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Chimeric antigen receptor (CAR) – and T-cell receptor (TCR) – modified T-cells are rapidly
emerging as a viable treatment option for cancer patients. While initial clinical trials for
these CAR T cells showed response rates of over 90% in some cases, retrospective
studies have revealed a wide variability in patient responses as well as a significant
proportion of patients relapsing after an initial response. In addition, patients often
have severe adverse reactions to this therapy (e.g., cytokine release and neurologic
syndromes). As a result, much research is still needed to be able to predict both
therapeutic outcomes and possible toxicities. Furthermore, little success has been seen
in treating solid tumors with engineered T cells and uncovering modes of failure is a topic
of much research. Finally, little is known about the T cells’ pharmacokinetics after infusion
into the patient, as standard methods of tracking the cells analyze peripheral blood and
tumor biopsies – both of which lack spatiotemporal information. Herein, we propose that
reporter gene-based imaging of engineered T cells in humans would be tremendously
valuable in elucidating the fate of the transplanted T cells and would greatly facilitate
clinical translation of new CAR and TCR technologies. Currently, there are no FDA-
approved reporter genes and few methods have advanced to human studies. Herein,
we outline current reporter gene approaches to track engineered cells in vivo, analyze
why current reporter genes have not progressed into the clinic, and propose “rules” for
designing a widely applicable reporter gene for use in humans.

Keywords: CAR T cells, TCR T cells, PET/CT, reporter gene, T cell trafficking

INTRODUCTION

Adoptive transfer of T cells for infectious and neoplastic diseases is the subject of intense clinical
research. Fundamental approaches to live T cell immune therapy are the use of cells transduced with
T cell receptors (TCRs) in which recognition of the tumor antigen occurs through presentation on
cell surface human leukocyte antigens (HLA) and the use of chimeric antigen receptors (CARs)
that typically are specified by a single-chain variable region domain of an antibody and directed to
a cell surface tumor-associated antigen (1, 2). Over 500 clinical trials of CAR T cells are currently
registered with the NIH.

These cell therapies have demonstrated highly variable efficacies and sometimes severe and fatal
toxicities. Therefore, understanding why certain cell therapies succeed, while others fail to deliver
major response rates or durable clinical responses in patients, would be improved by monitoring
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of the infused immune cell trafficking, homing to the tumor
site, retention, expansion, and engagement with the target cells
(Figure 1). Traditional pharmacokinetic studies such as those
used with drugs, are not feasible and do not describe the
distribution of these living, proliferating agents, which may
persist for years. Cell therapies are highly complex, individually
manufactured for each patient, and are affected by prior
therapy and disease burden, among other factors. Therefore,
the availability of a biomarker or tool for continuous non-
invasive monitoring in real-time and in the whole body would
be invaluable. However, so far, no such biomarker or tool exists.

Current methods to monitor effects of cells infused into
patients involve serum profiling of cytokines associated with
T cell activation, direct enumeration of tumor-specific T cell
numbers in blood, and tumor biopsies. These approaches do not
provide the needed real time dynamic and spatial information
about the transferred T cells in the body. Moreover, repeated
biopsies are neither feasible nor ethical. Hence, clinicians remain
blind as to whether the changes in T cell numbers in the blood
relates to expansion at the primary tumor site, metastatic foci, or
at off-tumor sites. Direct visualization of T cell trafficking in vivo
could map their biodistribution, accumulation at the tumor site
or other tissues, expansion, contraction and persistence in real
time and in the whole body. Such an imaging surrogate could
evolve into prognostic biomarkers that could provide important
data about potential failure or success of a therapy, or re-dosing,
thus enabling clinical decision making at an early time point
during the therapy course. Ultimately, such a tool could facilitate
and accelerate pre-clinical and early clinical development of novel
T-cell based cancer therapies, vastly reducing the time and cost of
development, and sparing patients unneeded toxicity.

PRINCIPLES OF CELL TRACKING

Direct ex vivo labeling of cells, introduced for tracking of human
white blood cells in the 1960’s and 70’s, is relatively simple and
does not involve genetic modification of the cell (3–5). Blood
was harvested, labeled with [111In]In-oxine, and re-infused to
detect infectious and inflammatory sites. Later, tumor-infiltrating
lymphocytes (TILs) were harvested from human tumors, labeled
with [111In]In-oxine and scintigraphy showed migration of the
labeled TILs and accumulation at sites of melanoma metastases
(6). These initial studies demonstrated the proof-of-principle
for tumor-targeting of adoptively transferred T cells in patients
and were confirmed in follow-up studies. However, a major
disadvantage of this technique is that the label is diluted over time
when cells divide, resulting in a rapid loss of label per individual
cell. Furthermore, the label can be distributed asymmetrically
to the progeny during cell division. These factors severely limit
the imaging period and do not enable imaging of expanding
cell populations.

Indirect labeling methods use a reporter gene that is
introduced into the cell genome and translated into stable
expression of an enzyme, receptor or a protein in conjunction
with corresponding radiolabeled probes. Observed signals are
limited to live cells only; thus, information on cell viability

also is provided. Moreover, as the reporter gene is passed on
to the progeny cells, imaging of expanding cell populations
becomes possible and correlates with an increase in the signal
intensity. If the expression of the reporter gene is stable, labeled
cells can be observed over their entire lifetime allowing for
extended longitudinal studies upon serial infusions of reporter-
specific probes (Figure 2). A successful, clinically applicable
reporter gene and reporter probe combination depends on
its mode of gene transfer, low immunogenicity, sensitivity of
detection, pharmacokinetically optimized reporter probes, broad
availability and feasibility, and low costs.

GENETIC ENGINEERING APPROACHES

While engineered T cells are currently generated using randomly
integrating viral vectors, this approach can result in variegated
gene expression, clonal expansion, oncogenic transformation,
and transcriptional silencing (7, 8). Developments in
CRISPR/cas9 technology provide a way to specifically insert
genes to a chosen genomic locus (9, 10). This can potentially
result in greater gene expression and can ensure insertion in a
transcriptionally active or controlled site (11). Higher density
of expressed reporter molecules should improve the limit of
detection of the modified cells in vivo. Still, viruses, such as
adeno-associated viruses, are used to introduce the transgene to
allow for homologous recombination into the cut sites generated
by cas9. Non-viral, randomly integrating methods of gene
transfer are also being employed; most notably the Sleeping
Beauty transposon system.

REPORTER-BASED IMAGING OF CAR T
CELLS

Imaging modalities that employ radionuclides for positron
emission tomography (PET) followed by single-photon emission
computed tomography (SPECT) offer the greatest promise for
deep tissue imaging in humans with highest sensitivity for
detecting low levels of reporter gene expression (picomolar
sensitivity) and appear the most suited for clinical use. PET
and SPECT, co-registered with CT or MRI, enable non-invasive,
repetitive, and quantitative imaging of radiotracers for whole-
body visualization of cell trafficking. High spatial anatomical
resolution is achieved when co-registered with CT or MRI.
Prerequisites for reporter probes are that its isotope and its decay
products are non-toxic to T cells and that the probe is stably
captured by the T cells. Several reporter gene systems employing
PET or SPECT in preclinical experiments have been reported.
Enzymes, transporters, and cell surface proteins have been used.
There has been very limited use of these reporter systems in
patients to date.

Herpes simplex virus type-1 thymidine kinase (HSV1-tk) is
used for tracking of IL13Rα2- and PSMA-CAR T cells in clinical
trials (NCT00730613, NCT01082926, and NCT01140373).
A patient with recurrent glioblastoma, who after gross total
tumor resection, received HSV1-TK-expressing IL13Rα2-CAR
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FIGURE 1 | Where do engineered cells go in humans? This scheme depicts the complexity of factors affecting outcome of adoptive T cell therapy against tumors
arising from harvesting of T cells, generation of the engineered T cells, and intra- and interindividual differences in the tumor-bearing host. Serial reporter-based
molecular imaging can capture changes in the whole body non-invasively and in real-time, thus, potentially improving safety and enabling outcome prediction. TME,
tumor microenvironment.

T cell infusions (cumulative T-cell dose of 1 × 109) into
the postsurgical cavity (12). Fused PET/MR images after the
patient was intravenously injected with 9-(4-[18F]Fluoro-3-
hydroxymethylbutyl) guanine ([18F]-FHBG) showed tracer
accumulation at the surgical cavity site of infusion as well as at a
non-resected tumor site. Subsequently, the study was expanded
to include seven additional patients confirming the feasibility
of this approach (13). These first studies lay the foundation
for clinical CAR T imaging while also revealing challenges for
broadly applicable tracking approaches. The lesion uptake values
were relatively low (SUV up to 0.8) and non-specific radiotracer
uptake was also noted in one patient. Furthermore, HSV-tk is
a viral protein and immune reactions have been observed in
patients, limiting its broadly applicable use (14).

Human deoxycytidine kinase double mutant (hdCKDM),
another enzyme-based pyrimidine-specific reporter gene
of human origin, has been tested in a preclinical study
with PSMA-CAR T cells using 2′-[18F]fluoro-5-ethyl-1-β-
D-arabinofuranosyluracil ([18F]-FEAU) (15). PET/CT scans

performed after CAR T cell injection showed uptake in the lung
at the tumor site compared to controls not receiving CAR T cells.

Escherichia coli dihydrofolate reductase enzyme (eDHFR) has
been used as a reporter for imaging of GD2-CAR T cells with
[18F]-labeled trimethoprim ([18F]-TMP) (16). PET/CT on days 7
and 13 post CAR T cell administration showed localization of the
engineered cells initially in the spleen followed by accumulation
at the GD2+ tumors. A detection limit of 11,000 cells per mm3

was determined. Nevertheless, eDHFR is also of bacterial origin,
raising concerns of immunogenicity in clinical application. In
addition, an association between adverse reactions to TMP
treatment in combination with sulfamethoxazole (SMX) appears
to correlate with HLA-type and is thus an aspect that needs to be
considered for eDHFRs use (17).

Human Sodium Iodide Symporter (hNIS) is a human
reporter gene with demonstrated utility for the temporo-spatial
monitoring of PSMA-CAR T cells in mice with low and
high tumor burden, illustrating an oscillating pattern (18).
A minimum of 15,000 engineered T cells could be detected
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FIGURE 2 | Scheme of reporter-based molecular imaging. If the expression of the reporter gene is stable, labeled cells can be observed over their entire lifetime
allowing for extended longitudinal studies upon serial infusions of reporter-specific probes with PET or SPECT in the whole body. ACT, adoptive cell transfer.

in vivo. hNIS is compatible with clinical radiotracers, notably
sodium pertechnetate ([99mTc]O−4 ) and iodine-124 (124I) for
SPECT and PET. A hurdle in using hNIS as a reporter is the
physiologic expression in normal tissues, such as thyroid, salivary
and lacrimal glands, stomach and lactating breast, as well as the
limited imaging window due to rapid efflux of the radio isotope
with exogenous expression of hNIS (19).

Human Somatostatin Receptor Subtype-2 (SSTR2) reporter
is of human origin and can be targeted with clinically
employed radiotracers. SSTR2 was used for tracking
intercellular adhesion molecule-1 (ICAM-1) CAR T cells in
mice bearing anaplastic thyroid cancer with 68Ga-DOTA-
D-Phel-Tyr3-Octreotide ([68Ga]68Ga-DOTATOC; DOTA:
1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′-tetra-acetic acid)
(20). Anti-tumor response correlated with expansion and
contraction of the CAR T cells. A detection limit of T cells
infiltrating a tumor located in the lung with a minimum density
of 0.8% or ∼4 × 106 cells/cm3 with 95% specificity and 87%
sensitivity was reported. However, SSTR2 is physiologically
expressed in cerebrum, kidneys, and gastrointestinal tract as
well as on various immune cell types including T cells, B cells
and macrophages, thus, limiting not only specificity, but as well
potentially interfering with immune function (21).

Human Prostate Specific Membrane Antigen (hPSMA)
reporter is as well of human origin and its radiotracers
are currently used in the clinic. It is expressed by prostatic
epithelium, and extraprostatic tissues, including small and large
bowel, proximal renal tubules and brain as well as prostate cancer
and tumor neovasculature (22). Truncated PSMA, devoid of its

signaling function, was used for imaging of CD19 CAR T cells in
a Nalm6 leukemia mouse model with a detection limit of near
2000 cells (23). Furthermore, a heterogenous CAR T response
despite similar conditions, similar CAR T numbers derived from
murine tumors as reported in human biopsy specimen from
the TRANSCEND trial, and lack of correlation between CAR T
cell numbers in peripheral blood or the bone marrow and those
derived from the tumor were noted.

DOTA-antibody reporter gene 1 (DAbR1) paved the way for
a new concept in cell tracking by introducing a membrane-
bound cell surface anti-DOTA antibody fragment, which binds
to a small radiohapten (radiohapten-capture imaging) (24).
DOTA is a chelate and commonly used in MRI contrast agents
and radiometal conjugates with a well-established safety profile.
Recently, our group has shown that CD19 CAR T cells expressing
DAbR1 can be tracked with PET and SPECT and potentially,
by targeting with a radio-theranostic probe, serve as a “kill
switch” for ablation of clustered, engineered T cells (25). DAbR1
is a molecule without a natural analog, thus, offers exquisite
specificity. However, the scFv is of murine origin, raising
concerns of immunogenicity.

CONSIDERATION FOR THE SELECTION
OF RADIOLABELED PROBES

Characteristics relevant for the use of radiolabeled probes for
reporter gene imaging involve (i) sensitivity and specificity, (ii)
pharmacokinetics, (iii) radiation dosimetry, (iv) availability of
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the radioisotope and probe precursor, (v) ease of radiosynthesis,
(vi) half-life, which ideally should match the physiologic process
being studied, and (vii) immunogenicity. Several reporter probes
are already in clinical use, such as radiolabeled SSTR- analogs
and PSMA-compounds, which obviates the need for safety
and toxicity studies and establishing optimized radiolabeling
protocols. Other aspects relate to the choice of the radioisotope,
its availability, as well as its intrinsic characteristics regarding
its radiation emissions that determine imaging performance
and dosimetric profile. For example, the radiometal 68Ga
(t1/2 = 68 min) is dosimetrically favorable, widely available from a
68Ge/68Ga generator and less expensive than other PET imaging
isotopes such as 64Cu (t1/2 = 12.7 h), 86Y (t1/2 = 14.7 h),
89Zr (t1/2 = 3.3 days) which are cyclotron-produced. However,
the short radioactive half-life of 68Ga limits its use to probes
with rapid pharmacokinetic (e.g., small molecules and peptides).
Longer half-life positron emitters such as 89Zr provide more
optimal pharmacokinetics for monitoring cellular transit in vivo,
into tumors and throughout blood and tissues over multiple days.

POTENTIAL FOR RADIOTHERANOSTIC
TARGETING

Given the promise of emerging reporter gene technologies
and the power of radiotheranostic targeting, it is reasonable
that the reporter gene approach will be adapted to combine
both a platform for imaging and radiotherapy. Delivery of
therapeutic isotopes via T cells can serve two purposes: (i)
in vivo depletion of T cells in the case of toxicity (a “kill
switch”) and (ii) to deliver a cytotoxic dose of radiation to
residual tumor cells. T cell-based delivery of radiotherapy
takes advantage of the unique capabilities of the T cells to
home to, infiltrate and expand at tumor sites throughout the
entire body. Combining quantitative imaging and engineering
approaches (such as determination of sites of reporter molecules
expressed per T cell) enabling dosimetric calculations prior to
the administration of the therapeutic compound could pave
the way for precision medicine also based on radiotheranostic
T cell delivery.

CONCLUSION AND OUTLOOK

The recent advance in adoptive T cell therapies and continued
research in improving safety and outcomes for broader and
larger patient population subsets requires parallel advances in
non-invasive monitoring to facilitate preclinical development,
clinical trials, prognosis and toxicity prevention. As compared
to typical drugs or antibody therapeutics in which a dose is
administered and its clearance predicted, these agents are living
drugs; they can proliferate logarithmically and may persist for
years within the patient, making traditional pharmacokinetic
studies and predictions inadequate. The dose administered may
not correlate directly with the final amount of the T cells at the
tumor site or the site of tissue-toxicity. Real time monitoring of
biodistribution is essential for understanding the mode of actions

resulting in anti-tumor efficacy and tissue-toxicity. Without such
imaging technology, the advance of these new cellular therapies
will be slowed, the ability to predict outcomes and toxicities will
be hampered, and the cost of clinical trials will be much larger.

One challenge is the detection of a small number of cells
per unit volume inside a patient. Here, PET offers the greatest
promise for deep tissue imaging in humans as the modality
with the highest sensitivity, as compared to optical methods or
MRI. Detection of few engineered cells is also dependent on the
specificity of the reporter gene/probe combination for the targets
of interest, in order to avoid non-specific tracer accumulation,
resulting in decreased signal-to-noise ratio. In addition, safety,
toxicity, immunogenicity and cost of the production of the
reporter gene/probe combination need to be considered. In
consideration of all the options, reporter gene-based cell tracking
offers the distinct advantages of quantitative, non-invasive, long-
term, real-time in vivo monitoring of cell trafficking in the entire
body and has the future potential for radiotheranostic tumor and
T cell ablation.

For example, a broadly applicable reporter gene would enable
comparison between various constructs and offer insight into
why some T cell therapies fail in the clinic, while others succeed.
Early off-site targeting, such as accumulation of CD19 CAR T
cells in the brain and cerebrospinal fluid, which may be a key
factor involved in serious neurologic toxicity (26), or in the heart,
causing lethal cardiomyositis (27) could enable mitigation of
toxicity and increasing safety.

Important features of such a reporter gene/probe system
would be (i) the ability to be applicable to a broad range of
cellular therapies in a modular form, (ii) the ability to make use
of a number of different radioactive probes, each matched to fit
the clinical indication and time-course of the cells’ trafficking
pattern, (iii) non-toxic and low or minimal immunogenicity of
the reporter gene and probe, with (iv) low or no expression of
reporter genes in normal tissues, (v) small reporter gene size, and
(vi) non-enzymatic to enable direct quantitation of cell number.
In addition, a non-immunogenic reporter gene/probe system
would be optimal to allow repeated use and prevent toxicity. The
probe and its metabolites should be safe so as to not confound
the development of the therapy or its clinical use. Given the high
cost of producing each of these cellular drugs for patients, the
design of a reporter gene should be universal and applicable to
multiple adoptive cell types, rather than selective for a single type
of cancer, a single type of cellular agent or a single patient. While
this perspective focuses on reporter gene use for engineered T cell
therapies, a “universal” reporter gene designed for this purpose,
could also be for any type of adoptive cellular therapy, including
stem cell transplants.

Interdisciplinary efforts to realize the power of cell tracking
during adoptive cell therapies in animals are essential to build
the infrastructure and pave the way for pioneering clinical trials
monitoring cellular kinetics in humans. HSV-tk is the only T-cell
reporter gene reported in patients. Despite its caveats, these
initial pilot studies represent a major breakthrough in the field of
cellular tracking and prove the feasibility of using reporter gene
imaging as a non-invasive method for tracking and monitoring
CAR T cell localization in patients.
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