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Malignant pleural mesothelioma (MPM) is the epitome of a recalcitrant cancer driven
by pharmacologically intractable tumor suppressor proteins. A significant but largely
unmet challenge in the field is the translation of genetic information on alterations in
tumor suppressor genes (TSGs) into effective cancer-specific therapies. The notion
that abnormal tumor genome subverts physiological cellular processes, which creates
collateral vulnerabilities contextually related to specific genetic alterations, offers a
promising strategy to target TSG-driven MPM. Moreover, emerging evidence has
increasingly appreciated the therapeutic potential of genetic and pharmacological
dependencies acquired en route to cancer development and drug resistance. Here,
we review the most recent progress on vulnerabilities co-selected by functional loss of
major TSGs and dependencies evolving out of cancer development and resistance to
cisplatin based chemotherapy, the only first-line regimen approved by the US Food and
Drug Administration (FDA). Finally, we highlight CRISPR-based functional genomics that
has emerged as a powerful platform for cancer drug discovery in MPM. The repertoire of
MPM-specific “Achilles heel” rises on the horizon, which holds the promise to elucidate
therapeutic landscape and may promote precision oncology for MPM.

Keywords: malignant pleural mesothelioma, tumor suppressors, collateral and evolutionary vulnerabilities,
targeted therapy, CRISPR/Cas9

Malignant pleural mesothelioma (MPM) is a rare but highly aggressive cancer etiologically
associated with asbestos exposure and inherently resistant to treatment options (1). Although
asbestos is banned in most industrialized countries, MPM incidence and mortality still increase
globally owing to long latency of the disease (up to 50 years) and continued use of asbestos in
developing countries (2).

For patients with advanced, unresectable MPM, a chemotherapy regimen that combines
cisplatin and pemetrexed has for long been the only FDA (U.S. Food and Drug Administration) –
approved first-line treatment, which, disappointingly, elicits only modest efficacy due to prevalence
of drug resistance and no validated treatment beyond front-line therapy has emerged. However,
a recent phase 3 trial has showed that overall survival of MPM patients can be further improved
by cisplatin/pemetrexed plus bevacizumab, an antibody against vascular endothelial growth factor
(VEGF) (3).
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Comprehensive genomic studies have revealed frequent
deletions or loss-of-function mutations of tumor suppressor
genes (TSGs) in MPM, most often cyclin-dependent kinase
inhibitor 2A (CDKN2A), BRCA1 associated protein-1 (BAP1)
and neurofibromatosis type 2 (NF2) (4, 5) (Figure 1A), for which
direct targeting has proven difficult, contrasted to oncogene-
driven malignancies that benefit from a vast majority of
molecular targeted anti-cancer drugs. However, aberrant cancer
genome rewires biochemical networks, leading to synthetic lethal
or collateral vulnerabilities that are contextually linked with
specific genetic alterations, providing alternative approaches
for targeting TSG-driven MPM (Figure 2). Moreover, cancer-
specific dependencies that evolve out of tumor deveoplment
and drug resistance offers additional dimensions to expand
therapeutic arsenal for MPM. Here, we review the current
knowledge about collateral vulnerabilities and evolutionary
dependencies in MPM, with an emphasis on the clinical
implications for better treatment of the disease (Figure 3
and Table 1).

COLLATERAL VULNERABILITIES
CAUSED BY INACTIVATION OF TUMOR
SUPPRESSORS

CDKN2A
The 9p21 locus harboring CDKN2A is frequently inactivated
in mesothelioma (6). Cdkn2a inactivation is a key driver of
MPM in a conditional mouse model (7), and CDKN2A loss
is associated with shorter survival in patients with MPM (8).
CDKN2A encodes two important tumor suppressor proteins
via alternative open reading frames, p16Ink4a and p14Arf that
govern the activity of the retinoblastoma (pRb) and p53
pathways, respectively (9). While the absence of p16Ink4a, an
inhibitor of cyclin-dependent kinases 4/6 (CDK4/6)-mediated
phosphorylation of pRb, abrogates the G1/S cell-cycle arrest
and promotes aberrant proliferation, functional loss of p14Arf ,
a central negative regulator of mouse double minute 2 homolog
(MDM2), suppresses apoptosis by escape from p53-mediated
anti-tumor surveillance (Figure 1B).

Recent studies showed that CDKN2A deficiency render
MPM cells particularly vulnerable to CDK4/6-targeted
therapies, and that targeting PI3K further enhances the
efficacy by precluding resistance to CDK4/6 inhibition
(10). CDK4/6 inhibitors, e.g., palbociclib, ribociclib, and
abemaciclib, are FDA-approved drugs that provide readily
translatable therapeutics for MPM. Clinical trial for efficacy
of Ribociclib in CDK4/6 pathway activated hematologic
malignancies and solid tumors including MPM has been
completed (NCT02187783). Abemaciclib as monotherapy
is being investigated in MPM bearing p16Ink4a deficiency
(Clinicaltrials.gov no. NCT03654833).

Strikingly, in around 30% MPM cases CDKN2A alterations co-
occur with biallelic deletion in type I interferon (IFN-I; mainly
IFN-α and IFN-β) locus. The IFN-I pathway plays a key antiviral
role, suggesting that CDKN2A-deficient MPM might particularly

benefit from oncolytic viral therapy (11), a novel anti-cancer
strategy that exploits oncolytic viruses, which preferentially
replicate in cancer but not in normal cells (12).

BAP1
BAP1, originally identified as an associated protein of the
breast cancer susceptibility gene product BRCA1, is a nuclear
deubiquitinase with ubiquitin carboxy-terminal hydrolase
activity and contributes to the inhibition of E3 ligase function of
BRCA1/BRAD during DNA damage response (13) (Figure 1B).
Germline mutations in BAP1 causes a predisposition syndrome
with increased risk to renal cell carcinoma, MPM and uveal
melanoma (14). BAP1 is also frequently inactivated by
somatic mutations and loss of the 3p21.1 locus in MPM
(15) (Figure 1A). Other mechanisms leading to inactivation of
BAP1 includes chromosomal rearrangements, gene fusion and
splice alterations (4).

As a component of the polycomb repressive deubiquitinase
(PR-DUB) complex, BAP1 deletion causes defects in
homologous recombination (HR), contributed by failure to
deubiquitinate histone H2A on chromatin, which eventually
leads to accumulation of DNA mutations and chromosomal
aberrations (16). BAP1 has also been shown to regulate cell
cycle through interactions with transcription regulators such
as host cell factor-1 (HCF-1) and E2F transcription factor
1 (E2F1) (17). As BAP1 loss causes deficient HR, BAP1-
mutant tumors were reported to be particularly addicted
to alternative DNA repair pathways, e.g., PARP1-mediated
ones (16, 18). However, the sensitivity of mesothelioma
cells to PARP inhibitors may be independent of the BAP1
status (19, 20), warranting further studies to investigate the
BAP1/PARP intersection. Interestingly, TNF-related apoptosis-
inducing ligand (TRAIL) has been shown highly effective
for BAP1-deficient MPM, likely via modulating the PR-DUB
activity (21).

The heterozygous germline BAP1 mutations were reported to
increase aerobic glycolysis, also known as the “Warburg effect,”
due to impaired mitochondrial respiration (22), suggesting a role
for BAP1 in metabolism. Indeed, recent evidence has indicated
that loss of BAP1 promotes cellular adaptability to metabolic
stress by impairing ER stress gene regulatory network (e.g., ATF3
and CHOP) and ferroptosis via modulating SLC7AL11 (23, 24).
Informed by these findings, signaling pathways that regulate
metabolic stress might be promising targetable vulnerabilities in
BAP1-deficient MPM.

BAP1 has also been implicated in chromatin modulation
by interacting with ASXL1 and polycomb repressive complex
1 (PRC1) (25), and further preclinical evidence revealed that
BAP1 loss renders MPM sensitivity to histone deacetylases
(HDACs) inhibitors (26). However, a large phase 3 trial of
MPM (n > 600) with Vorinostat, an FDA-approved HDAC
inhibitor, showed disappointing results (27). Importantly, recent
studies indicate that BAP1 loss in MPM prioritizes the
enhancer of zeste homolog 2 (EZH2)-targeted therapy (28),
suggesting that aberrant expression of EZH2, known to lead to
uncontrolled cell proliferation and tumorigenesis (29), might
be an inherent feature enabled by the suppression of BAP1.
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FIGURE 1 | Genomic landscape of CDKN2A, BAP1, and NF2 in MPM. (A) Somatic mutations of CDKN2A, BAP1, and NF2 in The Cancer Genome Atlas (TCGA)
samples of MPM patients (n = 87). Data were downloaded from cBioPortal. (B) Schemtatic illustrating the pathways mediated by the tumor suppressor proteins.

Strikingly, a phase II study showed that tazemetostat, an oral
EZH2 inhibitor, demonstrated promising clinical benefit in
patients with malignant mesothelioma (30). Notably, it has been
reported that sensitivity of uveal melanoma to EZH2 inhibitors
is independent of BAP1 mutational status (31), suggesting
a lineage-specific effect of BAP1 on the activity of EZH2i
(EZH2 inhibitors).

Surprisingly, several studies have revealed that BAP1 mutaions
in MPM are associated with favorable prognosis in patients (32,
33). One possible explanation is that BAP1 loss is accompanined
with impaired DNA repair capacity, which enhances sensitivity
to chemotherapy and thus may improve patients’ outcome. In
addition, BAP1 deletion is linked with fewer chromosome arm
gain and loss, as well as less somatic copy number alterations
(SCNAs) (4, 5). Finally, BAP1-inactivated tumors might have a

stronger activity of cytotoxic T cells due to increased interferon
regulator factor 8 (IRF8) (5, 34).

NF2
NF2 encodes Merlin (moesin-ezrin-radixin-like protein) that
mediates tumor suppression and contact-dependent inhibition
through the Hippo pathway (35) (Figure 1B).

The Hippo pathway is evolutionally conserved that regulates
organ size, tissue homeostasis and apoptosis, best characterized
as a downstream transducer of Merlin/NF2 signaling (36).
Merlin exerts tumor-suppressor function by translocating to
the nucleus, where it promotes the degradation of two
paralogous transcriptional co-activators, Yes-associated protein
(YAP) and WWTR1 (WW domain containing transcription
regulator 1)/transcriptional coactivator with PDZ-binding motif
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FIGURE 2 | The concept of synthetic lethal vulnerabilities and cancer-specific dependencies. (A) Cancer cells with functional loss of a tumor suppressor (gene “A”)
are contextually sensitive to inhibition of another gene product (gene “B”). (B) Cancer-specific dependencies co-opted by tumorigenesis are compelling therapeutic
targets.

(TAZ) via the E3 ubiquitin ligase CRL4DCAF1 (37). Merlin also
activates serine/threonine kinase macrophage stimulating 1/2
(MST1/2), causing large tumor suppressor kinase 1/2 (LATS1/2)-
dependent phosphorylation and degradation of YAP/TAZ (38).
In addition to NF2 mutations (Figure 1A), gene fusion and
chromosomal rearrangements also result in nonfunctional NF2
and therefore inactivates Hippo pathway in MPM (4). In
addition, other components of the Hippo pathway, such as
LATS2, are also frequently inactivated in MPM (4), which
inactivates the Hippo pathway as well. LATS2 alterations
(mutations, copy loss) occur in about 11% of MPM patients
(5), and LATS2-deficient MPM might have similar vulnerabilities
as those where the Hippo pathway is inactivated via other
mechanisms. In particular, MPM with co-occuring mutations
in LATS2 and NF2 has been reported to rely on an altered
mTOR/PI3K/AKT signaling, and therefore highly sensitive to
PF-04691502, a potent and selective oral inhibitor of PI3K
and mTOR kinases (39). Finally, gene fusions involving LIFR,
encoding a metastasis suppressor, was identified as an additional
mechanism that inactivates Hippo pathway in MPM (4). The
disrupted Hippo pathway constitutively activates oncogenic
YAP/TAZ, which in turn transcriptionally activates cancer-
promoting genes through interaction with TEA/ATTS domain
(TEAD) transcription factors (40). Supporting this notion,

verteporfin, an inhibitor against the YAP/TEAD interaction,
exerts strong anti-MPM effects, suggesting that the YAP/TEAD
axis might be a collateral vulnerability in NF2-deficient MPM
(41). However, some other studies have shown that response
to verteporfin can be independent on YAP activity (42, 43),
indicating that the exact correlation between YAP activity and
drug response remains to be determined. Further, inhibition of
YAP/TAZ was reported to compensatorially activate the MAPK
pathway and, as a consequence, co-targeting YAP/TAZ and MEK,
a key constituent of the MAPK signaling cascade, synergizes in
suppressing the growth of NF2-deficient tumors (44), providing
a rational combination strategy for NF2-mutant MPM.

Finally, NF2/Merlin inactivation has been associated with
upregulation of the focal adhesion kinase (FAK) activity in
mesothelioma (45). FAK is a cytoplasmic tyrosine kinase that
integrates signals from integrins and growth factor receptors
to multiple cellular processes, ranging from cell proliferation
and migration to renewal of cancer stem cells and resistance
to chemotherapy (46). Merlin levels are predictive of sensitivity
of MPM cells to the FAK inhibitor VS-4718 (47). Notably,
the sensitivity to FAKi has also been shown independent of
NF2/Merlin inactivation, and E-cadherin has been reported to
be a predictive biomarker for FAK-targeted therapy (43, 48).
Intriguingly, although a phase 1 study with FAK inhibitors
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FIGURE 3 | Therapeutic landscape of MPM. An overview of collateral vulnerabilities and evolutionary dependencies identified in therapy-naïve and chemo-resistant
MPM.

showed longer median progression-free survival (PFS) in patients
with NF2-negative MPM than those with NF2-positive tumors
(49), a large phase II COMMAND trial demonstrated that
neither PFS nor OS (overall survival) was improved by FAK
inhibitors in patients with NF2-low MPM and prior treatment
with chemotherapy (50). Together, these results indicate that
further investigations are required to establish the link between
NF2 mutational status and response to FAK inhibition.

Other Genetic Alterations in MPM
In addition to the TSGs (CDKN2A, BAP1, and NF2) described
above, several other genes, e.g., TP53 (tumor protein p53), LATS2,
SETD2 (SET domain containing 2) and oncogenic changes in
the TERT (telomerase reverse transcriptase) promoter are also
altered by at non-negligible frequencies in MPM.

TP53 (encoding p53) is mutated in 6–16% MPM cases
(51). Moreover, CDKN2A loss that depletes p14Arf and in
turn releases MDM2 (mouse double minute 2 homolog), a
negative regulator of p53, also inactivates p53, a key player
in G1/S cell cycle regulation and apoptosis. We and others
have shown that inactivation of CDKN2A/2B and TP53 renders
MPM cell particularly sensitive to G2 checkpoint inhibition, e.g.,
CBP501 (a peptide with G2 checkpoint-abrogating activity) and
AZD1775 (selective inhibitor of the G2 checkpoint kinase WEE1)
(52, 53).

Genetic alterations (mutation, gene fusion and splice
alteration) in SETD2, an epigenetic tumor suppressor involved

in histone methylation, are detected in more than 8% of
MPM cases (4). SETD2-deficient MPM may respond favorably
to inhibitors of histone methyltransferase EZH2 (54). In
addition, synthetic lethality between SETD2 deficiency and
CDK7 inhibitor THZ1 has been recently reported in kidney
cancer (55), although a similar efect on mesothelioma remains
to be determined.

TERT promoter mutations, the first recurrent oncogenic
muation identified in MPM, are frequent in MPM with
sarcomatoid subtype and significantly associated with worse
clinical outcome (56, 57). As expected, MPM cells carrying TERT
promoter mutations show increased sensitivity to telomerase
inhibition than those with wide-type TERT, indicating that
targeting telomerase activity might be a promising treatment
strategy for this MPM subset (57).

GENETIC AND PHARMACOLOGICAL
DEPENDENCIES EVOLVE EN ROUTE TO
CANCER DEVELOPMENT

In contrast with normal cells, tumor cells acquire unchecked cell
growth en route to cancer development, a result of persistent
activation of oncogenic pathways that concomitantly increases
the level of cellular stresses (58). To deal with the stressful
stimuli, cancer cells require the activity of a plethora of genes and
cellular processes that become necessary to cancer cell survival.
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TABLE 1 | Clinical trials investigating collateral vulnerabilities and evolutionary dependencies in MPM.

TSG/dependency Target Phase No. patients Results/trial status Endpoint (experimental vs. control arms) Biomarkers (Genetic or molecular)

CDKN2A/2B

Ribociclib (NCT02187783) CDK4/6 Phase 2 106 Completed (January, 2018) ORR CDK4/6, CCND1/3,CDKN2A

Abemaciclib (NCT03654833) CDK4/6 Phase 2 120 Recruiting DCR p16INK4A

BAP1

Vorinostat (27) (NCT00128102) HDAC Phase 3 661 Negative (November, 2011) OS (30.7 vs. 27.1) None

Tazemetostat (129) (NCT01897571) EZH2 Phase 1 58 Positive (September, 2016) Safety None

Tazemetostat (NCT02860286) EZH2 Phase 2 67 Completed (May, 2019) Safety/DCR BAP1

Niraparib (NCT03207347) PARP1/2 Phase 2 57 Recruiting ORR BAP1/ DDR

NF2

Defactinib (49) (NCT01870609) FAK Phase 2 372 Negative (January, 2016) PFS (4.1 vs.4.0) OS (12.7 vs.13.6) None

RTKs

Erlotinib (NCT00039182) EGFR Phase 2 63 Negative (June, 2007) OS None

LY3023414 (NCT01655225) PI3K/mTOR Phase 1 156 Active Not Recruiting Safety None

Everolimus (NCT01655225) mTOR Phase 2 59 Negative (September, 2011) 4-month PFS None

Tivantinib (NCT02049060) Met Phase1/2 31 Active Not Recruiting Safety None

Bemcentinib (NCT03654833) AXL Phase 2 120 Recruiting DCR None

Angiogenesis

Thalidomide (76) VEGF Phase 3 222 Negative (December, 2009) Progression (3.6 vs.3.5) None

Bevacizumab (3) (NCT00651456) VEGF Phase 3 448 Positive (September, 2016) OS (18.8 vs.16.1) None

Deregulated UPR

Bortezomib (130) (NCT00513877) Proteasome Phase 2 33 Negative (December, 2009) CR/PR None

Ganetespib (131) (NCT01590160) HSP90 Phase1/2 27 Completed (November, 2019) Safety PFS None

Abbreviations: CR/PR, complete response/partial response; DCR, disease control rate; ORR, overall response rate; OS, overall survival; PFS, progression-free survival.
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This phenomenon is referred to as non-oncogene addiction or
cancer dependency (59), which represents the “Achilles’ heel” of
a specific type of cancers that can be therapeutically exploited
without impairing normal cells. Recent studies have identified
several genetic and pharmacological dependencies in MPM,
covering various pathways involved in receptor kinase signaling,
DNA damage repair and proteotoxic stress.

Receptor Tyrosine Kinases (RTKs)
Self-sufficiency in proliferative signaling, often through aberrant
activation of receptor tyrosine kinases (RTKs), is a hallmark
of cancer including MPM. Epidermal growth factor receptor
(EGFR) is not mutated but overexpressed in MPM, leading
to deregulation of EGFR signaling and aberrant activation
of downstream pathways such as RAS/RAF/MAPK and
PI3K/AKT/mTOR, which in turn promotes cell proliferation,
tumor invasiveness and angiogenesis (60). Despite the high
expression of EGFR, no clinical benefit was observed in
MPM patients treated with erlotinib, an EGFR-specific
inhibitor (61). Trametinib, a specific MEK inhibitor,
exhibited anti-tumor effects in MPM, and displayed strong
synergestic effects when combined with the FAK inhibitor
GSK2256098 (62). Emerging evidence has also shown that
multipoint targeting of PI3K/AKT/mTOR pathway is a
promising strategy for therapeutic intervention of MPM
(63). Although mTOR inhibition with specific inhibitors
suppressed mesothelioma cell growth in pre-clinical models
(64, 65), only limited clinical activity was observed in patients
with advanced MPM (66). Additionally, preclinical studies
identified MET and AXL as putative therapeutic targets in
MPM (67, 68), and clinical trials testing Met-specific TKI
(tivantinib; NCT02049060) and AXL-specific TKI (bemcentinib;
NCT03654833) are ongoing.

Increasing evidence has indicated that other RTKs, including
fibroblast growth factor receptor (FGFR) (69), insulin-like
growth factor 1 receptor (IGF1R) (70), platelet-derived growth
factor receptor (PDGFR) (71) and vascular endothelial growth
factor receptor (VEGFR) are also aberrantly activated in
MPM (72). In particular, preclinical studies have revealed
that imatinib, a multi-target inhibitor of v-ABL, c-KIT and
PDGFRβ, enhanced therapeutic effects of chemotherapeutic
drugs (gemcitabine, pemetrexed) via AKT inactivation in
malignant mesothelioma, which has encouraged the initiation of
clinical trials (73, 74).

Given the crucial role of VEGF signaling in tumorigenesis,
several anti-angiogenic drugs, including bevacizumab,
thalidomide and nintedanib, have been investigated in MPM
either alone or in combination with cisplatin plus pemetrexed
over the past decade (75). To date, three randomized phase 3
studies that assess anti-angiogenic inhibitors in patients with
MPM have been performed. In the 2013 study, no clinical
benefit was observed for the addition of thalidomide to first-line
chemotherapy (76), while the large randomized Mesothelioma
Avastin Cisplatin Pemetrexed Study (MAPS) in 2016 showed
that the triple combination of bevacizumab, cisplatin and
pemetrexed significantly improved the median overall survival
(OS) in MPM (3). More recently, another randomized phase 3

trial demonstrated no benefits of nintedanib addition compared
to standard chemotherapy alone (77). The varied results
highlight the need of further stratification for anti-angiogenic
therapeutics in MPM.

Endoplasmic Reticulum (ER) Stress and
Unfolded Protein Response (UPR)
The endoplasmic reticulum (ER) is the principal organelle
monitoring proteostasis. Physiological and pathologic stimuli
e.g., nutrient deprivation, aberrant glycosylation, oxidative
stress and DNA damage, can disturb the ER environment,
eliciting ER stress and unfolded protein response (UPR)
(78). The UPR is mediated by three effector arms: double-
stranded RNA-activated protein kinase (PKR)-like ER kinase
(PERK), inositol-requiring enzyme 1α (IRE1α), and activating
transcription factor 6 (ATF6) (79). At the steady state, the
chaperone protein glucose-regulated protein 78 (GRP78, also
known as BiP) binds and represses PERK, IRE1α and ATF6.
When threatened by increased protein-folding demand (ER
stress), BiP is released, which activates PERK, IRE1α, and
ATF6, and in turn, their downstream effectors to alleviate
proteotoxic stress placed on the ER and restore proteostasis in
the ER (80).

Tumorigenesis entails aberrant proliferation, which is
often confronted by limited oxygen supply and malfunctional
vascularization, leading to increased demand for protein
folding, assembly and transport (81). As such, the ER stress
response or UPR is a cytoprotective mechanism that promotes
survival and adaptation to adversary environment, which
might render tumor cells particularly vulnerable to agents that
further disturb ER stress. Indeed, therapeutic targeting of ER
stress/UPR pathway has emerged as a promising strategy of
cancer treatment (82). There is a positive correlation between
expression of the ER stress-responsive phosphatase growth
arrest and DNA damage 34 (GADD34) and differentiation
status of mesothelial cells (83), suggesting that modulating
ER stress might be effective for MPM. Consistently, we
have recently showed that deregulated ER stress/UPR
is a characteristic feature of MPM, and that therapeutic
modulation of the signaling impairs the growth of MPM
cells and overcomes resistance to standard chemotherapy
(84, 85).

Anti-apoptotic Adaptation
Escape from apoptosis, a critical barrier of tumor development,
is a prominent hallmark of cancer, including MPM. Apart from
the loss of TP53 tumor suppressor functions and increased
expression of survival signals, overexpression of pro-survival
B-cell lymphoma 2 (BCL-2) family proteins (BCL-2, BCL-
XL, MCL-1, BCL-W, BCL-B, BFL-1) that dampen apoptosis
by sequestering pro-apoptotic activators (BAX, BIM, PUMA)
is another pivotal strategy to circumvent apoptosis (86). In
this scenario, cancer cells are thought to be “primed” for
apoptosis, as they accumulate the pro-apoptotic activators (87).
This trait can be exploited for cancer treatment by blocking
specific or multiple pro-survival proteins with B-cell lymphoma
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2 (Bcl-2) homology 3 (BH3)-mimetic therapy that overwhelms
the anti-apoptotic defenses (88). In MPM, pro-survival or
apoptosis suppression has been reported to be promoted by
defects in core-apoptosis signaling (89), and the BH3 mimetic
ABT-737 (targeting BCL-2/BCL-XL/BCL-W) (90) and a pan-
BCL-2 inhibitor (JY-1-106) are active against MPM cells (91,
92). More recently, BCL-XL has been identified as a key
anti-apoptotic mediator in MPM cells, further highlighting
the promise of therapeutic strategies that modulate apoptotic
threshold in MPM (93).

Tumor Microenvironment (TME)
A key feature of tumor microenvironment is hypoxia,
which promotes acquisition of aggressive phenotypes.
Emerging evidence has suggested that hypoxia-inducible
factors (HIF-1α, -2α) play central roles in regulating hypoxic
responses in MPM (94). HIF-1α/2α are transcription factors
induced by hypoxic conditions, which in turn alter the
expression of various target genes, such as those encoding
the stem-like factor OCT4, anti-apoptotic BCL-2, glucose
transporter 1 (GLUT1), VEGF, E-Cadherin and Vimentin,
leading to the change of diverse biological functions, e.g.,
angiogenesis, anti-apoptosis, cell motility and metabolism
(95, 96). Moreover, hypoxia is associated with increased
genome instability by downregulating several DNA repair
genes such as MLH2, MSH2, and RAD51 (97). Thus,
targeting tumor hypoxia might be a promising strategy
for treating MPM.

A Roadmap to Cancer Dependencies
The Cancer Dependency Map Project (DepMap)1 is dedicated
to systematic identification of cancer-specific vulnerabilities
for targeted therapy and further stratification based on
genomic diversity and molecular characteristics for precision
oncology (98). DepMap provides a range of information
for the genetic landscape, expression profile, genetic
essentiality and drug sensitivity across a broad spectrum
of human cancers including MPM by incorporating The
Cancer Cell Line Encyclopedia (CCLE), Project Achilles
and PRISM, which may facilitate the prioritization of
therapeutic targets for the development of precision
cancer medicines.

EVOLUTIONARY VULNERABILITIES
CO-OPTED BY CHEMOTHERAPY
RESISTANCE

Despite decades of enormous efforts, cisplatin plus pemetrexed
chemotherapy remains one of the few treatment options
that achieve survival benefit in MPM. However, clinical
evidence indicates that this combination therapy rarely achieves
complete/durable clinical response in MPM patients due
to drug resistance, intrinsic and/or acquired after initial
treatment. Therefore, identification of therapeutic vulnerabilities

1https://depmap.org/portal/depmap/

to target chemoresistant MPM represents a significant yet unmet
clinical challenge.

Cancer Cell Plasticity and Cancer Stem
Cells
Cancer cells can shift at different cell states, most prominently
the transition from epithelial to mesenchymal (EMT) or vice
versa (MET). The epithelial state is a differentiated cell state
while the mesenchymal more undifferentiated and reminiscent
of cancer stem-like cells (CSCs), so coined as they recapitulate
normal stem cells characterized by the capacity of self-renewal
and differentiation. Cancer cell plasticity is an important process
that generates CSCs and drives therapy resistance (99), partly
due to relative dormancy of slowing cell-cycle kinetics, efficient
DNA repair capacity and expression of multidrug-resistance
transporters and resistance to apoptosis of the cells (100).

Putative CSCs identified in MPM express high levels
of CD24, ABCG2, ABCB5 and OCT4 and confer drug
resistance (101). We have showed that MPM cells populated
as spheroids are highly resistant to standard chemotherapy
(84). Mesothelioma stem cells (MSCs) might be responsible
for tumor repopulation after chemoradiation in murine
mesothelioma (102), and cisplatin-resistant, CSC-like
subpopulations could be enriched by aldehyde dehydrogenase
(ALDH)high and CD44+ in mesothelioma cell lines (103).
Despite the progress, the molecular mechanisms underlying
cancer cell plasticity and the malignancy of CSCs remain
incompletely understood.

Aberrant DNA Repair
The DNA damage response (DDR) synchronizes DNA repair and
checkpoint signaling activation to arrest cell cycle progression
(104). Compelling evidence suggests that DDR protects against
genomic instability and affects responses to genotoxic agents
(105), although loss of some elements involved in DNA
repair pathways is predisposed to malignancy. Conversely,
upregulated DDR signaling confers resistance to DNA-
damaging chemotherapy and inhibitors targeting the altered
pathways have the potential to revert resistance and augment
the efficacy of conventional chemotherapy (106). MPM patients
with germline mutations in BAP1 or other DNA repair
genes (CHEK2, PALB2, BRCA2, and MLH1) show increased
sensitivity to cytotoxic chemotherapy due to impaired DDR
(107). Moreover, the Fanconi anemia (FA)/BRCA2 pathway
involved in the homologous recombination DNA repair has
been shown to play a key role in MPM chemoresistance (108),
and a potential link of deregulated G2/M checkpoint pathway
with tumor progression and sensitivity to chemotherapeutic
agent cisplatin has been proposed (109). Notably, p53 signaling
is frequently inactivated in MPM (4, 51), a consequence
of TP53 mutaions (6–16% in MPM) and, more often, of
inactivating alterations in CDKN2A, which depletes p14Arf

and promotes proteasome-mediated degradation of p53.
Consequently, p53 deficient MPM cells might have greater
dependence on G2/M checkpoint to protect the toxicity of
chemotherapy, and abrogation of the G2/M checkpoint activity,
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FIGURE 4 | CRISPR/Cas9 screening for cancer drug discovery in MPM. A schematic diagram of CRISPR/Cas9 screening using pooled sgRNA libraries. Depending
on the experimental setting, comparison of sgRNA abundance with reference samples can identify essential genes for drug resistance, cell proliferation or
context-dependent events (e.g., synthetic lethal vulnerability with specific mutations).

e.g., WEE1 inhibition, sensitizes MPM cells to chemotherapy
(53, 110).

Autophagy
Macroautophagy (hereafter autophagy) is an evolutionally
conserved catabolic process, whereby long-lived proteins and
damaged organelles are sequestered in a double-membraned
vesicle (autophagosome) and delivered to the lysosomes
for degradation and recycled to fuel cellular growth (111).
Autophagy is regulated by a variety of autophagy-associated
genes (ATGs), with its contribution to cancer being controversial,
as autophagy can be either pro-survival (oncogenic) or tumor
suppressive at different stages of cancer progression (112). It
has been reported that MPM cells display a generally high basal
level of autophagy, which is critical for tumor growth (113).
Albeit autophagic cell death (also known as type II programmed
cell death) is potentially exploitable as an anticancer therapy,
the vast majority of studies have demonstrated that autophagy
is a protective mechanism linked with increased resistance
to chemo and targeted therapy (114, 115). Supporting this

notion, autophagy inhibition was shown to effectively improve
chemosensitivity in mesothelioma (116).

SYSTEMATIC APPROACHES FOR
CANCER DRUG DISCOVERY IN MPM

RNA Interference (RNAi) Screening
RNAi confers transient or stable gene silencing by small
interfering RNAs (siRNA) or short hairpin RNAs (shRNA).
Genome-wide screens with pooled shRNA libraries are widely
pursued to identify cancer drivers and context-dependent events
such as synthetic lethal interactions and collateral vulnerabilities
(117). Experimentally, cancer cells infected with shRNA vectors
that are specifically identified by molecular barcodes are
monitored for growth and subsequently subjected to genomic
DNA isolation, polymerase chain reaction (PCR) amplification
and quantification of the molecular barcodes. Comparison of
barcode abundance between experimental and reference samples,
genes required for cancer cell proliferation can be identified.
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Several groups have performed shRNA screes in MPM (118,
119), which however, surveyed relatively few cell lines and
none represented the diversity of MPM. Although RNAi is
ideal to evaluate the temporary gene disruption (e.g., to mimic
the effect of cancer drugs), the utility of RNAi is limited
by incomplete silencing, high off-target effects and stimulated
immune response.

CRISPR/Cas9 Mediated Genome Editing
CRISPR/Cas9 (clustered regularly interspaced short palindromic
repeats/CRISPR- associated 9) is a gene-editing technology
allowing for rapid and accurate assessment of gene functions
with fewer off-target effects compared to RNAi, which, due to
its scalability, has emerged as an important tool for large-scale
screens. Functional genomics using CRISPR have to date focused
on identifying genes required by cancer cells for growth or
response to a therapy, which provides a novel genetic tool to
ascertain gene functions by customizing the single guide RNA
(sgRNA) sequence. After transduced by pooled sgRNA library,
the recipient cells become genetically heterogeneous, each one
with a knockout of a different gene. Following culture and
selection, e.g., drug treatment, cells expressing sgRNAs that target
the genes essential for proliferation or drug resistance will die,
thereby depleting them from residual tumor cells after culture or
treatment (Figure 4).

CRISPR screens of genome and customized sgRNA libraries in
numerous disease models have identified novel oncogenic drivers
and cancer dependencies (120, 121), synthetic lethal interactions
with mutant RAS and BRAF (122, 123) and mechanisms of
resistance to anti-cancer drugs (124). Amenability to in vivo
systems greatly enhances CRISPR applicability in clinically
relevant settings (125). CRISPR-based functional genomics in
MPM is still at its infancy, we recently screened MPM kinome
and delineated that deregulated G2-M checkpoint activity
dictates MPM response to chemotherapy (53).

Further Considerations in Systematic
Approaches
MPM displays high heterogeneity, characterized by inter- and
intratumor variability at cellular and molecular levels (4, 5,
126, 127). Heterogeneity represents a key mechanism underlying
the poor response of MPM patients to current therapeutic
interventions and is a challenge in systematic studies aimed at
identifying effective treatment and curtailing drug resistance.
Notably, cancer cell lines utilized predominantly in current
RNAi- and CRISPR-based functional genomic studies poorly
recapitulate the condition under which heterogeneous tumors
arise and evolve. More instrumental in vitro models that

more closely capture the heterogeneity of patient samples
include cancer stem cells and patient-derived organoids (128).
Moreover, in vivo models that recapitulate the cellular and
genetic complexity of human cancer during tumor evolution and
progression amid drug treatment, such as genetically engineered
mouse models (GEMMs), syngeneic mouse models, and patient-
derived xenografts (PDX), should be considered in systematic
approaches (125). Despite in its infancy, future studies taken into
account of tumor heterogeneity is likely the only way toward the
development of precision medicine for MPM patients.

CONCLUDING REMARKS

Unlike many other solid tumors, MPM is characterized by
overwhelming prevalence of loss of function alterations in tumor
suppressor genes, for which direct pharmacological targeting
proves difficult. However, collateral genotoxic, proteotoxic, and
metabolic stresses caused by abnormal tumor genome or anti-
cancer drugs can generate context-dependent vulnerabilities
and dependencies, which has profound implications for
alternate treatment of TSG-driven MPM. Recent studies have
identified previously unappreciated vulnerabilities contextually
linked with aberrant TSGs and dependencies acquired during
cancer development and drug resistance, which provides
unprecedented insights into MPM pathobiology and may
bring about unprecedented hopes for the development of
biomarker-guided precision medicine for the disease (Figure 3).
Integrative molecular characterization enabled by large-scale
RNA and proteomic profiling studies, partnered by functional
genomics, holds importance to completely unfold the therapeutic
landscape for MPM.
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