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microRNAs (miRNAs) are small non-coding RNAmolecules, evolutionary conserved. They
target more than one mRNAs, thus influencing multiple molecular pathways, but also
mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent
manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and
Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space
and time.

miRNAs are critical regulators in various biological processes, such as differentiation,
proliferation, apoptosis, and development in both health and disease. Their dysregulation
is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or
oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA
can perform both activities depending on the context.

In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor
cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor
angiogenesis, acting as pro-angiomiR or anti-angiomiR.

In this review, we described miRNA biogenesis and function, and we update the non-
classical aspects of them. The most recent role in the nucleus, as transcriptional gene
regulators and the different mechanisms by which they could be dysregulated, in tumor
initiation and progression, are treated. In particular, we describe the role of miRNAs in
sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs
in lymphoma angiogenesis is also discussed despite the scarcity of data.

The information presented in this review reveals the need to do much more to discover the
complete miRNA network regulating angiogenesis, not only using high-throughput
computational analysis approaches but also morphological ones.

Keywords: angiogenesis, lymphoma, microenvironment, microRNA, tumor progression
INTRODUCTION

From the discovery of the lin-4/lin-14 paradigm in Caenorhabditis elegans, microRNAs (miRNAs)
have come a long way (1–4). miRNAs were found in eukaryotic organisms, viruses, and
prokaryotic cells.

miRNAs of viral origin, known as v-miRNAs, in the host, can function as post-transcriptional
gene regulators as well as viral genes. Their expression can prolong the longevity of infected cells,
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enhance their immune response evasion, and regulate the switch
to lytic infection (1–4). miRNAs in prokaryotic cells is a more
recent and, therefore, unexplored research field. They are
comparable in size and can be export outside the cells by
vesicles as eukaryotic miRNAs, but diverge considerably from
these in biogenesis and presentation to the target mRNAs (5).

miRNAs are non-protein-coding regulatory genes, evolutionary
conserved, partially complementary to one or more messenger
RNA (mRNA)molecules (targetmRNAs) (6).MaturemiRNAs are
short, single-strandedRNAmolecules of about 21-23nucleotides in
length, which is just about right for specificity to particular target
genes as well as for plasticity to evolve towards new gene targets.
They regulate the expression of homologous target-gene
transcripts, at transcriptional and/or post-transcriptional level,
through a mechanism known as RNA interference (RNAi). They
may induce both down- and up-gene expression by different
mechanisms in both cytoplasm and nucleus where they have
been found.

In this review, we described miRNA biogenesis, regulation, and
function underline essential aspects of processes localization and
Abbreviations: AML, acute myeloid leukemia; Ago, argonaute family of proteins;
AEG-1, astrocyte elevated gene-1; ALCL, anaplastic large-cell lymphoma; AML,
acute myeloid leukemia; ANN, axillary lymph node−negative; B-CLC, B-cell
chronic lymphatic leukemia; CAFs, cancer-associated fibroblasts; CSCs, cancer
stem cells; DGCR8, DiGeorge syndrome critical region 8; DNMT, DNA
methyltransferase; dsRNA, double-stranded RNA; ECM, extracellular matrix;
EGCG, epigallocatechin-3-gallate; ECs, endothelial cells; EMT, epithelial-
mesenchymal transition; ESCs, embryonic stem cells; FBXW7, F-box/WD
repeat-containing protein 7; FMR1, fragile X mental retardation 1; GBM,
glioblastoma multiforme; GEMIN4, gem nuclear organelle associated protein 4;
GSEA, Gene Set Enrichment Analysis; HCC, hepatocellular carcinoma; HDAC,
histone deacetylase; HIF-1a, hypoxia-inducible factor 1 alfa; HL, Hodgkin
lymphoma; HSC, hematopoietic stem cells; HSPC, hematopoietic stem/
progenitor cell; IFNg, interferon-gamma; IL-12, interleukin-12; IPO8, importin
8; lncRNA, long non-coding RNA; MAPK, mitogen-activated protein kinase;
MCCHL, mixed cellularity Hodgkin lymphoma; miRISC, miRNA-RISC; miRNA,
microRNAs; MLL, myeloid/lymphoid leukemia or mixed-lineage leukemia;
mRNA, messenger RNA; MVBs, multivesicular bodies; MVD, microvascular
density; NES, nuclear export signal; NHL, non-Hodgkin lymphoma; NLS,
nuclear localization signal; NPM-ALK, nucleophosmin-anaplastic lymphoma
kinase; NSCHL, nodular sclerosis Hodgkin lymphoma; NSCLC, non-small cell
lung cancer; nSMase2, neutral sphingomyelinase 2; OSCC, oral squamous cell
carcinoma; pADPr, poly-ADP-ribose; PARG, poly-ADP-ribose glycohydrolase;
PARylation, poly-ADP-ribosylation; PARPs, poly-ADP-ribose polymerases;
PCDH9, Protocadherin 9; pre-miRNA, precursor miRNA; pri-miRNA, primary
miRNA; pRNA, promoter-associated RNA; PTEN, phosphatase and tensin
homolog; PTMs, post-translational modifications; Ran-GTPase, RAS-related
nuclear protein-guanosine-5’-triphosphate-ase; RBPs, RNA- binding proteins;
rER, rough endoplasmic reticulum; RISC, RNA-induced silencing complex;
RNAi, RNA interference; ROCK1, Rho-associated coiled-coil containing protein
kinase 1; R2D2, dsRNA binding protein with two dsRNA binding domains;
SAHA, suberoylanilide hydroxamic acid; shRNA, short hairpin RNA; SND1,
staphylococcal nuclease domain-containing protein 1; snoRNAs, small nucleolar
RNAs; SNPs, single-nucleotide polymorphisms; SQCLC, squamous cell lung
cancer; TAMs, tumor-associated macrophages; TGA, transcriptional gene
activation; TGS, transcriptional gene silencing; TCGA, the cancer genome atlas;
TKI, tyrosine kinase inhibitor; TMAs, tissue microarrays; TNF, tumor necrosis
factor; TNRC6A, trinucleotide repeat-containing adaptor 6a; tRFs, tRNA derived
RNA fragments; tRNAs, transfer RNAs; tsRNAs, tRNA-derived small RNAs;
UTR, untranslated region; VE-cadherin, vascular endothelial cadherin; VEGF,
vascular endothelial growth factor; VEGFR, vascular endothelial growth factor
receptor; VIG, vasa intronic gene; XPO5, exportin5; ZEB1/2, zinc finger e-box
binding homeobox 1/2.
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timeline. Indeed, we update the non-classical aspects of miRNAs,
such as their new role in the nucleus as transcriptional gene
regulators. Then different mechanisms by which miRNAs could
be dysregulated in tumor initiation and progression are addressed.
In particular, we describe the role of miRNA in sprouting
angiogenesis, vessel co-option, and vasculogenic mimicry. The
role of miRNA in lymphoma angiogenesis is also discussed
despite the scarcity of data.

In the end, this review demonstrates the need to domuchmore
to discover the complete miRNA network regulating angiogenesis,
not only using high-throughput analysis approaches but also
morphological ones.

miRNA BIOGENESIS
miRNAs biogenesis starts from DNA sequences, called miRNA
genes, or from clusters genes which are only transcripted as
miRNA molecules or together as polycistronic transcripts,
respectively (7, 8). Alternatively, the miRNAs localize within
an intron or untranslated region (UTR) of a protein-coding gene
(8). Two main pathways of biogenesis were identified as
canonical and non-canonical ones.

Canonical miRNA Biogenesis
and Functions
In the canonical biogenesis pathway, primary miRNAs (pri-
miRNA) are transcribed from their genes by RNA polymerase
III, and then processed into precursor miRNA (pre-miRNAs) by
the Microprocessor complex, consisting of two multiprotein
units (9–11). One of these is a large multiprotein unit that
includes different classes of RNA-associated proteins, double-
stranded RNA (dsRNA) binding proteins, ribonucleoproteins,
and Ewing’s sarcoma protein family. The other one is a small
multiprotein unit that includes the RNase III enzyme, named
Drosha, and the RNA binding protein DiGeorge Syndrome
Critical Region 8 (DGCR8) (12).

The Microprocessor recognizes specific motifs within the pri-
miRNA, and cleaves it at the base of the characteristic hairpin
structure, generating a 5′-monophosphate and a 3′-2-nt overhang
on pre-miRNA (10, 13, 14). After, pre-miRNAs are exported, from
thenucleus to the cytoplasm,bya complexof exportin5 (XPO5) and
RAS-related nuclear protein-guanosine-5’-triphosphate-ase (Ran-
GTPase) (11). In the cytoplasm, the terminal loop of pre-miRNA is
removed by the RNase III endonuclease Dicer (13).

At this point, miRNAs appear as short RNA duplexes termed
miRNA duplexes that are loaded into the RNA-induced silencing
complex (RISC) (15). This machine is a multiprotein complex that
includes proteins such as Argonaute RISC Catalytic Component 2
(Ago2), Aubergine (another Ago family protein) Staphylococcal
Nuclease Domain-Containing Protein 1 (SND1), Astrocyte
Elevated Gene-1 (AEG-1), Fragile X Mental Retardation 1
(FMR1), VIG (vasa intronic gene), R2D2 (a dsRNA binding
protein with two dsRNA binding domains), and Armitage-RNA
helicase1 (15–17).

Ago2 is the RISC catalytic component that leaves and/or
removes one strand of the duplex (18, 19). Based on the
directionality of the miRNA’s strands originated, the name of the
mature miRNA will be 5p strand (miRNA-5p) if it arises from the
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5′-end of the pre-miRNAhairpin, orwill be 3p strand (miRNA-3p)
if it originates from the 3′-end. The two mature miRNAs strands
have different target-specificity (20, 21). The strand which will
remain incorporated into the RISC is the active strand, and it is
named the guide strand, leading strand or miR. The other strand
gets degraded, and it is named the passenger strand or miR* (22).
Thermodynamic features that, in turn, are related to ribonucleotide
(purines vs. pyrimidines) composition of the duplex, play an
essential role in miRNA-RISC assembly (23).

RISC with the loaded miRNA (miRISC) acts inhibiting
multiple steps of protein synthesis and affecting mRNA target
stability (24–26). In detail, the miRNA in the RISC complex
drives it to an mRNA target in a complementary-nucleotides-
based way. Usually, the mRNA target-site is into 3'untranslated
region (3’UTR), and the complementary sequence on miRNA,
called seed sequence, is located at 2-7 nucleotides. However, non-
canonical seed regions have been identified, such as in the 5’UTR
sequence and the coding regions of mRNAs (27).

After recognition, targetmRNA is still stable, butmiRISC prevents
its translation by inhibition of translation elongation, or through
protein degradation or ribosome drop-off. In the end, mRNA, after
deadenylationanddecay, isdegraded(28,29).Moreprecisely, todate, it
seems that translational repression and target mRNA degradation are
spatiotemporal uncoupling events. Concerning the timing, in
Drosophila, Zebrafish, and mouse embryonic stem cells (ESCs), it
was demonstrated that translational repression, at an early step, always
occurred beforemRNA degradation (30–33). This result suggests that
the block of protein translation is the first event of miRNA-mediated
gene silencing (the cause), and the mRNA target degradation is a
secondary consequence (the effect). Concerning space, it was
demonstrated that RISC assembly, its interaction with miRNA and
targeted mRNA, and translational repression are processes
compartmentalized on rough endoplasmic reticulum (rER)
membrane. On the contrary, the degradation of the mRNAs
(deadenylation and decay) takes place on endosome/multivesicular
bodies (MVBs) (34, 35).

In addition to the well-known miRNAs cytoplasmic localization
and functions, the nuclear ones are noteworthy. Indeed, it has been
proven that minimal miRISC complex is also present in mammalian
cell nuclei, where it is 20-fold smaller (36, 37). It consists only of Ago2
and miRNA, is loaded in the cytoplasm, and is imported into the
nucleus by binding to importin 8 (IPO8) (38). The combination of
minimal miRISC complex with Trinucleotide Repeat Containing
Adaptor 6A (TNRC6A), which possesses a nuclear localization
signal (NLS) and a nuclear export signal (NES), ensure the nuclear-
cytoplasmic shuttling(38)eventhoughamore selectivemechanismfor
miRNAs distribution could be operated by nucleotides-motif at the 3’
end of the miRNA.

In the nucleus, miRNAs contribute to the regulation of both
coding and non-coding RNA transcriptome (28, 37). They can
act in blocking or promoting pri-miRNA maturation regulating
long non-coding RNAs (lncRNAs) levels (39–41).

Other nuclear miRNAs colocalize with ribosomal RNAs (rRNAs)
in the nucleolus, where they are stored, or in the cytoplasmwhere they
influence the abundance of rRNAs and/or regulate ribosomes
interaction with accessory proteins (42–45).
Frontiers in Oncology | www.frontiersin.org 3
Moreover, in the nucleus, miRNAs induce remodeling of
chromatin structure, regulate alternative splicing, and in turn,
regulate itself (46–48). miRNAs can also mediate transcriptional
gene activation (TGA) or transcriptional gene silencing (TGS) (49,
50). TGA depends on the complementarity between DNA sequences
of gene promoter and the 5’-seed with a part of the flanking region of
miRNA. Two mechanisms that unlock gene silencing have been
identified: i) in case of silencing complexes on gene promoter, such
as lncRNA or promoter-associated RNA (pRNA), miRNA can act
inducing thecleavageof thesemoleculesby the recruitingof thenuclear
RISC; ii) miRNA can directly recognize the nascent RNA promoter
andrecruit theminimalmiRISCthat in turnenroll theproteincomplex
assigned to shift the chromatin structure toward a more permissive
arrangement (51, 52).

About TGS, where epigenetic modifications have a more
prominent role than in TGA: i) miRNA with its seed sequence may
directly interact with single-strandedDNA complementary sequences
in the promoter region inducing histone epigenetic modification and
altering the binding of transcription factors; ii) miRISC may directly
target to non-coding transcripts, sense and antisense, and serves as a
molecular scaffold to recruit an inhibitory protein complex and
chromatin modulators that will establish a non-permissive
transcriptional status; iii) miRNA may hybridize with double-
stranded DNA to form relatively stable RNA*DNA : DNA triplexes
via Hoogsteen or reverse Hoogsteen interaction that induces
promoter-specific transcriptional repression through the disruption
of the formationof the pre-initiation complex at the promoter (28, 37).

miRNAs levels and their activity canbe regulatedbya seriesofpost-
translational modifications (PTMs) affecting the miRNA processing
machine (seeTable 1 andbelow sectionPARylation post-translational
modification affect miRNA activity in tumors). Moreover, co- and
post-transcriptional regulationofmiRNAtranscripts areperformedby
specific RNA-biding proteins (RBPs), which affect miRNAprocessing
and loading into RISC, and facilitate the crosstalk between various
RNA pathways [reviewed in (28)].

Alterations in miRNA biogenesis can promote and support the
onset of cancer. The oncogene p53, whose mutations occur in 50% of
human cancers, promotes cancer interfering with Drosha in the
Microprocessor complex. It inhibits miRNA processing, resulting in
the accumulation of pri-miRNAs and parallel depletion of mature
miRNAs (63). Mutant p53, by sequestrating the Drosha cofactors,
DEAD-box RNA helicases p68 (DDX5), or p72/p82 (DDX17),
promotes tumor cell migration, epithelial to mesenchymal transition
(EMT), and cell survival (64, 65).

Moreover, cancer is supported by altered expression levels of
miRNA processing machinery components such as Drosha,
DGCR8, and Dicer that are down-regulated or up-regulated in
several cancers (66). For instance, in neuroblastoma and ovarian
cancer, Drosha and Dicer’s reduced expression levels and
overexpression of DGCR8 correlate with tumor progression
and a worse clinical outcome (67–69).

Dicermutations lead to altered expression levels or could affect the
regionencodingRNase IIIdomains that causedefects in its function. In
several tumors, such as pleuropulmonary blastoma, cystic nephroma,
ovarian cancer, Wilms tumor, pituitary blastoma, and
rhabdomyosarcoma, the pathogenesis is supported by reduced Dicer
November 2020 | Volume 10 | Article 581007
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expression and/or impaired function that in turn induce an aberrant
miRNA expression (70–73).

Impaired function of the Dicer cofactor TRBP also contributes to
miRNAdysregulation incancer. In theEwing sarcoma family tumor, it
was demonstrated that cancer stem cell renewal and tumor
maintenance depend on TRBP expression (74).

Pre-miRNA export dysfunction may lead to tumorigenesis.
By cancer tissue microarrays (TMAs) and the cancer genome
atlas (TCGA) RNA seq-data, it was shown that increased level of
XPO5 promotes and sustain tumor including prostate cancer,
breast cancer, ovarian cancer, and bladder cancer (75–77).

Non-Canonical miRNA Biogenesis
and Functions
In addition to the canonical pathway, miRNAs could be
processed from unexpected non-coding RNAs by mechanisms
that may depend on cell type and cellular state (78).

In the non-canonical miRNA biogenesis pathway, functionally
miRNAsresult fromadifferentcombinationof thesameproteinsof the
canonical pathway. Two main non-canonical miRNA biogenesis
pathways are distinguished: Drosha/DGCR8-independent and
Dicer-independent (79). An example of the first is miRtrons
biogenesis (80). MiRtron-derived pri-miRNAs correspond to the
entire intronic sequence of the mRNA encoding genes in which they
are located. They are processed by splicing and not by the
Microprocessor complex (81). After splicing, miRtron-derived pre-
miRNAs are exported to the cytoplasmbyXPO5 and are processed by
Dicer to form a mature miRNA (82, 83). miRtrons could be
distinguished from canonical miRNAs looking for key features such
as bulges in the stem region, guanine content, hairpin free energy, and
hairpin length (84).
Frontiers in Oncology | www.frontiersin.org 4
An example of a non-canonical miRNA biogenesis Dicer-
independent pathway is pre-miR-451. It is processed, initially, by
Drosha to liberate the pre-miRNA, following, in the cytoplasm, it is
loaded into Ago2 to catalyze the maturation of this microRNA (85).
Pre-miR-451 is not processed byDicer because its stem-loop structure
is too short to be efficiently recognized and processed (86, 87).
Therefore, in this mechanism, it seems that Ago2 is sufficient for
RISC loading and proper guide strand selection (88). This miRNA is
involved in tumorigenesis and tumor progression of several cancers. It
is downregulated in epithelial cells cancer that lose their basolateral
polarity, dramatically proliferate, and turn to invasive adenocarcinoma
forms as demonstrated in gastric cancer, colorectal cancer, non–small
cell lung carcinoma (NSCLC) (89–91)

Non-canonical miRNA could also be small nucleolar RNAs
(snoRNAs) and transfer RNAs (tRNAs) (78). snoRNA-derived
miRNAs are approximately 22 nucleotides in length, require Dicer
activity, but are independent of Drosha/DGCR8, bind to Argonaute
proteins and repress target mRNAs as miRNA do (92, 93).

tRNAswith theirclovershapecangeneratemanynon-codingsmall
RNAs, named tRNA-derived small RNAs (tsRNAs). These, based on
their mechanism of biogenesis and length, are classified as tRNA-
derivedstress-inducedRNA(tiRNA)ortRNA-derivedfragment(tRF).
tRFs are smaller than tiRNAs, originate from a specific sequence of
mature or primary tRNAs cleavedbyDicer, or they could be processed
by RNase Z or ELAC2 in the nucleus and cytoplasm, respectively (94).
Theycanbind to theAgoproteins family ina cell-type-specificmanner
and can regulate mRNA stability by directly binding to it, inhibiting
protein translation, or cleaving a partially complementary target site
(94–96).

The role of non-canonical miRNA in the biological functions
and development of cancer is poorly understood. Splicing
TABLE 1 | Post-translational modifications (PTMs) of miRNA transcripts.

PTMs Regulated factor

Drosha DGCR8 AGO2 TRBP

Phosphorylation In stress conditions, p38 phosphorylates
Drosha, reducing Drosha-DGCR8
interaction, and consequently, miRNA
levels decreased (53).
On the contrary, if p38 activates
MAPKAPK2, this, in turn, phosphorylates
and activates p68 (an auxiliary component
of the Microprocessor complex), inducing
the processing of selected pri-miRNA (54).
In the case of Drosha phosphorylation at
Ser300 or Ser302 by GSK3b, its nuclear
localization and increased activity are
enhanced (55)

If MAPK
hyperphosphorylates
DGCR8, miRNA levels
increase sustained by a
higher Microprocessor
complex activity (56).
In the case of DNA
damage, DGCR8 could be
phosphorylated by protein
kinase ABL to stimulates
pri-miRNA processing (57).

In the hypoxia condition, EGFR
phosphorylates AGO2 at Tyr393,
reducing its ability to form the loading
RISC complex. The effect is a reduced
level of selected subsets of miRNA
(57).

If ERK phosphorylates TRBP,
the complex Dicer-TRPB will be
more stable e will favor a pro-
growth miRNA expression
signature (58).
This mechanism can be further
supported by the activation of
S6K by the same ERK pathway
(59).

Ubiquitination mTOR increases the levels of MDM2,
which functions as an E3 ubiquitin ligase of
Drosha, leading to Drosha proteasome-
mediated degradation and thus reduced
miRNA processing (60).

Sumoylation DGCR8 could be
sumoylated at Lys, which
prevents its ubiquitylation
and degradation (61).

TRBP could be sumoylated at
Lys52. This PTMs regulates
miRNA/siRNA efficiency favoring
the Ago2 organization to form
the effective RISC for RNAi (62).
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factors, such as SRSF1 or SRSF2, alter the levels of miRNAs of
miRtron origin. In the colorectal cancer cell line HCT116, it was
found that increased nuclear levels of SRSF1 positively correlate
to hsa-miR-1229-3p expression, while increased nuclear levels of
SRSF2 positively correlate to hsa-miR-1227-3p and hsa-miR-1229-3p
expression (97). ThemiRtronmiR-6778–5p, derived from intron 5 of
SHMT1 (coding cytoplasmic serine hydroxymethyltransferase), is a
pivotal regulator of cancer stem cell stemness in Drosha-silenced
gastric cancer cells. It promotes SHMT1 expression that sustains
cancer energy intake via folate-dependent serine/glycine inter-
conversion in the one-carbon mitochondrial metabolic pathway (98).

By RNA-seq-based data set, in MDA-MB-231s breast cancer
cell line and more than 90% of Luminal B Her2+ human breast
cancer, a small nucleolar RNA-derived RNAs, snoRNA-93, was
identified as a promoter of invasion (99). In prostate cancer, the
increased expression of small nucleolar RNA-derived RNAs
snoRD78 was detected in a subset of patients that developed
the metastatic disease (100).
PARYLATION POST-TRANSLATIONAL
MODIFICATION AFFECT MIRNA ACTIVITY
IN TUMORS

Among the PTMs affecting the miRNA processing machine, poly-
ADP-ribosylation (PARylation) is critical. It is a mechanism by which
poly-ADP-ribose (pADPr)macromolecular polymer is added to some
proteins, acting as a post-translational modification well documented
in the nucleus and the cytoplasm (101–103). The reactions are
catalyzed by ADP-ribosyltransferases proteins that include poly-
ADP-ribose polymerases (PARPs) (104). PARPs are involved in
DNA repair, when DNA single-strand breaks are present, and
induce apoptosis via exhaustion of ATP reserves (105, 106). To date,
knowledge on the role of PARPs inRNAmetabolism is growing (107–
109). In 2011, Leung et al. demonstrated that pADPr is a crucial
regulator of miRNAs PTMs in the cytoplasm and, consequently,
mRNA expression levels (110). In detail, by immunoprecipitation
assay and GFP fusion technology under different experimental
conditions in four human cell lines, they showed that cytoplasmic
stress granules were rich in mRNA binding proteins, contained six
poly-ADP-ribose polymerases, two poly-ADP-ribose glycohydrolase,
and Ago proteins (110, 111). Ago2, in standard and stress conditions,
were PARylated by catalytically inactive PARP13 and other
synthesizing PARPs (mono and poly-ADPr), but during stress, it
wasmuchmorePARylated, probably for increasedPARPactivity and/
or decreased poly-ADP-ribose glycohydrolase (PARG) activity. Ago2
increased PARylation reduces the miRNA repression activity and
miRNA-directed cleavage due to disruption of electrostatic
interaction between miRNA:mRNA or steric obstacles for effective
silencing of miRNAs (110).

In the colorectal cancerDLD-1 cell linewas found that PARylation
of Ago2-associated proteins during viral infection relieves miR-17/93
family repression of the interferon-stimulated genes which contain in
the 3′UTRs the miRNA target sites. This means that cells respond to
viral infection by downregulation of miRNAs pathway activity via the
PARylation of Ago2 complexes (112, 113). By immunohistochemistry
Frontiers in Oncology | www.frontiersin.org 5
reactions on TMAs containing tumor and normal tissue, reduced
expression of PARP13 was demonstrated in liver, colon, and bladder
cancers (114). PARP13 targeted TNF-related apoptosis-inducing
ligand (TRAIL) 4 transcript at the cell decay pathway, destabilizing
its mRNA after transcription, via exosome, by binding to its 3 ‘UTR
region, and thus increasing the sensitivity of tumor cells to TRAIL-
mediated apoptosis (115).APARP13 anticancer rolewas also found in
Hepatitis B Virus related-liver cancer and leukemia, thanks to its
antiviral activity (116,117).PARP1expressionwas found to increase in
breast, uterine, lung cancer, ovarian cancer, skin cancer, and non-
Hodgkin’s lymphoma (118–120). In breast cancers, including triple-
negative breast cancers, PARP1 expression negatively correlates to the
estrogen receptor, progesterone receptor, or epidermal growth factor
receptor-2 expression (121). Inbreast cancer, theoncomirmiR-155-5p
was found mostly upregulated and associated with a more aggressive
type and worse outcome (122). The combined treatment with
Olaparib, an inhibitor of PARP1, with miR-155-5p ectopic
overexpression was found a great combination to induce lethal effect
to reduce cancer cells viability (123)

Further investigation of PARPs as a biomarker for novel
cancer therapies is needed.

miRNA IN TUMORS
Tumors develop due to progressive DNA alterations, which will allow
tumor cells to proliferate uncontrollably (124). Tumor cells acquire the
ability not to respond to growth inhibitors and to resist tomechanisms
of programmed cell death. Therefore, tumor cells become immortal
and able to shift their metabolism to more advantageous energy
mechanisms in the interest of continuous growth and proliferation.
Furthermore, to grow beyond a specific size, tumors activate
angiogenesis mechanisms, which will allow the tumor cells to receive
more oxygen and nutrients, and to eliminate metabolism waste more
efficiently. Thanks to angiogenesis, tumor cells not only proliferate but
becomes able to invade the surrounding tissues giving rise to local
metastases.Moreover, tumor initiation and progression are supported
and favored by the inflammation processes, and by the tumor cell
competence to escape the immune surveillance.

In this complex genetic disease, coding and non-coding genes
are involved. miRNAs, because of their ubiquitous role in gene
regulation, are critical regulators in various biological processes,
such as differentiation, proliferation, apoptosis, and development
in both health and disease (125).

The activity of miRNAs in tumors is regulated by the same
alterations affecting protein-coding genes, such as chromosomal
rearrangements, genomic amplifications or deletions or mutations,
abnormal transcriptional control, dysregulation of epigenetic changes
and defects in the biogenesis machinery. A typical chromosomal
rearrangement is a chromosomal translocation, especially in
hematological malignancies, in which it promotes tumor
development and progression by the promoter exchange or by the
creation of chimeric genes translated as fusion proteins. In Acute
Myeloid Leukemia (AML) patients with myeloid/lymphoid leukemia
gene (or mixed-lineage leukemia, MLL) rearrangement, by large-scale
genome-widemicroarray analysis, it was demonstrated that among 48
selected miRNAs, 47 of them are increased (126). This result suggests
thatMLL fusion protein promotes the transcription of its downstream
targets, such as miRNA genes.
November 2020 | Volume 10 | Article 581007
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The primary miRNAs alteration in tumors is the aberrant gene
expression arises from amplification or deletion of specific genomic
regions thatcouplingwithabnormalexpression levelsofmatureand/or
precursormiRNAcomparedwith thecorrespondinghealthy tissues. In
B-cell chronic lymphocytic leukemia (B-CLL), the miR-15a/16-1
cluster gene is deleted in more than 50% of cases, resulting in
decreased expression of both miRNAs (127). Single-nucleotide
polymorphisms (SNPs) in miRNAs or miRNAs-targets are
associated with the development of several tumors. For example, in
breast cancer, polymorphisms in the 3′-UTR of the ErbB4 gene could
affect miRNA binding sites resulting in post-translational
dysregulation of mRNA and a predisposition to tumor development
(128). In gastric cancer, SNPs inmiRNAmachinery genes was strictly
associated with cancer susceptibility and malignant behavior
(Dicer and GEMIN4), or lymphatic metastasis (GEMIN4 and Ago1)
(129). In hepatocellular carcinoma, SNPs in miRNA3152 and
miRNA449b were linked with the risk of tumor development (130).

Different transcription factors, such as p53, c-Myc, nuclear
receptors, and RAS control miRNA expression and are often
associated with tumorigenesis. For instance, p53 strengthens his
tumor suppressor activity, also inducing the expression of specific
miRNAs, which show the same suppressive functions. In pancreatic
cancer cells, p53 directly transactivates miR34a inducing gene
expression reprogramming and promoting apoptosis (131). On the
contrary, there are oncogenic transcription factors that induce
tumorigenesis, such as members of the RAS family. miR-143/miR-
145 co-expressed in the same primary transcript, highly expressed in
healthy colon, are significantly decreased in colorectal cancer in which
are targeted by KRAS (132).

Dysregulated epigenetic changes of miRNA may induce tumors.
The activationof pri-miRNA transcription is under epigenetic control,
especially, it is ruled by promoter-associated CpG island methylation
and histone modification. miR34a and other members of the same
family, despite being located on different chromosomes, were found
hypermethylated in both solid and hematological tumors (133, 134).
The use of epigenetic drugs also demonstrates the epigenetic control of
miRNA. For example, in triple-negative breast cancer cell lines it was
shown that the epigenetic therapy with suberoylanilide hydroxamic
acid (SAHA), a histonedeacetylase (HDAC) inhibitor, in combination
with epigallocatechin-3-gallate (EGCG), a DNA methyltransferase
(DNMT) inhibitor, reduces the expression of oncogenic miRNA-
221/222 (135).

Dysregulation of all miRNA biogenesis steps may contribute to
tumor growth and spread (136). About the Microprocessor complex,
both Drosha up- and down-regulation were found in different tumors
such as advanced cervical squamous cell carcinoma and clear renal cell
carcinoma (137, 138). Further, pre-miRNA export, Dicer, and Ago2
dysregulation are involved.MutationofXPO5causes the defect of pre-
miRNA export, leading to its accumulation in the nucleus (139). In
vitro and in an animal model of thyroid cancer, it was shown that
oncogenic miR-146b-5p down-regulates miRNA biosynthesis by
targeting Dicer and reducing its expression (140). Dicer deletion
and/or down-expression promote tumor cell growth, migration,
invasion, and EMT. The master regulator of miRNAmaturation and
function Ago2 was overexpressed in different tumors in which
miRNAs act repressing their targets (141–143).
Frontiers in Oncology | www.frontiersin.org 6
Additionally, nuclearmiRNAs in tumor cells is documented. They
are involved in the transcriptional regulation of a variety of tumor
promoter/repressor genes or tumor-related genes that control tumor
initiation, self-sustenance, apoptosis,metastasis, andangiogenesis (37).
For example, miR-215-5p, which is nuclear-localized, is up-regulated
in high-grade gliomas and promotes tumor cell proliferation, clone
formation, migration, and suppresses apoptosis by directly binding to
both the promoter and 3’UTR of PCDH9 gene (a member of the
protocadherin family and cadherin superfamily). Therefore, PCDH9
expression will be down-regulated at the transcriptional and post-
transcriptional levels in glioma (144).Othernuclear-localizedmiRNAs
that promote transcriptional activation of oncogenes by binding to
their promoters include miR-483 that binds to IGF2 promoter to
increase its expression in Wilms’ tumors and miR-558 that binds to
heparanase promoter to enhance its expression in neuroblastoma cells
(145, 146). In silico and after mouse model validation, it was
demonstrated that miR-744 promotes the transcription of Cyclin B1,
favoring the recruitment of RNApolymerase II and the trimethylation
of histone-3 at lysine-4 at the promoter region. If it is expressed for a
short time, this miRNA promotes cell proliferation. If expressed for a
long time, it causes aberrant chromosome distribution and in vivo
tumor suppression (147). miR-10a acts as a transcription repressor of
Hoxd4 in the nucleus of HCT116 colon cancer, THP-1 acute
monocytic leukemia, MCF7, and MDA-MB-23 breast cancer cel1
lines. miR-10a induces hypermethylation and trimethylation of
histone-3 in the Hoxd4 promoter, thus preventing cancer cell
invasion and metastasis (148–150). miR-370, miR-1180, and miR-
1236 expression levels are decreased in bladder cancer tissues. These
nuclearmiRNAs activate tumor suppressor gene p21 by binding to its
promoter, as demonstrated in T24 and EJ bladder cancer cell lines
(151). In chronic lymphocytic leukemia, the nuclear miRNA-709
controls the biogenesis of tumor suppressor miRNA miR-15a/16-1
(152). It directly binds to a 19-nt recognition element on pri-miR-15a/
16-1 and prevents its processing into pre- miR-15a/16-1 and leads to
maturation suppression. During apoptotic stimuli, the nuclear level of
miRNA-709decreasedbecause it is exported in thecytoplasmwhile the
nuclear level of miR-15a/16-1 increased, leading to enhanced cell
apoptosis via anti-apoptotic gene Bcl-2 downregulation (40). The
nuclear miR-223, a regulator of innate immunity, is associated with
carcinogenesis. In AML, its down-expression induces an increased
level of transcriptional factor E2F1, which further reducesmiR-223 by
binding to its promoter (153).However, thenuclear-localizedmiRNAs
mechanisms of action are incompletely understood and have so far
been largely neglected. Further investigations will better elucidate the
mechanisms through which nuclear miRNAs execute their functions
in different cell types and physiological/pathological conditions.

The pivotal role of miRNAs in tumors is not just the intracellular
one (cytoplasm and nucleus). They were also found in extracellular
fluids, as free circulating molecules or enclosed in exosomes. These
extracellular molecules are intimately involved in cell-cell
communication, can travel long distances to affect recipient cells, in
particular, immune cells in the tumor microenvironment (154–
156). Quality and quantity dysregulations of circulating miRNAs are
associated with tumor origin, invasion, metastasis, angiogenesis,
immune escape, metabolic switch, and chemosensitivity or
chemoresistance (157, 158). Circulating free miRNAs can be released
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from all cell types as complexes associated with Argonaute proteins
during cellular processes such as secretion, apoptosis, inflammation,
and necrosis. For instance, by microarrays, in malignant tissue and
plasma of tongue squamous cell carcinoma patients, it was shown that
many miRNAs (miR-19a, miR-27b, miR-20a, miR-28-3p, miR-200c,
miR-151-3p, miR-223, and miR-20b) were up-regulated in plasma,
free and exosomes in comparison to benign tongue tissue and
plasma (159).

Moreover, in breast cancer in vitro model, it was shown that
secreted miRNAs from metastatic cells, in a process dependent
on Neutral Sphingomyelinase 2 (nSMase2), were transported to
endothelial cells by exosomes to promote angiogenesis (160).

In hematological malignancies, tumor-derived exosomes
reprogram bone marrow stromal cells, promoting a tumor-
supportive microenvironment by suppressing anti-tumor immunity
andpromoting inflammatory cell recruitment, angiogenesis, osteoclast
differentiation, and drug resistance. Moreover, we have demonstrated
that in multiple myeloma, cell-derived exosomes induce
overexpression of miR-27b-3p and miR-214-3p in fibroblasts of the
surrounding tumor microenvironment. These miRNAs increase
proliferation and reduce apoptosis of fibroblasts via FBXW7 and
PTEN signaling, and sustain tumor growth and progression by drug
resistance (161, 162).

Summing up, miRNAs in tumors can act as oncogenes or tumor
suppressors (163). However, the same miRNA can act as onco-
miRNAs and oncosuppressor-miRNAs participating in distinct
pathways that have different effects on cell survival, growth, and
proliferation depending on the cell type and the pattern of gene
expression (164). Another critical aspect of evaluating is the different
expression between precursor miRNA and its active molecule. In
various types of tumors, it was found altered levels of pre-miRNA but
not of the active molecules (165, 166).

So ultimately, all tumors present specific signatures of miRNAs
altered expression. For this reason, the tumor-specific miRNAs
expression profile may represent a valid and useful biomarker for
diagnosis, prognosis, follow-up, patient stratification, definition of risk
groups, and for the development of new therapeutic strategy (167).
However, there are many challenges to be addressed before reaching
full approval for clinical use (168). It is imperative to validate targets,
prevent unwanted off-target effects, and develop an efficient and
specific miRNA delivery system.

miRNA in Angiogenesis—The AngiomiR
Angiogenesis is the process bywhichnewbloodvessels originate. It is a
physiological process during embryonic development and
reproduction (corpus luteum formation), but it has a pivotal role
also in pathological processes such as wound healing, inflammation,
and tumor. In this last, angiogenesis is a key process for development
and progression, leading to form an efficient vasculature network that
guarantees a high supply of nutrients, an efficient system to remove
catabolites, and the cancer stem cell maintenance (169). Different
mechanisms can contribute to the formation of the new vascular
network in tumors, such as sprouting angiogenesis, intussusceptive
angiogenesis, vascular co-option, vasculogenic mimicry, postnatal
vasculogenesis, or by differentiation of putative cancer stem cells
(CSCs) into endothelial cells (ECs) (170–172).
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Angiogenesis isamulti-stepprocess.Takingasanexample thewell-
known sprouting angiogenesis, it begins with activation of ECs, which
become able to exit their vessel of origin, invade the surrounding
stroma by local enzymatic degradation of the basement membrane,
proliferate andmigrate in the direction of the angiogenic stimulus, and
form tubes. Then the processes of blood vessel fusion, blood vessel
pruning, and pericytes stabilization occur to form and complete the
new capillary network.

Tumors are heterogeneous and entropic organs, in which
tumor cells cohabit and codevelop with the molecular and
cellular components of the surrounding microenvironment. In
this plastic environment, the imbalance between pro-angiogenic
and anti-angiogenic signaling guides the “angiogenic switch,”
causing continuous generation of new blood vessels (173). The
constant expression of pro-angiogenic factors does not allow
blood vessel maturation resulting in the characteristic aberrant,
leaky, disorganized, immature, thin-walled, and ill-perfused
tumor vasculature (174). These aspects of tumor blood vessel
cause and sustain a hypoxic microenvironment, even in highly
vascularized tumors, that supports tumor growth favoring all
hallmarks of the tumor, including immunosurveillance escape,
metastasis, and not respond to therapies.

In addition to the well-known growth factors and vascular
genes involved, angiogenesis is also regulated by epigenetic states
of genes, and miRNAs expression and function (175). miRNAs
act controlling the expression of angiogenesis-related factors,
endothelial cell proliferation, migration, and tube formation.
They are called angiomiRNAs (angiomiRs).

It is possible to distinguish four-way of miRNAs action on tumor
angiogenesis: i) tumor cells derived-miRNAsmay affect the activity of
ECs via non-cell-autonomous mechanisms; ii) ECs derived-miRNAs
may regulate the cell-autonomous behavior; iii) tumor-derived
extracellular vesicles transfer miRNAs to ECs; other organs/systems
derived-miRNAs might affect either tumors or ECs (Figure 1). (176).
In other words, in the first way, genetic and epigenetic alterations in
tumor cells affect the phenotypes of ECs through changing
microenvironment or intercellular interaction. In the second way,
genetic and epigenetic alterations in ECs affect the cell’s own
phenotypes. In the third way, tumor cells derived-miRNAs regulate
the expressionof pro- or anti-angiogenic factors in aparacrinemanner
by extracellular vesicles (EVs) that contain tumor cells-miRNAswhich
will be transferred from tumor cells to ECs,where they induce the pro-
or anti-angiogenic effects. The fourth ways take advantage of cellular
communication across tissues. miRNAs from other organs/systems,
different from tumor cells or ECs, regulate the expression of pro- or
anti-angiogenic factors in a paracrinemanner. In zebrafishmuscle, the
evolutionarily conservedmyomiRs,miR-1, andmiR-206 frommuscle
cells negatively regulate angiogenesis by directly modulating VEGFA
mRNA expression in ECs by a possible binding to three sites in its 3′
UTR (177). Increased expression ofmiR-1 andmiR-206 was found in
patients affected by rhabdomyosarcomas and gastric cancer compared
with healthy subjects (178, 179).

AngiomiRs can work targeting the negative regulators of
angiogenesis and so promoting neoangiogenesis (pro-
angiomiRs) or by targeting positive regulators of angiogenesis
and so inhibiting it (anti-angiomiRs).
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Besides the altered expression levels of certain angiomiRs, it
has been shown that tumor angiogenesis can depend on the
dysregulation of miRNAs biogenesis enzymes, Dicer and Drosha,
involved in the maturation of ECs (180–182).

Recently Tiwari et al. (168) and Leone et al. (183) reviewed the
mechanisms by which miRNAs regulate new blood vessel formation
involving classical and non-classical growth factors and signaling
pathways of angiogenesis. Therefore, we propose a concise table
(Table 2) to get a glance at the main miRNA targets and tumors
involved, andbelow,we examine the role ofmiRNAs in the threemost
studied mechanisms by which angiogenesis can happen, sprouting
angiogenesis, vessel co-option and vasculogenic mimicry.

Sprouting angiogenesis requires detailed temporal coordination
of ECs migration and proliferation (171). In this mechanism, new
blood vessels originate from the pre-existing one, and the two main
actors are tip cells and stalk cells. The tip cells are activatedECs on the
vascular front that migrate in response to angiogenic stimuli coming
fromthesurroundingmicroenvironment.Thestalkcells areactivated
ECs which are located behind the vascularization front, intensely
proliferate and organize themselves to form the vessel lumen.
Quiescent ECs became tip/stalk cells in response to vascular
endothelial growth factor-A (VEGF-A) gradient concentration and
its receptor (VEGFR) expression level in association with extensively
transcriptomic alterations (226). In vitro, by a 3D-spheroid model
that reproduces the initial phase of sprouting angiogenesis and by the
administration of VEGF-A, it was demonstrated that quiescent ECs
are activated in response to VEGF-A and differentiate into tip cells
that allow the migratory process rather than cell proliferation (227).
In this phenotypic switch, during initial sprouting angiogenesis,
miRNA plays a pivotal role in controlling tip cell fate by activating
Frontiers in Oncology | www.frontiersin.org 8
specific gene programs (227). The computational method Gene Set
Enrichment Analysis (GSEA) showed the activation of genes that
regulate extracellular matrix organization, cell adhesion molecules,
integrin pathway, protein translation, and collagen formation.
Instead, the genes that are associated with cell-cycle progression or
are involved inmitogen-associated protein kinase (MAPK) signaling
are repressed (227, 228).miR-424-5pup-expression andmiR-29a-3p
down expression were reported as the primary miRNAs in this
networkwhereVEGFtriggers tip cell specification(227).miR-424-5p
expression induces the repression of target genes involved in cell
proliferation, includingMAPKand cell cycle-related ones (227, 229).
On the contrarymiR-29a-3p downregulation induces the expression
of target genes involved in cell migration as extracellular matrix
(ECM) -related ones (227, 230). The same authors investigated the
angiogenic post-transcriptional activity of 58 sprouting-associated
genes (including the two mentioned above) in human colorectal
cancer, by themeansofGSEA, showing theutilityofmiRNAnetwork
analysis for patients therapy stratification and new druggable
biomarkers detection.

Vessel co-option is an alternative mechanism of angiogenesis
in which cancer cells migrate towards and along the pre-existing
vasculature without or before angiogenesis, or in response to
anti-angiogenic therapy (231). In addition to promoting tumor
growth and progression, vessel co-option mediates tumor
resistance to anti-angiogenic therapy (232). In a study, in
which was evaluated the role of vessel co-option concerning
sorafenib [a tyrosine kinase inhibitor (TKI)] resistance in
hepatocellular carcinoma, by miRNA sequencing and qRT-
PCR, four signaling pathways that are up-regulated were found
(233). These pathways, involved in cellular motility and invasion,
FIGURE 1 | miRNAs ways to regulate tumor angiogenesis. 1) miRNAs derived from tumor cells indirectly may affect ECs supporting a pro-angiogenic microenvironment
and altering ECs junctions. miR-9, miR-200s, and miR-205 promote the differentiation of fibroblasts into cancer associated fibroblasts (CAFs). 2) miRNA derived from ECs
in autocrine manner may promote a migratory tip ECs phenotype that in turn promote sprouting angiogenesis. 3) Tumor-derived miRNAs may be secreted outside the cell
and may directly regulate ECs. 4) Secreted miRNAs from other organs/tissues might affect ECs as myomiRs done. 5) Altered tumor-miRNA expression may promote tumor
cell motility and invasion of the surrounding tissue that promote angiogenesis and tumor dissemination by vessel co-option. 6) Other miRNAs can induce vasculogenic
mimicry. CAFs, cancer associated fibroblasts; ECs, endothelial cells; Fs, fibroblasts; GRA, granulocytes; TAMs, tumor associated macrophages; T-/B-cells.
November 2020 | Volume 10 | Article 581007

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Annese et al. miRNAs in Tumor Angiogenesis
TABLE 2 | AngiomiRNAs in tumors.

miRNA Target Function Pro/anti-
angiogenic

Let-7b Cdc34
EZH2
ER-a36
HMGA1
SOCS4

Overexpression modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis
and mobility in prostate cancer (184).
Decreased expression correlates to high MVD and worse progression-free survival and overall survival in NSCLC (185).

pro/anti

Let-7f TSP-1 Overexpression attenuated the inhibition of angiogenesis by low-dose metronomic Paclitaxel chemotherapy in breast cancer
(186).

pro

miR-9 COL18A1
MYC
OCT4
PTCH1
PHD3
TSP2

Overexpression in tumor cells and secretion by exosomes enhances proliferation and angiogenesis in glioma (187). pro

miR-9-5p SOCS5 Overexpression promotes angiogenesis and radiosensitivity in patients with cervical cancer (188). pro
miR-10b HOXD10

NOTCH1
PAX6
TP53

Overexpression retained independent prognostic significance for distant metastasis along with microvascular density (MVD)
and vascular invasion in patients with axillary lymph node−negative (ANN) breast cancer (189).
Overexpression positively correlates to invasiveness, angiogenicity, and growth of the mesenchymal subtype-like glioma cells
in glioblastoma multiforme (GBM) (190).

pro

miR-15a/16 VEGFA Overexpression affects angiogenesis in Multiple Myeloma (191). anti
miR-17-92 HIF1a

TGFBR2
VEGFA

Overexpressed in colorectal cancer in which inhibits tumor progression via suppressing tumor angiogenesis (192). anti

miR-24 Bim
VEGF
TGF−b
AKT

signaling
b−catenin
signaling

Overexpression promotes tumor growth and angiogenesis in pancreatic cancer (193).
Overexpression in conditioned medium from the U251 glioma cell line exhibited significantly increased cell viability, cell
migration, and tube formation of HUVECs (194).

pro

miR-126 ADM
Ang1
EGFL7
IGFBP2
MERTK
VEGFA

Reduced expression correlates with increased angiogenesis and worse prognosis in NSCLC (185), breast cancer (195),
gastric cancer (196), and cervical cancer (197).
Overexpression impairs vessel sprouting in hepatocellular carcinoma (198, 199). decreases angiogenesis and
lymphangiogenesis in oral cancers (200), and is associated with beneficial effects in cholangiocarcinoma (201).

pro/anti

miR-132 CCND1
HB-EGF
p21

Its expression inversely correlates to mast cell and microvessel density in salivary gland tumors (202).
In a cluster with miR-212 inhibits tumor tissue proliferation and angiogenesis (203).
Loss or reduced expression predicts poor overall and disease-free survival in patients with primary osteosarcoma (204).

anti

miR-145 N-RAS
VEGF-A

Reduced expression positively correlates with malignancy stages of breast tumors (205) and tumor angiogenesis and
progression in uveal melanoma (206).

anti

miR-192 EGR1
HOXB9

Overexpression induces inhibition of tumor angiogenesis in multiple ovarian and renal tumor models, resulting in tumor
regression and growth inhibition (207).

anti

miR-195 IRS1
PRR11
PSAT1
VEGF

Overexpression inhibits tumor growth and angiogenesis in breast cancer (208), Squamous Cell Lung Cancer (SQCLC) cells
(209), prostate cancer (210), and colorectal cancer (211). In ovarian cancer, it also reduces the cisplatin resistance (212).

anti

miR-210 EFNA3
HIF-1a
JAK2/
STAT3
Pathway
VHL

SMAD4
STAT6
TET2

Overexpression increases angiogenesis and promotes fibroblast transformation into cancer-associated fibroblasts (CAFs) in
lung cancer (213).
Overexpression correlates with higher microvessel density in HCC (214), malignant peripheral nerve sheath tumor (MPNST)
(215), and in oral squamous cell carcinoma (OSCC). In OSCC, its expression positively correlates with Leptin-receptor and
HIF1- a expression (216).
On the contrary, its overexpression down-regulates E2F3, and so inhibit tumor initiation in ovarian cancer cells (217).

pro

miR-221 ANG
CXCL16
TSP2

Overexpression in cancer-derived exosomes promotes angiogenesis in cervical squamous cell carcinoma (218).
Overexpression in hepatocellular carcinoma promotes angiogenesis (219).

pro

miR-320 Neuropilin
1 (NRP1)

Reduced expression inversely correlates with vascularity in OSCC (220) and cholangiocarcinoma (221). anti
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were including axonal guidance, EMT, STAT3, and Wnt/
bcatenin signaling. Evaluating the miRNA cluster involved in
EMT, three transcripts coding for Vimentin, and Zinc Finger E-
Box Binding Homeobox-1/-2 (ZEB1 and ZEB2), were found
significantly up-regulated in resistant tumor vs. control (233).
These results highlight the importance of targeting different
types of angiogenesis mechanisms because the tumor can
activate alternative ways that non respond to classic anti-VEGF
or TKI therapies.

Vasculogenic mimicry is a tumor neovascularization
mechanism different from the endothelium-dependent ones. This
mechanism is often present in highly aggressive and genetically
dysregulated tumors in which tumor cells mimic endothelial cells.
Inovarian cancerwere found that lowmiR-27bexpression levels are
closely correlated with high vascular endothelial cadherin (VE-
cadherin) expression and the high vasculogenic mimicry capability
of tumor cells (234). VE-cadherin has been recognized as a master
gene of tumor vasculogenic mimicry (235, 236). MiR-27b targets
the 3′ UTR of VE-cadherin mRNA to suppress ovarian cancer cell
migration and invasion as well as vasculogenic mimicry, as also
demonstrated in hepatocellular carcinoma (234, 237).

Another miRNA related to vasculogenic mimicry is miR-584-
3p. This miRNA function as a potent tumor suppressor by
inhibiting vasculogenic mimicry of malignant glioma targeting
Rho Associated Coiled-Coil Containing Protein Kinase 1
(ROCK1) that disturb hypoxia-induced stress fiber formation and
migration of glioma cells (238). In glioma, vasculogenic mimicry
could also be suppressed by miR-Let-7f disturbing periostin-
induced migration of tumor cells and by miR-9 disturbing
Stathmin (a cytosolic phosphoprotein which regulates
microtubule dynamics during cell-cycle progression) expression
in vascular endothelial cells and glioma cells (239–241).

No specific studies were found concerning miRNA and tumor
angiogenesis that occurs by intussusception or vasculogenesis.

In addition to the proliferation and migration of ECs and tumor
cells to promote angiogenesis, miRNAs can control new blood vessel
formation by regulating the tumor microenvironment. This means
thatmiRNAs can regulate all the cellular andnon-cellular components
Frontiers in Oncology | www.frontiersin.org 10
of the surrounding tissue. A recent review of Pan et al. elucidates the
role of miRNA in regulating cancer-associated fibroblasts (CAFs),
tumor-associated bone marrow mesenchymal cells, tumor-associated
macrophages (TAMs), T-cells, and ECs (242). For instance, in breast
cancer, it was shown that severalmiRNAs are implicated in the switch
from normal fibroblast to CAFs, including miRNA-9 (up-regulated),
miR-200s, andmiR-205 (down-regulated). The reduced expression of
miR-205 converts the normal fibroblasts into CAFs by promoting
YAP1 expression, which is also involved in angiogenesis (243).

Summing up, miRNAs provide new insights into understanding
the molecular mechanisms concerning angiogenesis. Their
dysregulation may be responsible for the failure of current anti-
angiogenic therapy.

In addition to targeting the different types of angiogenesis
mechanisms, the new therapeutic approach should also take into
account the vascular morphology. As said above, the tumor blood
vessels are not mature, so vascular normalization is necessary.
Vascular normalization can be accomplished by attenuation of
hyperpermeability, increasing vascular pericyte coverage, inducing
a more normal basement membrane, resulting in improved tumor
perfusion, reduced hypoxia, and therapeutic outcomes (244).

Therapeutic strategies involve the use of miRNA as antagonists
or mimics. Antagonists act inhibiting endogenous miRNAs with a
gain-of-function in disease. Mimics act simulating miRNAs with a
beneficial effect, but that are lost in the disease.miRNAs antagonists
or mimics may be employed in transient normalization of tumor
vasculature to make it more competent for oxygen and drug
delivery (245).

miRNA in Lymphoma
Lymphoma is a group of tumors that begins in the cells of
the immune system, lymphocytes-T and -B, that grow out of
control. These cells reside in the lymph nodes, spleen, thymus,
bone marrow, and other parts of the body. All these parts of the
lymphatic system can be affected by lymphoma.

There are two main types of lymphoma, Non-Hodgkin
Lymphoma (NHL) and Hodgkin Lymphoma (HL) (246, 247).
The main discriminant between the two types of lymphoma is
TABLE 2 | Continued

miRNA Target Function Pro/anti-
angiogenic

miR-296 HGS
PDGFRb
VEGFR2

Overexpression in glioma endothelial cells induces angiogenesis (222). pro

miR-378 MMP2
MMP9
Sufu
VEGF

Overexpression is associated with cell migration, invasion, and tumor angiogenesis in patients affected by NSCLC with brain
metastasis (223), in ovarian cancer (224) and glioblastoma cell lines (225).

pro
November 2020 | Volume 10 | Ar
Target’s abbreviations: ANG, Angiogenin; Ang1, Angiopoietin 1; ADM, Adrenomedullin; AKT, AKT Serine/Threonine Kinase; Bim, BCL2-like 11 apoptosis facilitator; CCND1, Cyclin D1;
Cdc34, Cell Division Cycle 34; COL18A1, Collagen type XVIII alpha 1 chain; CXCL16, Chemokine C-X-C motif ligand 16; EFNA3, Ephrin-A3; EGFL7, Epidermal Growth Factor like domain
7; EGR1, Early Growth Response 1; EZH2, Enhancer of zeste homolog 2; E2F3, E2F Transcription Factor 3; ER-a36, estrogen receptor-a36; Fus1, nuclear fusion protein; HB-EGF,
Heparin-Binding EGF-Like Growth Factor; HGS, Hepatocyte growth factor-regulated tyrosine kinase substrate; HIF-1a, Hypoxia-inducible factor 1-alpha; HMGA1, High Mobility Group
AT-Hook 1; HOXB9 Homeobox B9; HOXD10, Homeobox D10; IGFBP2, Insulin-Like Growth Factor Binding Protein 2; IRS1,Insulin receptor substrate 1; JAK2/STAT3, Janus Kinase 2/
Signal transducer and activator of transcription 3; MERTK, MER proto-oncogene, tyrosine kinase; MYC, Myc proto-oncogene protein; MMP2/-9, metalloproteinases; N-RAS, Proto-
Oncogene, GTPase; NRP1, Neuropilin 1; PAX6, Paired Box 6; PHD3, Prolyl-hydroxylase 3; PRR11, Proline rich 11; PSAT1, Phosphoserine aminotransferase 1; PTCH1, Patched 1; OCT4,
octamer-binding transcription factor 4; SMAD4, SMAD Family Member 4; SOCS-4/-5, Suppressor of cytokine signaling -4/-5; STAT6, Signal transducer and activator of transcription 6;
Sufu, suppressor of fused; TET2, Tet Methylcytosine Dioxygenase 2; TGF-b, transforming growth factor b; TGFBR2, Transforming Growth Factor, Beta Receptor II; TP53, Tumor Protein
P53; TSP-1/-2, Thrombospondin-1/-2; VEGF/-A, Vascular Endothelial Growth Factor/-A; VEGFR2, Vascular endothelial growth actor receptor 2; VHL, Von Hippel-Lindau.
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the presence of a specific type of abnormal cells called Reed-
Sternberg cells. These cells are also known as lacunar histiocytes
and are giant cells found by light microscopy in biopsies from
individuals affected by HL. In NHL, these cells are not present.
Moreover, other features distinguish the two major groups of
lymphoma are: NHL is more common than Hodgkin lymphoma;
the median age for diagnosis of NHL is 55 whereas for HL is 39;
NHL may start in lymph nodes anywhere in the body, whereas
HL usually starts in the upper part of the body (neck, chest or
armpits); NHL is typically not diagnosed before it has reached a
more advanced stage, whereas, HL is often diagnosed at an early
stage and consequently it is one of the most treatable cancers.

Despite these differences, both NHL and HL have similar
symptoms, like enlarged lymph nodes, fatigue, weight loss, and
fever. In both, different subtypes are distinguished (246, 247). NHL
could affect adults, children, and non-lymphatic tissue as skin.
Primarily, they are classified as B- or T-cell lymphoma based on the
white blood cell category affected, and secondarily as indolent or
aggressive based on how tumor cells grow and spread (slow or
quickly, respectively) (248). HL subtypes are Nodular
sclerosis Hodgkin lymphoma (NSCHL), Mixed cellularity
Hodgkin lymphoma (MCCHL), Lymphocyte-rich Hodgkin
lymphoma, and Lymphocyte-depleted Hodgkin lymphoma (248).

Lymphocytes, like all the other classes of blood cells, are derived
from bone marrow resident hematopoietic stem cells (HSCs),
through progressive loss of pluripotency caused by a response to
lineage determining signals. Intrinsic and extrinsic molecules,
including miRNAs, regulate cell fate and lineage commitment in
stem and progenitor cells (249). miRNAs dysregulation has been
found in both solid and hematologic tumors by various genome-
wide techniques, including oligonucleotide miRNA microarray
analysis, bead-based flow-cytometric technique, quantitative real-
time PCR for precursor/active miRNAs, miRAGE or RAKE assay
(250–253). Metzler et al. provided the first evidence of miRNA
involvement in human lymphoma. In children with Burkitt
lymphoma, He and Coworkers found that miR‐155 was 100-fold
increased compared to healthy blood and pediatric leukemia
patients (254).

Different studies have demonstrated the essential role of Dicer1
for stem cell persistence and differentiation in vivo. InHSCs, Dicer1
deletion compromises the hematopoietic stem/progenitor cell
(HSPC) function in a manner consistent with stem cell death
(255). In the same work, a specific miRNA, miR-125a, was found
to control theHSCs population size by regulatingHSPCs apoptosis.
In fact,miR-125a protectsHSPCs fromapoptosis andpromotes the
extensive expansion of the HSCs (255). Moreover, the ablation of
Dicer1 inB-cellprogenitorsblocks the transition frompro- topre-B
cells because of mir-17~92 targeting the pro-apoptotic molecule
Bim (256). Other miRNAs of the molecular circuitry that controls
hematopoiesis are miR-223, miR-181, and miR-142. These
miRNAs are specifically expressed in hematopoietic cells, and
their expression is dynamically regulated during early
hematopoiesis and lineage commitment (257). In detail, the
Authors have shown that miR-181 is preferentially expressed in
theB-lymphocytesofbonemarrow, and its expression inHSPCs led
to an increased fraction of B-lineage.
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miRNAs are also profiled in several distinct stages of T-
lymphocyte development. miR-181a represses, biding their 3′
UTR elements, the expression of Bcl-2, CD69, and the T-cell
receptor genes, all of which are coordinately involved in positive
selection of CD4+/CD8+ cells during thymocyte maturation
(258, 259).

miR-155 regulates both B- and T-lymphocytes functions. Its
deletion causes immunodeficiency because of B-lymphocytes
produce lower levels of immunoglobulins, tumor necrosis factor
(TNF) and lymphotoxin, and because of T-lymphocytes produce
lower levels of interferon-gamma(IFNg) and interleukin-12 (IL-12)
promoting differentiation to Th2 phenotype (260, 261). For miR-
155 is currently underway the first-in-human phase 1 clinical trial
(Identifier NCT02580552) and phase 2 clinical trial (Identifier
NCT03713320). The biopharmaceutical company, MiRagen
Therapeutics is developing a locked nucleic acid-modified
oligonucleotide inhibitor of miR-155, called MRG-106, and also
known as Cobomarsen. The preliminary results have shown that
miR-155, which is usually repressed in lymphoma, might be de-
repressed by Cobomarsen in patients with mycosis fungoides, the
most common form of cutaneous T-cell lymphoma. miR-155
overexpression will deactivate/activates signaling pathways,
including JAK/STAT, MAPK/ERK, and PI3K/AKT, associated
with tumor cell proliferation, survival, and apoptosis (262).

Angiogenesis in hematological malignancies, as in solid
tumors, correlates with tumor growth and development (263).
As discussed in the previous section, miRNAs regulate various
aspects of angiogenesis, including proliferation, migration, and
morphogenesis of endothelial cells. Therefore, the knowledge of
all these mechanisms will permit to improve the management of
malignancies, and therefore the patients’ prognosis by targeting
specific molecules and processes involved in tumor angiogenesis.
Despite the several data on miRNome characterization in
lymphoma, the data about the specific regulation of angiogenesis
by miRNAs are scarce (264–266).

miR-135b up-regulation was demonstrated in anaplastic large-
cell lymphoma (ALCL) cell lines and clinical samples positive to the
oncogenic translocation nucleophosmin-anaplastic lymphoma
kinase (NPM-ALK) (267). NPM-ALK promotes the expression of
miR-135b and its host gene LEMD1 through STAT3 activation. By
the decoy RNA system to achieve long-termmiR-135b suppression
and by GSEA, it was shown that miR-135b targets FOXO1,
TGFBR1, SIRT1, cyclin G2, CREG1, Bcl11b, and STAT6 and
confer chemoresistance to ALCL cells. Moreover, NPM-ALK/
STAT3–miR-135b axis polarizes the identity of ALCL cells to a
Th17 immunophenotype (pro-inflammatory cells) downregulating
GATA3 and STAT6. This pro-inflammatory immunophenotype
shift was also demonstrated in a xenograftmodel of ALCL inwhich
the tumor growth and angiogenesis support and are supported by
the pro-inflammatory microenvironment (267, 268).

In the same tumors, ALK-positiveALCL, the angiogenesis is still
sustained by hypoxia-miR-16 downregulation. miR-16
downregulates VEGF expression biding the 3’UTR- of its mRNA
directly. In onco-ALKmouseMEF cell lines and transgenicmodels,
itwas shown thatALKandhypoxia-inducible factor1 alfa (HIF-1a)
co-expression induce miR-16 downregulation, which therefore
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does not allow VEGF downregulation by post-transcriptional
regulation (269).

The polycistronic miR-17-92 cluster, encoding six miRNAs (miR-
17,miR-18a,miR-19a,miR-19b,miR-20a, andmiR-92), is involved in
immunecell development, have anoncogenic role in lymphoma, anda
controversial role in angiogenesis (270, 271). In p53-null colonocytes,
co-expressing K-RAS and c-Myc, was shown an increased
neoangiogenesis correlated with the downregulation of anti-
angiogenic thrombospondin-1 (Tsp1) via miR-18, and of the
connective tissue growth factor via miR-18 and miR-19 (272). On
thecontrary,otherauthorsdemonstratedananti-angiogenic roleof the
same cluster showing that the overexpression of miR-20a inhibits
sprouting in vitro, whereas its inhibition increases ECs sprout
formation in perfused vessels Matrigel plugs, but not following
systemic inhibition (273). The dispute can be overcome, considering
that tumor angiogenesis regulation is context-dependent.

A schematic diagram of the significant lymphoma-miRNAs
above mentioned is represented in Figure 2.
CHALLENGES AND FUTURE DIRECTIONS

Large-scale gene expression analysis evidence that the expression of
individual miRNA or miRNA signatures will become routine
biomarkers for cancer diagnosis and prognosis, and personalized
therapy, thanks to their accessibility,high specificity, and sensitivity.

miRNAs induce epigenetic alterations that are reversible and
targeted multiple regulators of related pathways (274–277). Tumor
angiogenesis can be ruled by derepressing/miming tumor suppressor
genes with angiostatic properties that are instead epigenetically
silenced in a tumor, endothelial, and/or microenvironment cells, or
by repressing oncogenes codifying for pro-angiogenic molecules
(278, 279). Some argue that miRNA inhibitors are prevalently used
for therapies because endogenous miRNA inhibition is less
hazardous than overexpressing. On the contrary, others sustained
that miRNA therapy to replace endogenous miRNAs repressed in
cancer cells, usingmiRNAmimics, is less dangerous because theywill
not damage normal cells since they already express it.

miRNAs for therapy are usually chemically modified to
stabilize the oligonucleotide once injected by intravenous,
intraperitoneal, or intramuscular ways. miRNAs could be
embedded in a liposome or viral backbone, or associated with
targeted nanoparticles to improve affected cells’ yield.

Anti-angiogenic therapies usually directly targeted ECs,
because ECs are in direct contact with blood carrying drugs, a
small amount of ECs regulate many tumor cells, ECs are
genetically more stable than tumor cells and so therapeutic
effects are more predictable, and finally, only the ECs in the
tumor site are activated and could be specifically targeted. Tumor
ECs “angiogenic stage-related profiles” was extensively
characterized by in vitro ECs culture under different cytokines
and growth factors stimuli, using tube formation models, and
ECs isolated from in vivo sources (280–282).

miRNA combination therapies with anti-angiogenic strategies,
chemotherapy, radiotherapy, photodynamic therapy, and
immunotherapy are in-depth reviewed elsewhere (278, 283).
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Noteworthy are two approved clinical trials about miR-16 and
miR-34a.miR-16-basedmicroRNAmimic is employed in a clinical
trial to treat malignant pleural mesothelioma and non–small-cell
lung cancer (Identifier NCT02369198). miR-34a mimic, in
combination with the antiangiogenic drug doxorubicin, is in
phase I clinical trial to treat patients with advanced solid and
hematological tumors (Identifier NCT01829971).

Given the scarcity of miRNAs in clinical studies, their clinical
application is not easy. The significant challenges are to prevent
unwanted off-target effects, to develop an efficient and specific
miRNA delivery system, to optimize effective dose (167). Well-
definedpre-clinical studies, usingcell lines and animalmodels and a
broad set of human samples, are needed to solve these challenges.
For example, coculture and 3D-culture for ECs with other
microenvironment cells to study angiogenesis represents a more
physiological condition. In order to improve clinical trials, it will be
necessary to followmiRNA-treated patients for a long time toprove
that miRNAs are unique biomarkers of angiogenesis‐related
cancers. Moreover, miRNAs signatures from serum, plasma, or
urinary should be further investigated as less invasive procedures.
Recently, circulating exosomal miRNAs, thanks to reasonable
stability, higher specificity, and sensitivity, appear potential
biomarkers for clinical applications.

Standardized miRNAs application protocols in clinical
practice are missing, maybe due to the lack of extensive studies
on miRNAs with limited data comparability. More attention
must be paid to selecting the starting material, sample collection,
detection platform, and statistical analysis (284). For instance, if
we wanted to quantify the circulating miRNAs, we should be
attentive to the source that could be the whole blood, serum,
plasma, exosomes, or microvesicles. When whole blood is used,
miRNAs from blood cells will influence the total amount of the
only circulating ones (273, 274). For sample collection, extreme
pH changes or repeated freezing and thawing cycles should be
avoided. The best commercial kit available for miRNAs
extraction should choose to produce the highest yield of total
RNA extraction (275). Moreover, it must be considered that in
the samples of cancer patients, there will be a greater quantity of
miRNA, and therefore to compare the miRNA expression data
with healthy ones, it is more appropriate to use the same volume
of starting material (biological fluid, cells, tissue) instead to use
the same amount of total RNA.

Normalization of miRNAs quantification is another challenge.
The small nuclearU6, or small nucleolar RNAs SNORD44, or some
validatedmiRNAs, asmiR-16, were usually used for normalization,
but it was demonstrated that these common reference genes for
miRNA research are poor normalizers because differentially
regulated (285, 286). Therefore, it is necessary to verify the
expression stability of putative normalizers in each experiment.

Apart from these technical problems, the difficulties in translate
microRNA biomarkers from bench to clinic are associated with the
inconsistency of miRNAs as unique biomarkers since: several of
them are detectable in patients with different tumor types; other
studies have shown different results for the same miRNA in the
same tumors; sometimes is difficult to discriminate among closely
related miRNAs (286, 287).
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In order to improve and implement the clinical application of
miRNAs, it is necessary to start with a careful evaluation of the
preliminary study approaches.miRNAs that are already knownand
that are present in the miRNA database (miRbase) can be detected
and quantified by polymerase chain reaction (PCR)-based or
hybridization-based methods. Quantitative reverse transcription-
polymerase chain reaction, qRT-PCR, is the gold-standardmethod
in miRNA profiling in human (288). TaqMan TLDA microfluidic
cards and miRCURY LNA qPCR detection platforms are the most
used (276). Hybridization techniques are also used. miRNA
microarrays analyze thousands of miRNAs in one assay but have
less sensitivity than PCR-based methods (289).

On the other hand, to know and quantify new miRNAs,
miRNA-seq is applied (290). The computational and prediction
methods developed to detect tumor-related miRNAs are not
satisfactory enough (291). However, despite the improvement in
miRNA expression profiling technologies and big data in public
databases, to date, these public portals with miRNA expression
data from patients around the world are underemployed.

CONCLUSIONS

The human genome encodes approximately 2,600maturemiRNAs
and more than 200,000 mRNAs (279). miRNAs may target more
than one mRNAs, thus influencing multiple molecular pathways,
but also mRNAs may bind to a variety of miRNAs, either
simultaneously or in a context-dependent manner (292, 293).
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Computational analysis suggests that around 30% of protein-
coding genes in humans are regulated by miRNAs (177). Each
step of miRNA biogenesis, including miRNA transcription,
processing by Drosha and Dicer, transportation, RISC binding,
and miRNA decay, is finely controlled. Therefore, minimal
dysregulation in miRNA biogenesis and their control of gene
expression can lead to tumorigenesis.

Herewehaveprovidedupdates inmiRNAsbiogenesis, function,
and role in health and tumor and especially in angiogenesis. The
identification of miRNAs as onco-miRNAs or oncosuppressor-
miRNAwith a critical role in angiogenesis has raised new hopes for
the treatment of tumors. They may be candidates even for target-
specific therapies as antagonists or mimics (294). However, their
diffusion as drugs is still far from the full clinical applicationbecause
there are several criticalities to be carefully considered as tissue-
specific delivery and cellular uptake sufficient to produce the
therapeutic effect.

The relationship between angiogenesis and progression of several
hematological malignancies is well established, and anti-angiogenic
drugs appear a promising therapeutic strategy (295). Endostatin,
immunomodulatory drugs (e.g., Thalidomide), neutralizing
antibodies (e.g., Bevacizumab), and histone deacetylase inhibitors
(e.g., Vorinostatat) are used in the treatment of lymphoma, but they
are not enough to re-establish “normal” angiogenesis.miRNAs could
cover part of the leaks. Among the hematological tumors, we decide
to evaluate the literature concerning the role of miRNAs in the
regulation of angiogenesis in lymphoma, and we observed that
FIGURE 2 | Major lymphoma-derived miRNAs. This schematic diagram represents miRNAs that have been identified in lymphomas and their relationship to
lymphopoiesis. ECs, endothelial cells; HSCs, hematopoietic stem cells; LPs, lymphocytes precursors; Pre-B, pre-B-cells; Pro-B, pro-B-cells; CD4+, T-cells; CD8+,
T-cells; Th2, T-helper cells; Th17, T-helper cells; T-/B-cells.
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although the studies are scarce, there are two clinical trials for miR-
155 in progress.

In addition to the crit ical issues concerning the
pharmacokinetics and pharmacodynamics of miRNA-drugs, it
should be stressed that there is still much to discover in the field
of miRNAs. The sequencing of miRNome and the mapping of
miRNA–mRNA interactions is far from being complete due to the
recognized challenge of computational prediction of mRNA–
microRNA interactions. In most studies, methods of high-
throughput analysis based on Next Generation Sequencing
technology (NGS) and computational analysis are applied.
However, these experimental approaches to define the role of
small non-coding RNAs in the biological and pathological
processes are not enough. The morphology-based approach, such
as dual in situ Dual ISH-IHC Technology, should walk together
with the most modern computational and molecular technologies
Frontiers in Oncology | www.frontiersin.org 14
for amore precise characterizationof the biological events in amore
realistic molecular context (296–298).
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