thickness skin

loss involving damage to or

necrosis of subcutaneous

tissue that may extend

down to fascia

Any size ulcer with extensive

destruction, tissue necrosis,

or damage to muscle, bone,

or supporting structures

with or without full thickness

skin loss

*Sub-scales of CTCAE v2.0 used in the ISE study.

a) Acute erythema: RTOG or CTCAE grade≥2 (at least moderate

to brisk erythema);

b) Acute desquamation: RTOG grade≥2b (patchy moist

desquamation) or CTCAE grade ≥2c erythema (moist
desquamation) or CTCAE grade≥1 skin ulceration, implying
that skin integrity has been broken, either over the breast or
in the infra-mammary fold.

Selection and Definition of Candidate
Predictors
The literature was searched through Medline using the MeSH
keywords “radiation injury,” “breast neoplasm,” “radiotherapy,”
“radiation tolerance,” and “risk factors,” and through PubMed
using keywords “radiation injury,” “normal radiation toxicity,”
“acute,” “radiotherapy,” “breast cancer,” “radiosensitivity” and
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“risk factor” or “predictor” or “radiogenomics.” Reference lists
from identified papers or review articles were also searched.
Candidate predictor variables in the literature were considered
for validation where their association with acute breast radiation
toxicity endpoints on multivariate analysis was reported in at
least one publication.

To ensure comparability of measures of breast size, such as
breast diameter or bra size, these were converted to a single
continuous variable for the purpose of this study by adding bra
cup and band sizes, to represent “sister” sizes equal to the same
breast volume (according to http://www.sizechart.com/brasize/
sistersize/index.html). For instance, a UK size 34B bra holds
an approximate breast volume equal to 32C, ∼390 cc. In the
Cambridge trial cohort, breast size was graded as a categorical
variable and converted accordingly.

For each patient in the REQUITE and the other three RGC
cohorts, information comprising candidate predictor variables
and relevant study endpoints were extracted from the data.
Hypertension was not recorded in the Cambridge trial cohort,
and post-operative infection was not available in the LeND and
ISE cohorts. Observations on body mass index (BMI) and breast
size were missing from 22 and 17% of patients, respectively,
in the three combined RGC cohorts, while information on the
remaining candidate predictor variables was missing in between
0.5 and 3% of patients across all cohorts.

Statistical Methods
Both endpoints were considered as dichotomized (binary)
outcome measures. Where a patient had multiple measures of
acute toxicity within the specified time period, the maximum
grade of toxicity recorded was used. Cases with high baseline
toxicity defined as grade≥2 were excluded from the analysis.
Statistical analyses were carried out in StataTM version 15.1.
Continuous variables are presented asmedians (with ranges), and
categorical/binary variables as counts and percentages.

In order to minimize bias from analyzing only complete cases,
multiple imputation (MI) was used to replace missing values by
means of a chained equation approach based on all candidate
predictors excluding hypertension (42). Ten imputed datasets
were created for missing variables and then combined across
all datasets using Rubin’s rule to obtain final estimates (43).
The number of imputations (m = 10) was determined by the
percentage of incomplete observations per variable to reduce
the error associated with estimating the regression coefficients,
standard errors and the resulting p-values (44). On the basis
of an estimated 900 cases of acute erythema and 175 cases
of acute desquamation in the three combined RGC cohorts,
the consideration of nine candidate predictor variables in this
analysis satisfied the methodological constraint of at least 10
events per variable (EPV) required to reduce issues with over-
fitting in predictive modeling (45).

To develop clinical prediction models, a generalized linear
mixed model (GLMM, xtlogit) was fitted in the original
dataset combining three RGC derivation cohorts to model the
probability of each toxicity endpoint. GLMMs are an extension
of mixed models and generalized linear models (GLMs) to
allow for inclusion of both fixed and random effects across

different study cohorts or cohorts enrolling at multiple centers.
Like GLMs, a link function is applied, such as the logit link.
Initially, a full model comprising all included predictor variables
was fitted, followed by stepwise backwards elimination to select
the candidate variables to include in the final prediction model
(with p < 0.1 taken conservatively to warrant inclusion). After
elimination, each excluded predictor was re-inserted into the
final model to further check whether they became statistically
significant at this stage.

The equation for the log odds for each acute breast endpoint
was formed using the estimated β coefficients multiplied
by the predictors included in the model together with the
intercept across cohorts. The predicted risk of toxicity can thus
be calculated:

predicted risk =
elog odds

1+ elog odds

Discrimination of the fitted models was assessed by calculating
the c-statistic (AUC from the logistic model, plotting sensitivity
over 1-specificity) and examining the calibration plot across
tenths of predicted risk. A c-statistic of 1 indicates perfect
discrimination, whereas 0.5 indicates no discrimination. A
calibration slope of 1 indicates perfect calibration and would
be expected across the original datasets as the model is being
developed in the same data (apparent performance).

To control for optimism (over-fitting), the model
development process was repeated in 100 bootstrap samples.
Each model was applied to the same bootstrap sample to
quantify apparent performance, and then to the original dataset
to evaluate test performance (c-statistic and calibration slope)
and optimism (difference in test performance and apparent
performance). To estimate overall optimism, the average
calibration slope across all bootstrap samples was calculated
and multiplied as a shrinkage coefficient by each variable’s β

coefficient and the intercept of the model derived in the original
dataset to produce a final model for each toxicity endpoint.

The final models were applied to patients in the REQUITE
validation cohort to predict the log odds of acute erythema or
acute desquamation based on the presence or absence of one
or more of the predictor variables. In this external validation
step, the intercept of each final model was re-calibrated by
subtracting the estimated intercept of the model in the REQUITE
validation cohort. Performance of the model in the validation
cohort was again assessed by calculating the c-statistic (AUC)
and examining the calibration plot across tenths of predicted
risk. Overall accuracy was measured by calculating a Brier score,
which is the sum of mean square errors between predicted
risk and observed outcome for each patient, with a zero score
indicating total accuracy.

RESULTS

The literature search identified 10 studies of between 200 and
1,124 patients examining the association of acute breast radiation
toxicity with predictor variables. Most studies reported acute skin
toxicity scored according to RTOG, while only two studies used
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the CTCAE erythema scale (16, 25). Depending on the published
study, the variables associated significantly with toxicity on
multivariate analysis were: age (50 and over, dichotomized),
body mass index (BMI), breast size or volume, fractionation
schedule (hypo- vs. conventional fractionation, dichotomized),
use of boost, smoking (ever smoked), and tamoxifen use
(see Table 3). Chemotherapy showed significant effects but in
opposite directions in two studies (19, 46) and was excluded.
Interestingly, breast dose was not assessed as a continuous
variable in any publication. Hypertension and diabetes were not
significant on multivariate analysis in any study. One study used
ordinal regression and did not report odds ratios, as endpoints
were not dichotomized (20).

Predictive Clinical Model Development and
External Validation
The distribution of patients across the three RGC development
cohorts and the REQUITE validation cohort according to
endpoint is shown in Table 4. Across the RGC cohorts (n =

2.031), there were 914 events of acute erythema (grade≥2, 45.0%)
and 175 events of acute desquamation (8.7%). It was noted that
the incidence of desquamation was lower in the Cambridge
IMRT cohort. In the REQUITE validation cohort, there were
1,969 and 2,057 patient datasets available for the endpoints acute
erythema and acute desquamation, respectively. There were 450
patients with acute erythema (grade ≥2 erythema, 22.9%), and
192 patients with acute desquamation (grade 1≥ ulceration or
grade ≥3 erythema, 9.3%).

Further detail regarding the distribution of clinical predictors
in each cohort is available in Table 1. Median patient age in
the REQUITE breast cohort was 58 years (range 23–80 years),
similar to the RGC cohorts. REQUITE patients were treated with
a median dose to the breast of 50Gy (28.5–56Gy) in 25 fractions
(5–31), which is similar to the LeND and ISE cohorts. Patients
in the Cambridge IMRT trial were exclusively treated with 40Gy
in 15 fractions. There was variation in use of boost between
the different development cohorts and within the REQUITE
multi-center cohort (see Methods). Although most other co-
morbidities and co-medications were similarly distributed, the
proportion of smokers was higher in the non-UK cohorts,
whereas the proportion of overweight patients (BMI ≥25) was
higher in the UK cohorts.

Final logistic regression models for both toxicity endpoints
following backwards elimination are shown in Table 5. At this
stage, variables that satisfied the p < 0.1 stepwise inclusion
threshold in the development cohorts for both endpoints were
BMI, breast size, hypo-fractionation, use of boost, and smoking
status. Tamoxifen use was associated with acute erythema only
(OR 1.25, CI 1.05–1.26; Table 5). Age 50 and over was eliminated
from both models, acute erythema (OR 1.17, 0.89–1.53, p =

0.253) and acute desquamation (OR 1.45, 0.83–2.53, p= 0.194).
Table 6 shows apparent, optimism-corrected (after

bootstrapping) and validation performance of both risk
prediction models. After correcting for optimism, the final
model for acute erythema discriminated patients with and
without grade ≥2 erythema undergoing EBRT following BCS

with an AUC of 0.645 (CI 0.619–0.667). Agreement between
observed and predicted proportions was seen with a calibration
slope of 1.0319. The final log odds of acute erythema could
be calculated as −2.265 + 0.049∗BMI + 0.1∗breast_size –
1.565∗hypo-fractionation + 0.302∗boost + 0.308∗smoking +

0.234∗tamoxifen. After re-calibrating the intercept, applying the
final model to the REQUITE cohort gave a c-statistic (AUC) of
0.651 (CI 0.622–0.680), indicating the model performed equally
well on validation, albeit with moderate calibration (slope =

0.665, 0.509–0.821) and a Brier score of 0.172 (Table 6). The
calibration plot demonstrates that the model slightly over-
predicts the probability of acute erythema in the REQUITE
validation cohort (Figure 1), with a mean predicted probability
of 25.7% against an observed incidence of 22.8%.

The final model for acute desquamation developed in the joint
RGC cohorts was able to discriminate patients with an optimism-
corrected AUC of 0.847 (CI 0.817–0.873) and a calibration slope
of 1.043. The log odds of acute desquamation could be calculated
as −7.226 + 0.111∗BMI + 0.240∗breast_size – 2.592∗hypo-
fractionation+ 0.606∗boost+ 0.435∗smoking. Applying the final
model to the REQUITE validation cohort with re-calibrated
intercept, gave a c-statistic (AUC) of 0.697 (CI 0.658–0.737).
This drop in AUC indicates relatively poorer discrimination
performance, with equally poorer calibration (slope = 0.376,
0.260–0.492) (Table 6). The model significantly under-predicts
the probability of acute desquamation in the REQUITE cohort,
with a mean predicted probability of 3.0% against and observed
incidence of 9.3% (Figure 2). The Brier score was 0.085.

DISCUSSION

The aim of this study was to develop and validate predictive
models for acute skin erythema and acute desquamation
following whole-breast external beam radiotherapy and breast-
conserving surgery for breast cancer, which could be used
without the need for detailed radiation dosimetry, in order to
allow clinicians to estimate toxicity risk at the time of breast
cancer diagnosis and before any treatment is planned. Previous
work in prostate cancer showed that dosimetric models for
radiation toxicity can be improved by adding clinical and co-
treatment risk factors (14, 15).

The initial literature search of published predictors
significantly associated with acute breast radiation toxicity
in multivariate analysis confirmed a number of variables
including BMI, breast size or volume, hypo-fractionation
(protective), boost and tamoxifen use, and smoking status.
Variables relating to BMI and breast size or volume have been
most frequently reported in previous smaller cohorts (Table 3) as
well as published randomized clinical trials (19, 47). Moreover,
both aforementioned trials highlighted breast volume as a
stand-alone predictor of acute radiation toxicity independent
of dose inhomogeneity. Interestingly, none of the previous
publications assessed breast dose as predictor in itself, only
fractionation schedule. However, findings from the UK breast
hypo-fractionation trials and radiobiology have shown that
acute toxicity is related to total breast dose (48), not dose per
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TABLE 3 | Odds ratios (confidence intervals) of clinical predictor variables for acute breast toxicity reported from multivariate regression in previously published studies with significant associations in bold (BMI, body

mass index; fractionation, fractionation treatment schedule).

References Twardella

et al. (16)

Back (17) Deantonio

et al. (18)

Barnett

et al. (19)

Terrazzino

et al. (21)

Sharp

et al. (22)

Tortorelli

et al. (23)

Ciammella

et al. (24)

De Langhe

et al. (25)

N 478 234 155 1124 286 390 200 212 377

Proportion acute breast

toxicity*

17.6% 31.4% 34.8% 36.5% 31.1% 21.3% 31.9% 15.0% 58.0%

Age (per year)

Age ≥50

0.98 (0.96–1.01) Not significant** 2.20 (1.00–4.80) 0.97 (0.94–1.01) Not significant

BMI (per kg/m2 )

BMI ≥25

BMI ≥30

1.09 (1.05–1.13) 2.10 (1.00–4.60) 1.00 (0.92–1.09) 1.10 (0.60–2.10)

4.20 (2.10–8.30)

1.09 (not given)

Breast volume (per liter)

Breast volume > median

Breast size > median

Breast diameter

Breast cup size ≥D

3.60 (1.60–8.10) 2.09 (1.60–2.72) 1.14 (1.00–1.29) 1.00 (1.00–1.01) 2.47 (1.98–6.22) 2.83 (not given)

Fractionation

Hypo- vs. conventional 0.45 (0.23–0.93)
0.08 (not given)

Conventional vs. hypo- 1.90 (1.00–3.50) 2.05 (1.00–4.20)

Boost use Not significant 4.90 (1.46–16.48) 0.99 (0.98–1.00)

Hypertension Not significant

Diabetes Not significant Not significant

Smoking 0.86 (0.44–1.70) Not significant 2.50 (1.10–5.70) 2.71 (not given)

Postop infection Not significant 1.49 (1.08–2.06) 3.46 (1.49–8.02)

Chemotherapy Not significant Not significant 0.58 (0.41–0.82) Not significant 1.80 (1.01–3.33) 1.14 (0.53–2.43) Not significant 0.95 (not given)

Tamoxifen use 1.54 (0.73–3.09) 1.23 (1.07–1.41) Not significant 1.20 (0.70–2.10) 1.23 (0.55–2.77)

*The proportion of patients with acute breast toxicity is shown according to each study’s endpoint definition. **These studies only published p-values but no odds ratios for non-significant associations.
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TABLE 4 | Number of patients by acute skin toxicity in the three RGC derivation cohorts and the REQUITE validation cohort; number and proportion of cases at the end

of radiotherapy.

LeND ISE Cambridge REQUITE

Eligible patients 409 478 1144 2057

Acute erythema with RTOG or CTCAE grade ≥2 111

(27.1%)

358

(74.9%)

445

(38.9%)

450

(22.9%)

Acute desquamation with RTOG grade ≥2b or CTCAE grade ≥2c

radiation dermatitis or grade ≥1 ulceration

62

(15.2%)

86

(18.0%)

27

(2.4%)

192

(9.3%)

TABLE 5 | Final logistic regression models (GLMM) following backwards elimination (p < 0.1) for acute breast toxicity endpoints in the RGC development cohorts.

Acute erythema Acute desquamation

Predictor OR CI lower CI upper p-value OR CI lower CI upper p-value

BMI (per kg/m2 ) 1.05 1.02 1.08 <0.001 1.11 1.05 1.18 <0.001

Breast size (per sister size) 1.10 1.04 1.17 0.001 1.26 1.12 1.41 <0.001

Hypo-fractionation 0.22 0.05 0.89 0.033 0.08 0.05 0.13 <0.001

Boost use 1.34 1.06 1.69 0.013 1.79 1.24 2.57 0.002

Smoking (ever) 1.35 1.06 1.72 0.016 1.52 1.04 2.22 0.032

Tamoxifen use 1.25 1.01 1.56 0.044

TABLE 6 | Performance statistics for both predictive models in the RGC development cohorts and external validation performance in REQUITE.

Acute erythema Acute desquamation

Performance Apparent Average

optimism

Optimism-corrected External

validation

(REQUITE)

Apparent Average

optimism

Optimism-corrected External

validation

(REQUITE)

c-statistic (AUC) 0.644 −0.001 0.645 0.651 0.845 −0.002 0.849 0.697

Calibration slope 1.082 −0.050 1.032 0.665 1.067 −0.024 1.043 0.376

Brier score 0.172 0.085

fraction as for late toxicity (7). The protective association with
hypo-fractionation reported in the literature is therefore likely
due to the reduction in total dose for safe hypo-fractionation.
Results of the literature search did not confirm an association
with acute breast radiation toxicity for the predictors diabetes,
cardiovascular disease and hypertension, whereas in the past
radiation sensitivity has at least in part been attributed to the
presence of cardiovascular disease or diabetes mellitus, which
affects the microvasculature (49). However, it is likely that many
patients enrolled in the reported cohorts were also on some form
of anti-diabetic agent or a statin. Radioprotective effects of both
metformin and gliclazide on human cells have been reported
at least in vitro (50, 51), and there is evidence that statins
may accelerate DNA repair (52) and reduce the expression of
pro-inflammatory cytokines (53).

Although several studies have investigated the association of
acute breast toxicity with clinical and treatment factors, to date,
none have produced a clinical prediction model. Population-
based measures of toxicity risk may not accurately reflect risk for
an individual patient, but accurate prediction models can inform
patients and clinicians about the future course of their condition
or illness, thereby helping guide decisions about treatment. For

a prediction model to be valuable, it should not only have
predictive ability in the development cohort but must also
perform well in a validation cohort. In the present study, the
model to predict the risk of acute erythema following breast
radiotherapy across RGC cohorts performed moderately well in
the RGC cohorts and equally in the external REQUITE validation
cohort with an AUC of 0.65, while calibration showed moderate
agreement between predicted and observed toxicity outcomes
in the validation cohort. On the other hand, performance of
the model to predict the risk of acute desquamation following
breast radiotherapy decreased relatively more in the external
validation cohort (AUC = 0.70) than expected from internal
validation (optimism-corrected AUC = 0.85), with relatively
poor calibration.

Reasons why a predictive model may perform substantially
differently between development and validation cohorts include
over-fitting, missing important predictor variables, measurement
errors of predictors, or differences in the patient cohort
case mix. Measurement errors can arise from inter-observer
variability across different cohorts and centers as well as use
of different scales and time points to assess acute toxicity
endpoints. Acute toxicity in both the Cambridge IMRT trial
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FIGURE 1 | Calibration plot for acute erythema in the REQUITE validation cohort. Circles indicate the observed proportion of acute erythema per tenth of predicted

probability. The red line indicates ideal calibration with a slope of 1.

FIGURE 2 | Calibration plot for acute desquamation in the REQUITE validation cohort. Circles indicate the observed proportion of acute desquamation per tenth of

predicted probability. The red line indicates ideal calibration with a slope of 1.

and the REQUITE study was assessed in the final week of
radiotherapy. The acute reaction may not peak until 1–2 weeks
after the end of treatment and hence could have been missed

in some patients, although this would not have been the
case in the ISE cohort study in which patients were assessed
at the end and 6 weeks after the end of treatment. In the
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LeND study, acute toxicity was coded retrospectively from the
medical notes, which may have led to bias if the original
documentation was unclear. In both LeND and the Cambridge
IMRT cohorts, toxicity was assessed using the RTOG scale,
which does not separate out patients with oedema and might
in part explain the lower proportion of cases with grade ≥2
erythema in these cohorts compared to the ISE cohort, although
the proportion of cases in the REQUITE validation cohort is
more similar to that of the LeND and Cambridge cohorts. The
ability to detect and grade skin changes is also dependent on
skin tone, which is not readily captured in the RTOG and
CTCAE scales.

The model developed across the three RGC cohorts in this
study included clinically relevant predictors which satisfied the
relatively loose criteria for inclusion in the model (p < 0.1).
The purpose of multivariate prediction modeling is estimation
rather than testing for association with risk factors, and it may
therefore be reasonable to include clinical predictors despite non-
significant association or collinearity, to ensure that important
predictors are not missed (54). In order to address over-
fitting and to correct for optimism, bootstrapping was used as
internal validation technique, but other studies with reasonably
large datasets have used split-sample training-validation or
cross-validation (55). It is possible but not very likely that
a different internal validation method may have produced
different results to the bootstrapping method used in the
present study.

The value of the c-statistic (AUC) depends not only
on the model of interest but also the even distribution
of predictor and endpoint variables within a given patient
population. Many radiotherapy patients present with a similar
constellation of demographics and co-morbidities. They are also
treated with similar plans, making discrimination a difficult
task. In this study, acute desquamation was a relatively rare
event in both the development and validation cohorts (8.7
and 9.3%), while the distribution of acute erythema within
each dataset was somewhat more balanced toward cases
(45.0 and 22.9%).

The distribution of clinical predictors between cohorts was
broadly similar between the three development and validation
cohorts, apart from smoking status and BMI, and none of
the patients in the ISE cohort received chemotherapy. Overall,
the distribution of clinical predictors was also similar to other
previously published cohorts (21, 24, 25). Nevertheless, there was
considerable heterogeneity between the centers within REQUITE
with regards to treatment variables, such as dose fractionation,
use of boost, and inclusion of patients who received prior
adjuvant chemotherapy, as well as observed toxicity frequencies
(39). Differences in radiotherapy techniques over time may have
also affected generalizability of the prediction models to the
validation cohort, as the patients in the three RGC development
cohorts were on average treated more than 10 years before those
enrolled in REQUITE. Certainly, there has been widespread
update of intensity-modulated radiotherapy (IMRT) over that
time, with almost 50% of patients enrolled in REQUITE treated
in this way, whereas only some patients in the Cambridge trial
cohort were randomized to IMRT and none of the patients in

LeND and ISE received IMRT. Because of this and lack of data
from previous literature, radiotherapy technique, such as IMRT,
was not included in the model development phase.

A mixed modeling (GLMM) approach was chosen in this
study to try and address issues of cohort heterogeneity and to
relax the assumptions of independence of predictor variables.
Using an alternative statistical method such as Lasso techniques,
or data mining such as machine learning algorithms, may have
identified other predictor variables or potential interactions in
patients with several marginal risk factors (56). Machine learning
algorithms are used with increasing frequency, in particular in
the context of multi-dimensional “big data” such as electronic
health records and radiotherapy imaging (57). However, the
data available for this study, in particular from the slightly
older RGC cohorts, were somewhat more limited and did not
reach the multi-dimensionality usually associated with machine
learning projects.

Despite these limitations, it is important to note that
validation of the predictive model for acute erythema was
achieved in the absence of detailed radiation dosimetry and
notwithstanding the differences in radiotherapy techniques
between treatment centers and countries particularly in the
REQUITE cohort. The performance of thismodel across different
cohorts in this study suggests that these findings are reproducible
and generalizable beyond that of the original development
dataset, whilst acknowledging the tendency for themodel to over-
predict in the external REQUITE cohort. The calibration plot
demonstrates that the model can successfully identify high-risk
patients and observed vs. expected rates were still correlated.
This suggests that the model for acute erythema will simply
benefit from further re-calibration of certain variable coefficients
without redesigning the model from scratch. In the case of acute
desquamation, further improvements using shrinkage and re-
calibration would not affect the model’s reduced discriminatory
power in the validation cohort. To improve discrimination, the
model would need to be revised, for example, by additional
adjustment to regression coefficients of predictors with different
strength or direction of effect in the RGC development compared
to the REQUITE cohorts, stepwise selection of additional
predictors, such as those relating to radiotherapy technique (e.g.,
IMRT), or re-estimation of all regression coefficients in the
validation population. These approaches to update the model
need to be balanced against the fact that the information in the
original model would be neglected and would require further
validation elsewhere.

To increase clinical relevance, novel performance measures
such as net re-classification improvement (NRI) and net
benefit (NB) could also be considered (58). Risk models
without recommending clinical decisions are less likely to
change treatment decision-making behavior than those that
translate risk into a treatment decision recommendation (59).
Nevertheless, the clinical risk model presented here without
detailed radiation dosimetry can be used in practice relatively
simply to predict a patient’s probability of acute skin radiation
toxicity at the time of breast cancer diagnosis, which can then
be taken into account when discussion various treatment options
with patients.
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CONCLUSIONS

While most published prediction research in the field of
local breast cancer treatment toxicity continues to focus solely
on model development, this study reports development and
external validation of a predictive model for acute erythema
following radiotherapy after breast-conserving surgery, which
retained its moderate discriminatory power but will benefit
from further re-calibration. A similar model to predict acute
desquamation using clinical risk factors failed to validate in the
REQUITE cohort. While other statistical or machine learning
techniques may improve the performance of clinical risk models
in the future, more accurate predictions are expected through
the addition of genetic markers. This information could be
considered when discussing breast cancer treatment options at
the outset in particular with patients predicted at high risk of
radiation toxicity.
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