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For many pediatric sarcoma patients, multi-modal therapy including chemotherapy,
radiation, and surgery is sufficient to cure their disease. However, event-free and overall
survival rates for patients with more advanced disease are grim, necessitating the
development of novel therapeutic approaches. Within many pediatric sarcomas, the
normal immune response, including recognition and destruction of cancer cells, is lost due
to the highly immune suppressive tumor microenvironment (TME). In this setting, tumor
cells evade immune detection and capital ize on the immune suppressed
microenvironment, leading to unchecked proliferation and metastasis. Recent preclinical
and clinical approaches are aimed at understanding this immune suppressive
microenvironment and employing cancer immunotherapy in an attempt to overcome
this, by renewing the ability of the immune system to recognize and destroy cancer cells.
While there are several factors that drive the attenuation of immune responses in the
sarcoma TME, one of the most remarkable are tumor associated macrophage (TAMs).
TAMs suppress immune cytolytic function, promote tumor growth and metastases, and
are generally associated with a poor prognosis in most pediatric sarcoma subtypes. In this
review, we summarize the mechanisms underlying TAM-facilitated immune evasion and
tumorigenesis and discuss the potential therapeutic application of TAM-focused drugs in
the treatment of pediatric sarcomas.
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INTRODUCTION

Pediatric sarcomas are a heterogenous group of tumors that comprise approximately 10% of all
childhood cancers (1–5). While sarcomas also occur in adults, the prevalence of subtypes is
strikingly unique for the pediatric population. The most common bony pediatric sarcomas are
osteosarcoma and Ewing sarcoma (EWS), while rhabdomyosarcoma (RMS) is the most common
pediatric soft tissue sarcoma. Other rarer sarcoma subtypes such as synovial sarcoma,
leiomyosarcoma, and liposarcomas can occur in children, but are more common in adult
patients (6). The cornerstone of treatment typically involves an intensive multi-modality
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approach including cytotoxic chemotherapy, surgery, and
radiation. Over the last five decades, survival improvements have
resulted fromincremental adjustments tocurrent therapy;however,
very few new therapies have been shown to positively improve
pediatric sarcomas outcomes (7–9).

For patientswithmetastatic RMS, the 3-year overall survival (OS)
and event-free survival (EFS) are 34 and 27% respectively (10, 11).
Survival rates for metastatic osteosarcoma and EWS are similarly
dismal with 5-year survival rates reported between 20–30% and 30–
40%, respectively (10, 11). Current therapies are highly toxic and
associated with many short- and long-term side effects resulting in
considerable life-longmorbidities (12–15). Alternative approaches,
such as immunotherapy, are desperately needed to both improve
cure rates and to minimize long-term side effects. Therapeutic
approaches that direct the immune system to recognize anddestroy
tumor cells are currently being trialed in patients with relapsed/
refractory sarcomas.

To better understand the potential benefit of immunotherapy
in pediatric sarcomas, certain biologic and mutational
differences between pediatric and adult sarcomas warrant
emphasis. In contrast to adult sarcomas, pediatric sarcomas are
generally characterized by a low mutational burden, specific
chromosomal translocations that encode “driver mutations,”
and low somatic copy number alterations in some sarcoma
subtypes (16–23). Higher mutational burden and presence of
complex genomic aberrations that occur in adult patients may
increase the presence and immune recognition of sarcoma
neoantigens. This is further compounded by the observation
that the pediatric adaptive immune system tends to be more
plastic and may account for variations in individual responses to
immunotherapy (24, 25). Additionally, there is higher marrow
cellularity and more robust hematopoiesis in children compared
to adult patients, exemplified by faster immune reconstitution in
children following chemotherapy (26–28). Therefore, these
unique differences in sarcoma biology and immune function
between adult and pediatric patients likely affect responses to
immunotherapy. Furthermore, before cellular immunotherapy
can be fully leveraged for pediatric sarcomas an understanding of
TAMs within the sarcoma TME is required.
THE SARCOMA TUMOR
MICROENVIRONMENT

The cellular composition of the TME is broadly comprised of
tumor cells, non-malignant stromal cells, blood vessels, and
immune cells. Stromal cells produce extracellular matrix
(ECM) proteins and matricellular proteins that provide
structural support and mediate signaling for cellular
movement. The immune components of the sarcoma TME,
including innate immune cells [neutrophils, TAMs, natural
killer (NK) cells, dendritic cells (DCs)] and adaptive immune
cells (B and T lymphocytes), can vary vastly with respect to
sarcoma subtype, primary tumor location, genetic or mutational
burden and previous therapy exposure. TAMs are one of at least
four myeloid subpopulations derived from tumor-associated
Frontiers in Oncology | www.frontiersin.org 2
myeloid cells (TAMCs) that also include myeloid-derived
suppressor cells (MDSCs), tumor-associated neutrophils
(TANs), and angiogenic monocytes expressing angiopoietin-2
(TIE-2) (29–31). Cellular immunotherapeutic approaches have
largely tested adopted transfer of activated and/or antigen
specific T cells; however, efficacy of these cells can be
significantly dampened by cells that exert immune regulatory
function, including TAMs, regulatory T cells (Tregs), and
mesenchymal stem cells (MSCs). For the purposes of this
review, we focus on TAMs.

Several studies have demonstrated a strong correlation
between macrophage infiltration, sarcoma tumor progression,
and patient survival, highlighting TAMs as potential
immunotherapeutic targets in pediatric sarcoma (32–36). In
addition to phagocytosis of necrotic tumor cells, which
decreases the presence of tumor antigen and subsequent
immunogenic T cell response, TAMs have been shown to
display a wide variety of immunosuppressive and tumor-
promoting functions. For instance, increased proportion of
TAMs has been shown to render chimeric antigen receptor T
cell immunotherapy ineffective (37). However, TAM number
and density in pediatric sarcomas do not explain the entirety of
their importance in facilitating tumor progression, and the
immune cell profiles in pediatric sarcomas vary across
tumor subtypes.
MACROPHAGES IN TUMORIGENESIS

Macrophages play critical roles in innate immunity including:
phagocytosis, clearance of apoptotic debris, lymphocyte
recruitment (38, 39), antigen presentation (40, 41), wound
healing (42), and tissue homeostasis (43, 44). Thus, they both
promote inflammatory responses as well as facilitate resolution.
In the setting of cancer, macrophages have a response that is
seemingly antithetical to the whole organism, as they drive
immune tolerance and facilitate cancer progression (45).

Various clinically applicable techniques are in development to
identify, quantify, and characterize sarcoma-associated TAMs.
Such techniques include immunohistochemistry, single cell RNA
sequencing, fluorescent magnetic nanoparticle labeling, and even
non-invasive imaging including magnetic resonance imaging
(MRI), given that T2* signal enhancement on MR images
significantly correlated with TAM density in sarcoma patients
(32, 46–48). Depending on their local microenvironments,
TAMs can display phenotypic and functional heterogeneity,
which is best understood through the concept of macrophage
polarization (see next paragraph) (49). However, this
dichotomous polarization paradigm is largely oversimplified,
and there is a broad range of macrophage polarization
phenotypes in vivo (50). While TAMs are the largest
population of infiltrating immune cells within pediatric
sarcomas and TAM infiltration into the tumor can be linked
with worse prognosis, the density of TAMs within the tumor
does not necessarily provide the full scope of how they influence
the TME (34, 51).
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MACROPHAGE POLARIZATION IN
TUMOR DEVELOPMENT

The M1/M2 polarization spectrum was developed to
explain macrophage phenotype and function in response to
inflammation or infection. In the setting of inflammation, M1
macrophages (classically activated macrophages) migrate to sites
of infection, phagocytose infected cells and serve as antigen
presenting cells (APCs) and produce T helper cell type 1 (Th1) or
pro-inflammatory cytokines, promoting T cell activation. In
contrast, M2 (alternatively activated) macrophages promote
tissue repair through efferocytosis, a phagocytic process in which
antigen are cleared, antigen presentation is diminished, and T
helper cell type 2 (Th2) cytokines are produced. This process also
promotes immune tolerance to autologous (or “self”) tissue.
Macrophage plasticity and polarization in the sarcoma TME
is also critical for the progression or regression of these
tumors (Figure 1).

Following exposure to damage- or pathogen-associated
molecular patterns (DAMPs or PAMPs), such as bacterial
Frontiers in Oncology | www.frontiersin.org 3
lipopolysaccharides (LPS), nucleic acids, and other microbial
ligands, toll-like receptor (TLR) are triggered and M1 polarize
macrophage (52–54). TLR ligation initiates a signaling cascade
involving the innate immune signal transduction adaptor
MYD88, interleukin 1 receptor associated kinase 4 (IRAK4),
tumor necrosis factor associated factor 6 (TRAF6) and inhibitor
of nuclear factor kappa B kinase subunit beta (IKK-b) which
ultimately activates nuclear factor kappa B (NF-kB), one of the
central regulators of inflammatory cytokine production.
Translocation of NF-kB into the nucleus leads to transcription
of Th1 genes, such as tumor necrosis factor-a (TNF-a),
interleukin (IL)-12, IL-1b, and IL-6, leading to expansion of
effector T cells (55–60). Activated T cells produce pro-
inflammatory cytokines (e.g., interferon gamma (IFN- g),
granulocyte colony-stimulating factor (GM-CSF)) further
perpetuating macrophage M1 activation (61–63). Additionally,
GM-CSF is a potent driver of antibody-dependent cell-mediated
cytotoxicity (ADCC) and antibody-dependent cellular
phagocytosis (ADCP), a cell mediated immune defense
whereby immune effector cells destroy antibody coated target
FIGURE 1 | Macrophage polarization and plasticity within the pediatric sarcoma tumor microenvironment. The panel represents recognized M1 (anti-tumoral) and
M2 (tumor-promoting) agonists that induce the induction of M1 and M2 markers by human macrophages. The major canonical functions of M1 macrophages and
M2 macrophages are also described. LPS, lipopolysaccharide, IFN-g, interferon-gamma; GM-CSF, granulocyte macrophage-colony stimulating factor; IL-4,
interleukin 4; IL-10, interleukin-10; IL-13, interleukin 13; M-CSF, macrophage colony stimulating factor; TLR, toll-like receptor; TNF-a, tumor necrosis factor-alpha;
IL-1b, interleukin 1 beta; PD-L1, programmed death ligand 1; PD-L2, programmed death ligand 2; MMP, matrix metalloprotease; MERTK, Mer receptor tyrosine
kinase; TGF-b, transforming growth factor beta. Image created with biorender.com.
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cells (64–66). M1 macrophages generally express high levels of
surface molecules for antigen presentation (e.g., major
histocompatibility complex-II (MHC-II)), augment T cell
activation (e.g., CD80, CD86), and further promote self-
activation (e.g., TLR2, TLR4) (67). M1 macrophages produce
cytokines to amplify T cell activation, such as IL-1b, IL-6, IL-12,
IL-18 and TNF-a (68, 69).

Alternative activation, or M2 polarization, is thought to occur
after exposure to cytokines such as IL-4, IL-10, macrophage
colony-stimulating factor (M-CSF) and transforming growth
factor beta (TGF-b) (70, 71), and/or apoptotic cellular debris
which promote the resolution of inflammation and wound-
healing. M2 macrophages may be identified by the up-
regulation of surface markers that promote clearance of
apoptotic debris, such as mannose receptor C-type 1 (MMR,
CD206) and CD163 (63, 72–76). M2 macrophages may produce
T cell suppressive cytokines such as TGF-b and IL-10 (77). In
response to local cytokine milieu, alternatively activated
macrophages also up-regulate inhibitory checkpoint ligands,
such as programmed death 1 ligand 1 (PD-L1) and
programmed death 1 ligand 2 (PD-L2), which inhibit T cell
effector function (78, 79). Many of the above pathways have been
or are being considered for targeting to either augment immunity
or inhibit the counter-regulatory activity known to occur in
malignancy. A summary of therapeutic strategies targeting
TAMs in the pediatric sarcoma TME is summarized in Figure 2.
Frontiers in Oncology | www.frontiersin.org 4
TLR Agonists
Manipulating macrophage polarization in the TME toward M1
activation status has been evaluated using TLR agonists.
Muramyl TriPeptide-PhosphatidylEthanolamine encapsulated
into liposomes (L-MTP-PE) has been proposed as an adjuvant
therapy for osteosarcoma patients. It is a synthetic analog of
muramyl dipeptide (MD), a peptidoglycan that is found in
bacterial cell walls. L-MTP-PE has been demonstrated to
activate TLR4 on macrophages and monocytes and upregulate
their tumoricidal functions through increased type 1 cytokine
production (such as TNF-a, IL-1, IL-6, IL-8, IL-12, and nitric
oxide (NO)) (80, 81). A preclinical evaluation of L-MTP-PE
combined with zoledronic acid (ZA) in murine models of
osteosarcoma showed that the two drugs significantly inhibited
tumor growth and development of metastases (82). Phase I and
II clinical trials evaluating L-MTP-PE in pediatric osteosarcoma
patients showed acceptable toxicity, and even enhanced
macrophage-mediated tumoricidal activity, but had variable
results in prolongation of OS and EFS (see Table 1) (80, 90,
91). In a follow-up randomized phase III trial [Intergroup (INT)-
0133] by the Children’s Oncology Group (COG) for patients
with osteosarcoma addition of L-MTP-PE to standard
chemotherapy showed no difference in 5-year OS or EFS.
When patients with metastatic disease were analyzed
separately, L-MTP-PE had improved survival compared (53 vs
40%); however, but the study was not powered to detect a
FIGURE 2 | Therapeutic Strategies Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Microenvironment. Therapy modalities include increasing
phagocytosis of TAMs, inhibiting tumor metastases, inhibiting efferocytosis, checkpoint blockade, altering macrophage polarization through targeting
immunosuppressive cytokines, metabolite depletion and blocking angiogenesis. TAM, tumor-associated macrophage; SIRPa, signal-regulatory protein alpha; MMP,
matrix metalloprotease; PS, phosphatidylserine; TIM-4, T Cell Immunoglobulin And Mucin Domain Containing 4; MERTK, Mer receptor tyrosine kinase; PROS1,
protein S; GAS6, growth arrest-specific 6; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; PD-1, programmed cell death protein 1; PD-L1, programmed
death ligand 1; mAB, monoclonal antibody; IL-10, interleukin 10; TGF-b, transforming growth factor beta; ARG1, arginase 1; VEG-F, vascular endothelial growth
factor; CXCL8, C-X-C motif chemokine ligand 8; CCL2, C-C motif chemokine ligand 2. Image created with biorender.com
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TABLE 1 | Current macrophage targeted therapies for the treatment of pediatric sarcomas.

Class Name Target Form Studies in pediatric sarcoma Outcomes Reference

Cytokines
GM-CSF1 Macrophages Inhaled

Inhaled
SC6

Phase I dose escalation studies in
pediatric cancer patients
AOST0221: Phase II study of
inhaled GM-CSF in first pulmonary
recurrence of osteosarcoma
patients
Phase II study of GM-CSF in
combination with chemotherapy
and radiation in EWS patients

Limited to no toxicity observed one patient with EWS2 achieved a
CR3; 3-year EFS4 and OS5 were 7.8 and 35.4%, respectively
EFS for 96 patients with osteosarcoma 12% at 4 months; EFS for
42 evaluable patients 20% at 12 months
5-year EFS of non-metastatic EWS patients in group A (with GM-
CSF); 0.56 vs 5-year EFS in group B (without GM-CSF 0.51. EFS
for metastatic EWS was not calculated due to small numbers

(83, 84)
(85)
(86)

Zoledronic
Acid

Macrophages IV7

IV
IV

AOST06P1: Phase I study of ZA8

in metastatic OS patients
Phase II study of ZA at standard
dosing for metastatic
osteosarcoma patients
EURO-EWING 2012: Phase III
randomized, multi-center study
combining ZA with standard
chemotherapy for EWS patients

DLTs9 experienced by five of 24 patients. DLTs included
hypophosphatemia, hypokalemia, hyponatremia, mucositis, limb
pain and edema; overall EFS and OS for 24 patients were 32%
and 60%, respectively
Median PFS10 19 months; median OS 56 months among four
patients
Clinical trial is currently ongoing.
(ISRCTN92192408)

(87)
(88)
(89)

L-MTP-PE11 Macrophages/
Monocytes

IV
IV

Phase I study of L-MTP-PE in
advanced malignancies
Phase IIb study of L-MTP-PE in
combination with ifosfamide with
relapsed osteosarcoma
Intergroup-0133: Phase III
randomized trial of addition of L-
MTP-PE to standard
chemotherapy in pediatric patients
with metastatic osteosarcoma

Toxicities included fever, chills and hypertension; no major organ-
related toxicities observed
No increased toxic side effects observed when ifosfamide
combined with L-MTP-PE
5-year EFS for patients who received L-MTP-PE vs no L-MTP-PE
was 46 vs 26%, respectively. 5-year OS for patients who received
L-MTP-PE vs no L-MTP-PE was 53 and 40%, respectively.

(90)
(91)
(92)

Recombinant
TNF

Macrophages IV Phase I study of rTNF12 combined
with a fixed dose of actinomycin D
in pediatric patients with refractory
malignancies

At 240 µg/m2/day of rTNF, three of six patients experienced
grade 4 DLT including hypotension, hemorrhagic gastritis, and
renal and liver biochemical alterations; antitumor response
observed in one metastatic EWS patient

(93)

Checkpoint inhibitors
Nivolumab PD-113 IV Phase II study of nivolumab with or

without ipilimumab in patients with
unresectable metastatic sarcoma

Clinical trial is currently active not recruiting (NCT02500797). -

Pembrolizumab PD-1 IV
IV
IV

SARC028: phase II study of
pembrolizumab assessing safety
and activity in patients with
advanced soft-tissue or bone
sarcomas
Phase II study of pembrolizumab
and axitinib in patients with
advanced alveolar soft part
sarcoma and other soft tissue
sarcomas
PEMBROSARC: Phase II multi-
center trial of pembrolizumab with
metronomic cyclophosphamide
administration in advanced
sarcoma patients

Seven (18%) of 40 patients with soft-tissue sarcoma had an
objective response two (5%); of 40 patients with bone sarcoma
had an objective response including one (5%) of 22 patients with
osteosarcoma and one (20%) of five patients with
chondrosarcoma. None of the 13 patients with EWS had an
objective response. (NCT02301039)
Clinical trial is currently active, not recruiting. (NCT02636725)
Clinical trial is currently active, recruiting. (NCT02406781)

(94)
-

-

Ipilimumab PD-1 IV NCI 08-C-0007: Phase I study of
ipilimumab in pediatric patients
with recurrent/refractory solid
tumors

Immune-related adverse events included pancreatitis, colitis,
endocrinopathies and transaminitis. DLTs observed at 5 and 10
mg/kg/dose levels of ipilimumab; one osteosarcoma, one synovial
sarcoma and one clear cell sarcoma patient had stable disease
for 4–10 cycles. (NCT0144537)

(95)

Macrophage immunosuppression inhibitors
CB-1158
(INCB00158)

Arginase IV Open-label phase I/phase II
evaluation of arginase inhibitor
INCB00158 as single agent and in
combination with pembrolizumab

Clinical trial is currently active, recruiting. (NCT02903914) -

(Continued)
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significant difference between the two arms (92). L-MTP-PE is
not currently approved by the United States Food and Drug
Administration (FDA) (102) though the European Medicines
Agency granted L-MTP-PE an indication as an adjuvant
treatment of osteosarcoma in 2009.

Re-Polarizing Agents
Administration of exogenous cytokines to reverse TAM M2
polarization may be an effective immunotherapeutic strategy for
pediatric sarcomas. GM-CSF is a myeloid growth factor that
stimulates the differentiation of hematopoietic progenitor cells
into granulocytes and monocytes with subsequent type 1 cytokine
Frontiers in Oncology | www.frontiersin.org 6
mRNAexpression, suchas IL-1b, IL-6andTNF(103).GM-CSFhas
been successfully incorporated into the standard therapy of high-
risk neuroblastoma patients receiving antibody therapy (104).
Knowing that the lungs are a common site for pulmonary
metastasis, aerosolized GM-CSF has been tested and while it is
safe (83–85, 105), it did not improve outcomes for patients with
advanced sarcomas (83–85, 105). Similarly, subcutaneousGM-CSF
was assessed in a phase II study for 18 pediatric patients with EWS
after radiation with no significant difference in 5-year EFS between
the treatment group and controls (see Table 1) (86).

Alternative methods of delivering intra-tumoral M1
polarizing cytokines have been developed with the goal of
TABLE 1 | Continued

Class Name Target Form Studies in pediatric sarcoma Outcomes Reference

for patients with advanced/
metastatic solid tumors

Angiogenesis inhibitors
Bevacizumab VEG-F IV

IV
IV
IV
IV

Observational off-label study of
bevacizumab in combination with
cytotoxic chemotherapy salvage
and maintenance regimens in
pediatric patients with relapsed/
refractory sarcomas
Phase 1 COG14 study of
bevacizumab in pediatric patients
with refractory solid tumors
Phase I study of bevacizumab
combined with irinotecan in
patients with recurrent,
progressive, refractory solid tumors
Phase I study of bevacizumab
combined with vincristine,
irinotecan and temozolomide in
pediatric patients with relapsed
tumors
Phase I study of bevacizumab
combined with sorafenib and low-
dose cyclophosphamide in
pediatric patients with refractory/
recurrent solid tumors

Most frequent side effects included epistaxis, transaminitis, acral
dermatitis, hypertension, and albuminuria.
No DLTs were observed. Non-DLTs included infusion reaction,
rash, mucositis, proteinuria, and lymphopenia.
DLTs included diarrhea, neutropenia/thrombocytopenia.
Maximum-tolerated dose was bevacizumab 10 mg/kg and
irinotecan 100 mg/m2

DLTs included hyperbilirubinemia and colitis. Other toxicities
included diarrhea, hypertension, and myelosuppression.
DLTs included rash, lipase elevation, anorexia, and thrombus.
Other common toxicities included neutropenia, lymphopenia and
rashes.

(96)
(97)
(98)
(99)
(100)

Metastasis inhibitors
Pexidartinib
(PLX3397)

CSF1R15 IV
IV

Phase I/II trial of PLX3397 in
pediatric patients with refractory
solid tumors and leukemias
Phase Ib study of pexidartinib
combined with paclitaxel in
patients with advanced solid
tumors

Clinical trial is currently active, recruiting. (NCT02390752)
Adverse events included anemia, neutropenia, fatigue, and
hypertension

-

(101)
December 2020 | Volume 10 | Art
1GM-CSF, Granulocyte-macrophage colony stimulating factor.
2EWS, Ewing Sarcoma.
3CR, Complete response.
4EFS, Event-free survival.
5OS, Overall survival.
6SC, Subcutaneous.
7IV, Intravenous.
8ZA, Zoledronic acid.
9DLT, Dose-limiting toxicity.
10PFS, progression-free survival.
11L-MTP-PE, Liposomal-Muramyl TriPeptide-PhosphatidylEthanolamine.
12rTNF, recombinant TNF.
13PD-1, Programmed cell death 1.
14COG, Children’s Oncology Group.
15CSF1R, Colony stimulating factor 1 receptor.
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minimizing global toxicities associated with exogenous cytokine
administration. Innovative methods, such as adoptive transfer of
macrophages harboring a soft discoidal particle (“backpack”)
that contains the cytokine payload, have been described. In
recently published research, phagocytosis-resistant IFN-g
secreting macrophage “backpacks” is composed of external
polymer layers sandwiching an IFN-g core and a cell-adhesive
layer which avidly binds to bone marrow derived macrophages.
Adoptive transfer of macrophages carrying IFN-g secreting
backpacks into solid tumors maintained their M1 phenotype
despite the immunosuppressive TME and also repolarized
endogenous M2 TAMs toward an M1 phenotype. This was
also associated with decreased tumor volume and lung
metastases in vivo (106). Further studies into the function,
feasibility, and toxicity of these and similar alternative delivery
methods are needed as they seem promising as a means of
avoiding systemic administration of exogenous cytokines.
MACROPHAGE PHAGOCYTOSIS

Efferocytosis is a tolerogenic phagocytotic process characterized
by clearance of auto-antigen (or “self”) present on apoptotic cells
and suppressing T cell activation. Physiologically, efferocytosis is
thought to be critical in the maintenance of self-tolerance and the
prevention of autoimmunity. However, in the TME, the
otherwise normal TAM process of efferocytosis diminishes
immunity through phagocytic clearance of tumor antigen and
suppression of T cell cytolytic function, thereby creating a TME
supportive of immune evasion and subsequent tumor survival
and metastasis. This may be especially relevant in settings of high
cell turnover, such as malignancies which are characterized by
spontaneous apoptosis due to a myriad of circumstances
associated with cancer. Therefore, interfering in the multiple
steps involved in efferocytosis may be a novel therapeutic
approach with the potential for therapeutic benefit.
Migration Toward “Find-Me” Signals
Efferocytosis of apoptotic debris is a series of coordinated events,
including chemotaxis, recognition and binding of the apoptotic
particle, and ingestion. This first step of the sequence includes
the secretion of chemoattractant “find-me” signals by a dying
cell, including lysophosphatidylcholine (LPC) (107, 108),
sphingosine-1-phosphate (S1P) (109), C-X3-C motif
chemokine ligand 1 (CX3CL1) (110, 111) and nucleotides
(112). Intracellular LPC and S1P are released by apoptotic cells
(109, 113), while CX3CL1 is a membrane-associated protein
which is cleaved by matrix metalloproteases (MMPs) during
inflammation, releasing the soluble protein that acts as a
chemokine (114). Nucleotides, specifically adenosine
triphosphate (ATP) and uridine-5′-triphosphate (UTP) are
released into the extracellular space following caspase-
dependent activation. These molecules are recognized by
receptors on monocytes and macrophages and result in
migration to the area of cellular damage (110, 112, 115).
Preclinical studies in RMS and osteosarcoma tumors support
Frontiers in Oncology | www.frontiersin.org 7
the importance of these mechanisms in pediatric sarcoma and
have confirmed upregulated expression of bioactive lipids such as
S1P, LPC, and lysophosphatidic acid (an LPC cleavage product)
in bone marrow extracts (a common site of sarcoma metastasis)
by mass spectrometry following radiation and chemotherapy
(116, 117). Further clinical studies are required to evaluate the
utility of these “find-me” signals as prognostic biomarkers or
therapeutic targets for pediatric sarcomas.

Expression of “Eat-Me” Signals
Tumor cells may evade immune-mediated attack through
downregulation of “eat-me” signals. “Eat-me” signals, such as
phosphatidylserine (PS) and calreticulin (CRT), are externalized
on dying cell surfaces, tagging them for removal by phagocytes.
PS is a phospholipid normally localized to the inner membrane
of the lipid bilayer in healthy cells; however, during apoptosis, PS
accumulates on the cell surface. Similarly, CRT is also exposed on
the cell surface during apoptotic stress. CRT interacts with PS
and binds the complement C1q protein that serves as both
bridging molecule and a PS-binding protein. CRT then binds
the SRF-1 endocytic receptor found on macrophages to facilitate
phagocytosis of apoptotic cells (118, 119). It is also known that
macrophages can utilize their own CRT to enhance phagocytosis
of tumor cells (120). Preclinical studies have shown that high
expression of PS on EWS tumors increased their sensitivity to
tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) mediated cell death (121). Additional studies
incubating alveolar and embryonal RMS cells with doxorubicin
demonstrated enhanced CRT expression and increased
phagocytosis of these RMS cells (4). Other studies are
examining the use of “eat-me” signals, specifically CRT, as
potential prognostic biomarkers in osteosarcoma (122).

“Don’t Eat-Me” Receptors
To counter-balance PS or CRT expression, malignant cells may
evade macrophage phagocytosis through the expression of
“don’t eat-me” receptors. Healthy cells express “don’t eat-me”
receptors CD47 and CD31 to avoid unwarranted phagocytic
clearance (123, 124). CD47, the prototypical “don’t eat-me”
signal, is a membrane protein of the immunoglobulin (Ig)
superfamily, present on most cells of the body. Ligation of
CD47 with the ssignal regulatory protein alpha (SIRPa) protein
on macrophages leads to phosphorylation of immunoreceptor
tyrosine-based inhibition (ITIM) motifs and a significant
inhibitory signaling cascade, characterized by the downstream
protooncogene SRC, protein tyrosine phosphatase non-receptor
type 6 (PTPN6), and protein tyrosine phosphatase non-receptor
type 11 (PTPN11) phosphatases, which inhibit the buildup of
myosin-IIA, and prevent the cellular structural changes needed
for phagocytosis (2, 125–130). Activation of SIRPa has
also been found to mediate M2 macrophage polarization,
through regulation of the Notch signaling pathway (131–133).
Conversely, when the SIRPa is blocked, TAMs portend a M1
phenotype (133).

Previous work in experimental models of hematologic and
solid malignancies have identified CD47 and SIRPa as potential
therapeutic targets, whereby blocking this axis (predominantly
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using anti-CD47 mAb) demonstrated increased phagocytosis of
cancer cells by macrophages (2, 4, 5, 126, 128, 134) and M1
polarization (131). Increased phagocytosis of human RMS cells
was observed in vitro when macrophages were treated with anti-
CD47 monoclonal antibody (4). In murine studies of
osteosarcoma, CD47 blockade decreased tumor progression,
increased macrophage infiltration into the tumor, and
increased overall survival (2, 5). Currently, there are no open
clinical trials targeting the CD47-SIRPa pathway for pediatric
sarcomas. However, in adults, there are several open clinical
trials evaluating the safety profile and efficacy of anti-CD47
monoclonal antibody (Hu5F9-G4) in a variety of solid and
hematologic malignancies (NCT02953509, NCT03248479,
NCT03922477, NCT03869190).

Engulfment and Efferocytosis
Simply put, phagocytosis occurs when the balance of “eat me”
signals is greater than the “don’t eat me” signals. Recognition of
“eat-me” signals by professional phagocytes occurs through
multiple receptors, such as TYRO3, AXL, and MERTK
receptor tyrosine kinases and the T-cell immunoglobulin and
mucin domain (TIM) receptor family (TIM-3 and TIM-4). Of
these, MERTK is the prototypic efferocytosis receptor, given its
involvement in the recognition, tethering and engulfment of
apoptotic cells, and subsequent generation of immune tolerance
through M2 polarization and T cell suppression (135–138).
Following apoptotic cell ingestion, MERTK phosphorylation
suppresses NF-kB nuclear translocation, leading to diminished
type 1 cytokine production (e.g. TNF-a and IL-12) (139–141).
Conversely, inhibition of MERTK in preclinical studies has
shown decreased leukemia-associated macrophage expression
of inhibitory checkpoint ligands, including PD-L1 and PD-L2
(discussed below), demonstrating its role in immune tolerance
(142). Drugs targeting MERTK have been developed as agents
for both reversing cancer progression and cancer immune
evasion (143). Pre-clinical studies of MERTK inhibitors in
murine solid tumor models have shown decreased tumor
growth and increased CTL infiltration (144), while others
demonstrated a more profound effect when MerTK inhibition
is used in combination with radiation therapy (145).

TYRO3, AXL, and MERTK receptors do not bind to PS
directly, rather they use the plasma circulating and locally
secreted molecules, protein S (PROS1) and growth arrest
specific 6 (GAS6) to provide a bridge to PS. PROS1 binds
more specifically to MERTK and GAS6 binds to MERTK,
TYRO3, and AXL (146–150). PROS1 and GAS6 are elevated in
EWS tumor patient samples, providing increased ligand for
efferocytosis to occur (151, 152). Antibodies acting as ligand
sinks to bind and inactivate these bridging molecules have been
evaluated in preclinical studies but are not yet clinically available
(153–155).

TIM family of proteins, TIM-3 and TIM-4, act as PS receptors
on macrophages to facilitate the clearance of apoptotic cells (135,
156, 157). On macrophages, TIM-4 works in conjunction with
MERTK to mediate tethering and binding of apoptotic cells (156,
158) (159–161). TIM-3, a known co-inhibitory receptor on T
cells, is also expressed on antigen presenting cells such as
Frontiers in Oncology | www.frontiersin.org 8
macrophages, aids in the binding and phagocytosis of
apoptotic cells through the FG loop in the immunoglobulin
variable region (IgV) domain (136, 162–164). Co-expression of
TIM-3 with other immune checkpoints such as lymphocyte
activating 3 (LAG3) and PD-1 on T cells has been observed in
sarcoma patient samples (165); however, its expression on TAMs
in sarcoma has not been explored. TIM-3 antibodies are being
clinically tested and may be useful in both augmenting T cell
activation, as well as diminishing the tolerogenic effects of
efferocytosis (166, 167).

Bisphosphonates are a class of drugs designed to inhibit
osteoclast activity to prevent loss of bone density in osteoporosis;
however, they also suppress macrophage phagocytosis, decrease
macrophage recruitment to tumor sites, and increase apoptosis of
tumor cells (168, 169). Zoledronic acid is a nitrogen-containing
bisphosphate with anti-tumor activity including decreased tumor
volume and bone growth in primary EWS tumors, decreased
recruitment of TAMs into the tumor stroma in murine sarcoma
and carcinoma models (170–172), and reduction in bone
metastases EWS after administration of ZA in murine in vivo
models (171). When combined with ifosfamide, ZA exhibited
synergistic effects against tumor growth and progression in a soft
tissue tumormodel. These promising clinical results have led to the
evaluation of ZA in pediatric sarcomas (see Table 1). In a phase I
study of high-grade metastatic osteosarcoma patients, ZA was well
tolerated when administered concurrently with multi-agent
chemotherapy (87). One small clinical study evaluated the anti-
tumor efficacy of ZA at standard dosing for four patients with
advanced stage osteosarcoma with encouraging progression-free
survival (PFS) results (88). ZA in combination with standard
chemotherapy for EWS patients is currently being evaluated in a
multicenter phase III randomized controlled trial (Euro-
EWING2012) (89).
ANTIGEN PRESENTATION

The physical interaction during antigen presentation between
macrophage and T cells plays an integral role in T cell-mediated
activation and tumor cell cytolysis. Antigen presentation
involves three steps, which have been described as different
signals. Signal 1 is the binding of peptide-loaded MHC on
antigen presenting cells (APCs), such as macrophages, to
antigen-specific T cell receptors (TCRs). Signal 2 is the
engagement of costimulatory ligands with their cognate
receptors on T cells. Conversely, binding of inhibitory ligands
(on APCs) with their cognate receptors on T cells inhibits T cell
activation. Signal 3 is the secretion of cytokines by APCs which
modify or amplify T cell response (165).
Co-Stimulation and Co-Inhibition
Signal 1, consisting of the MHC-peptide-TCR complex, on its
own is insufficient to activate T cells and may generate a
tolerogenic response. However, concomitant engagement of
adhesion receptors and co-stimulatory ligands (on APCs) and
receptors (on T cells), known as Signal 2, creates an immunologic
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connection between T cells and macrophages (165). Co-
stimulatory ligands and cognate receptors are divided into two
major groups: CD28/B7 receptor family and TNF/tumor
necrosis factor receptor (TNFR) family.

CD28 is a T cell costimulatory receptor that transmits
activating intracellular signals when it binds costimulatory
ligands CD80 (B7-1) and CD86 (B7-2) on macrophages and
other APCs (173, 174). In contrast to the CD28 stimulatory
effects on T cells, ligation of inhibitory B7 receptors, including
programmed death 1 (PD-1) and cytotoxic T-lymphocyte
associated protein 4 (CTLA-4), can promote T cell suppression
and/or dysfunction (175, 176). PD-1 has two known B7 ligands
on macrophages, including PD-L1 and PD-L2 (177). PD-L1 is
often upregulated in tumor infiltrating immune cells including
macrophages (178–180). In fact, in pediatric sarcoma patient
samples with greater PD-L1 expression, there was higher
macrophage and DC infiltration, and a worse outcome (181–
183). The treatment of murine and human macrophages with
anti-PD-L1 antibodies promotes their proliferation and
activation (184). Blockade of the PD-L1/PD-1 axis also
enhances macrophage-mediated anti-tumor activity through
efferocytosis. Although blockade of this ligand/receptor binding
is typically studied for its effects on T cell function, preclinical
models of PD-L1/PD-1 blockade using BALB/c Rag2−/−gc−/−

mice (which do not have functional T cells) showed
TAM-mediated efferocytosis and clearance of tumor cells
(185). Disruption of the PD-1/PD-L1 axis in osteosarcoma
demonstrated decreased lung metastases, reduced numbers of
tumor-promoting TAMs, and increased anti-tumor M1
macrophages in the absence of T cells (183). While anti-PD-L1
or anti-PD-L2 agents have not yet been evaluated in pediatric
sarcomas, in a murine model of osteosarcoma nivolumab (an
anti-PD-1 monoclonal antibody) increased tumor infiltrating
CD4+ and CD8+ T cells with greater cytotoxic potential (i.e.,
granzyme B and IFN-g production) and less lung metastases
(186). PD-1 blockade using pembrolizumab in the SARC028
phase II study (see Table 1; NCT02301039) demonstrated an
objective partial response (based on Response Evaluation
Criteria in Solid Tumors (RECIST)) in only one osteosarcoma
patient out of 22 patients and stable disease in six other patients.
Of note, there were no responses in EWS patients, who typically
had a low mutational burden (94). Correlative analysis of patient
samples from the SARC028 study showed that pembrolizumab
responders were more likely to have higher densities of
activated CD8+CD3+PD-1+ T cells and increased percentages
of PD-L1+ TAMs pre-treatment compared to non-responders.
Pre-treatment analysis of tumors from responders also
demonstrated higher densities of effector memory cytotoxic T
cells and regulatory T cells compared to non-responders (187).
Given the relatively mutated response of PD-1 axis blockade as
monotherapy in pediatric sarcomas, combination strategies with
other immune-targeted agents are currently being evaluated in
clinical trials (188).

The TNFR family is the other major group of co-stimulatory
molecules, which includes CD40, tumor necrosis factor receptor
superfamily member 4 (TNFRSF4 or CD134), tumor necrosis
Frontiers in Oncology | www.frontiersin.org 9
factor receptor superfamily member 9 (TNFRSF9 or 4-1BB), and
CD27 (165, 189, 190). The co-stimulatory receptor CD40 is a
transmembrane protein expressed on monocytes, macrophages,
and other antigen presenting cells (191). Its ligand, CD40 ligand
(CD40L), is primarily expressed on activated T and B
lymphocytes, monocytes and platelets (165). CD40 agonist
monoclonal antibodies (mAbs) promote TAM M2 to M1
polarization, leading to increased production of nitric oxide
and type 1 cytokines (such as IL-1, IL-12, and TNF-a), and
activation of cytotoxic activity of CD8+ T cells (192–195). CD40
agonism as monotherapy in advanced solid tumors had limited
anti-tumor activity (196); however, use of a CD40 agonist in
combination with PD-L1 and CTLA-4 blockade (see below) has
shown extended survival in murine solid tumor models (197)
(NCT02636725, NCT02332668).

CTLA-4 (also known as CD152) is part of the B7/CD28
family that also inhibits T cell cytotoxic function. CTLA-4
suppresses T cell activation when engaged with its respective
ligands, B7-1 (CD80) and B7-2 (CD86) through inhibition of T
cell receptor (TCR) signal transduction (198). Sarcoma patients
have T cells with high CTLA-4 expression within the tumor and
peripheral blood (199, 200). Phase I and II studies of ipilimumab,
a CTLA-4 blocking mAbs, in pediatric patients with advanced
solid tumors (including sarcomas) showed tolerability but no
objective clinical or radiologic responses as monotherapy
(NCT01445379) (95, 201). Combination therapies utilizing
CTLA-4 and PD-L1 mAb blockade in early phase clinical
studies have shown synergistic slowing of disease progression
and extended PFS in adults with metastatic or unresectable
sarcomas; however, they have not been tested in children
(NCT02500797) (202, 203).

Signal 3: Cytokine Mediated Effects in the
TME
Efferocytosis modulates the immune system beyond the
regulation of engulfment and co-stimulation in the sarcoma
TME. Intracellular signal transduction in efferocytosis favors
production of tumor-permissive cytokines such as TGF-b and
IL-10 consistent with the otherwise physiologic role of this
process in immune tolerance, wound healing, and tissue
homeostasis (204–206). TGF-b drives immunosuppressive
responses in both the innate and adaptive immune systems.
Within the innate immune system, TGF-b secreted by
macrophages further skews cells toward an M2 alternative
activation status, inhibits cytotoxic and cytokine producing
activity of NK cells, and decreases migration and increases
apoptosis of dendritic cells (204, 207). In the adaptive immune
response, TGF-b promotes CD4+ T cells to differentiate into Th2
cells and inhibits CD8+ T cells antitumor activity by
downregulating cytolytic genes such as granzyme B and Fas
ligand (FasL), thereby reducing antitumor response (208, 209).

One method of overriding the potently suppressive TAM
cytokine production is administration of exogenous type 1
cytokines (210, 211). Interferons and IL-2 are such powerful
type 1 stimulators of the immune system. Dinutuximab (ch14.18,
a mAb against tumor-associated disialoganglioside GD2) has
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demonstrated activity against neuroblastoma cells; however,
administration of the mAb alone was insufficient to prevent
tumor progression, thus both GM-CSF and IL-2 were added to
augment efficacy. The addition of IL-2 and GM-CSF to
dinutuximab greatly enhanced ADCC by M1 macrophages;
however, systemic IL-2 administration was found to have
significant toxicity in patients, thus this treatment regimen
may still need to be further optimized (104, 212), but could
conceptually be applied to other pediatric solid tumors
considering the GD2 is also expressed by sarcoma (213, 214).

TNF-a is another type 1 cytokine that has been studied for its
effects on augmenting activating antigen presentation within the
sarcoma TME. It is produced by classically activated
macrophages and lymphocytes and was thought to be a
potential immunotherapeutic agent. The majority of exogenous
TNF-a administration in preclinical studies was used to mimic
chronic inflammation, and thus results were not as favorable as
predicted. For instance, a preclinical study of osteosarcoma
demonstrated that TNF-a administration promoted the de-
differentiation of osteosarcoma cells toward a primitive state,
which significantly contributed to tumor growth and
progression. Furthermore, blocking TNF-a using a soluble
receptor (etanercept) to diminish chronic inflammation
inhibited osteosarcoma tumor growth (215). Systemic
administration of recombinant TNF-a with chemotherapy in
an early Children’s Cancer Group (CCG) phase I study was
limited due to systemic toxicities and an inability to dose escalate
(93). It has been suggested that further administration of cytokines
may need to be targeted to the sarcoma microenvironment rather
than systemic administration. As above regarding polarizing
macrophages, innovative methods of cytokines delivery will be
necessary to allow effective administration without the significant
systemic toxicities.
METABOLISM INDUCED
IMMUNOSUPPRESSION

Other mechanisms of TAM-induced immunosuppression
leading to T cell dysfunction in the TME include breakdown of
key metabolites, such as L-arginine and L-tryptophan, which are
necessary for T cell activation and proliferation. TAMs produced
and secrete arginase 1 (ARG1) and indoleamine 2,3-dioxygenase
1/2 (IDO 1/2), enzymes that catalyze and breakdown L-arginine
and L-tryptophan respectively. Breakdown of these metabolites
diminishes effector T cell function, thereby increasing the
likelihood of cancer cell immune escape (216, 217). In fact, in
a study of checkpoint inhibition in adult sarcoma patients
where the response rates were lower than expected, the tumor
samples had high infiltration of IDO1-expressing TAMs leading
to the speculation that elimination of the suppressive TAMs
is also needed (NCT02406781) (218). Supplementation with
L-arginine in combination with a PD-1/PD-L1 inhibitor in a
murine model of both localized and metastatic osteosarcoma
increased tumor infiltrating lymphocytes and prolonged
survival compared to controls (219). The use of ARG1 targeted
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small-molecule inhibitors demonstrated reversal of TAM-
mediated immunosuppression including production of
inflammatory cytokines, CTL, and NK cell tumor infiltration,
T cell proliferation, expression of IFN-inducible genes, and
restored cytolytic T cell function against solid malignancies in
vitro and in vivo (220). While there are currently no pediatric
clinical trials investigating the use of targeted agents against
ARG1 and IDO 1/2, there are several studies in adult patients.
Additionally, there is an open-label phase 1/2 study investigating
an arginase inhibitor (INCB00158) as single or combination
therapy with other immune checkpoint therapy in adult patients
with advanced/metastatic solid tumors (NCT02903914).
TUMOR ANGIOGENESIS AND
METASTASIS

When tumors reach a certain size, an “angiogenic switch” occurs
in which mechanisms are triggered to promote angiogenesis, the
formation of high-density vasculature, to increase tumor
nutrient supply and improve waste removal (221). TAMs can
hasten blood vessel growth through the release of pro-angiogenic
factors such as vascular endothelial growth factor (VEGF). Other
cytokines released by TAMs such as TGF-b, C-C motif
chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 8
(CXCL8), and M-CSF further promote pro-angiogenic functions
of macrophages (222–225). On the contrary, M1 polarization of
TAMs results in inhibition of angiogenesis through the
upregulation of anti-angiogenic factors (such as CXCL8 and
IFN-b) (226).

VEGF-A is a pro-angiogenic cytokine released by TAMs
(227), and has been studied in pediatric sarcomas given that
angiogenesis is a critical step in solid tumor progression (228).
EWS xenograft models have also showed delayed tumor
progression with anti-VEGF directed therapies; however,
rebound tumor growth occurred after therapy was
discontinued, suggesting single agent VEGF-directed therapy
may have limited success in the treatment of pediatric
sarcomas (229, 230).

Once angiogenesis has been established, this allows for
further tumor progression and metastasis. Metastasis is a
complex multi-step process, which starts with tumor cells
migrating and intravasating into the vasculature, circulating in
the blood stream, eventual extravasation at target organs,
and subsequent invasion and growth to establish disease.
This complex process requires not only circulating tumor
cells, but also requires the close cooperation of perivascular
cells, endothelial cells, as well a variety of immune cells
including macrophages.

CSF-1 is a chemokine that stimulates macrophage motility/
migration, maturation, and survival, and has been implicated in
metastasis. Its contribution to metastasis formation was
demonstrated in a mammary cancer model where paracrine
secretion of CSF-1 by tumor cells stimulated TAMs to migrate
and provide a tract for tumors cells to follow along and invade
normal tissue and vasculature (223). Congruent with this,
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immunohistochemistry examination of soft tissue tumor
patient samples showed increased expression of CSF-1 (M-
CSF) and colony stimulating factor receptor (CSF1R) in more
aggressive, higher histologic grade tumors (231). Additionally,
CSF-1 mediated mobilization of macrophages and other
hematopoietic stem and progenitor cells (HSPCs) are thought
to be integral to the formation of the pre-metastatic niche for
sarcoma cells at distant sites in the body. In an embryonal RMS
murine model, HSPCs were found to be elevated in the
peripheral blood during formation of the pre-metastatic niche
and contributed to tumor-promoting immunosuppressive
myeloid subsets at metastatic sites. Similarly, peripheral blood
samples from RMS patients had elevated circulating HSPCs, and
patients at greatest risk of metastases had the highest levels of
circulating HSPCs at the time of diagnosis (232). Because CSF-1
is essential for TAM migration and maturation, strategic
targeting of its receptor (CSF1R) has been explored (233–235).
Mice bearing CSF-1 negative neuroblastoma xenografts showed
decreased TAM infiltration and angiogenesis, compared to mice
with CSF-1 expressing xenografts. Inhibition of CSF1R in
neuroblastoma decreased TAM infiltration, improved T cell
function, and decreased tumor progression compared to
controls (236, 237).

Furthermore, metastasis-associated macrophages (MAMs)
are recruited to tumor sites through C-C motif chemokine
ligand 2 (CCL2) secretion from tumor cells, a chemokine that
mediates monocyte migration from bone marrow to tissue sites
through interaction with the macrophage CCL2 receptor, C-C
motif chemokine receptor 2 (CCR2) (238). These MAMs secrete
additional CCL2 to further augment TAM recruitment to
metastatic sites, and CCL3 which instigates tumor seeding at
distant sites (239). In vivo anti-CCL2 antibody treatment
reduced the number of MAMs at metastatic sites and reduced
overall tumor burden in breast cancer models (240, 241).
Collectively, these studies demonstrate macrophages play roles
in the development of metastases and soft tissue infiltration and
are potential targets in pediatric sarcomas.

In the clinical setting, attempts have been made to combine
therapies targeting tumor angiogenesis and metastasis. For
example, bevacizumab (anti-VEGF-A mAb) previously has
been combined with conventional chemotherapy backbones,
such as vincristine, irinotecan, and temozolamide (VIT),
gemcitabine, docetaxel, or low dose cyclophosphamide and
sorafenib have shown limited results, producing only stable
disease or partial response in a subset of patients with
refractory/relapsed disease (see Table 1) (96–100, 242, 243).

Additionally for metastasis targeted therapies, there is limited
data on combining such drugs with conventional therapies like
chemotherapy. Preclinical evaluations demonstrate that
combination of CSF1R inhibition after radiation therapy may
more effectively decrease tumor volume (244). A majority of
clinical trials studying CSF1R inhibitors are in very early clinical
trial phases either as monotherapy or combination therapies for
the treatment of relapsed/refractory sarcomas. For example, in a
phase 1 clinical trial using a CSF1R small molecule inhibitor,
pexidartinib (PLX3397) in pediatric patients with refractory solid
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tumors (including sarcomas) and leukemias showed tolerability,
and the expansion cohort is still ongoing (NCT02390752; see
Table 1) (101). Some trials utilizing monoclonal antibodies
directed at CSF-1/CSF1R in adults exhibited limited anti-
tumor activity (NCT01346358) (245, 246).

Chimeric Antigen Receptor Cellular
Therapies
The development and clinical use of chimeric antigen receptor
(CAR) T cell therapy for the treatment of relapsed/refractory
acute lymphoblastic leukemia has provided a promising new
therapy option for some patients (247, 248). CAR T cell therapy
for pediatric sarcomas has been centered on the development of a
CAR directed against GD-2, which is overexpressed on pediatric
sarcoma patient samples, with an especially high predominance
on osteosarcoma primary and metastatic lesions (249). However,
despite the efficacy of CAR therapy in treating hematological
malignancies, use of CAR T cell therapy in sarcomas has been
more challenging. This is partly due to the difficulty of T cell
homing, tumor penetration, and the presence of inhibitory cell
subsets in the microenvironment, including infiltrating TAMs
that inhibit T cell function.

To overcome such challenges, researchers have explored
methods of inhibiting infiltrating suppressor myeloid cells
(including TAMs and MDSCs) alongside CAR platforms. In
preclinical models, use of all-trans retinoic acid—which
differentiated infiltrating myeloid cells, lessening their
suppressor function—was found to significantly increase the
efficacy of GD-2 directed CAR T cells in pediatric sarcoma
models (249). Similar solid tumor models with high levels of
TAM or MDSC infiltration found that inhibition of CSF1R
increased the efficacy of adoptively transferred T cells (250). As
an alternative strategy to mitigate the T cell suppressive effects of
TAMs, some groups have engineered their CAR T cells to express
cytokines that will lead to TAMM1 repolarization, including IL-
12 and IL-18 (251, 252).

Interestingly, the idea of inhibiting TAMs has also been
evaluated using a CAR T cell directed against the TAMs
themselves. In preclinical models, CAR T cells directed against
folate receptor b (FRb), which is highly expressed by M2
macrophages, lead to cytolysis of M2 macrophages; however,
this has not yet been assessed in pediatric sarcomas (253).

Though unrelated to targeting TAMs in pediatric sarcoma, it
is notable that some groups are looking into harnessing the
infiltrative properties of macrophages by engineering CAR-
Macrophages (CAR-Ms). This therapy could be used to direct
phagocytic anti-tumor immunity against tumor antigen
expressing cells (e.g. human epidermal growth factor receptor
(HER2), mesothelin) or use alongside CAR T cell therapies to
improve T cell penetration into the sarcoma through ECM
breakdown (254, 255).

Given the rising interest in cellular therapy to treat
malignancies, targeting TAMs and their closely related MDSC
populations in the TME will become increasingly important.
Similar approaches to inhibiting TAMs in combination with
immunotherapy in development include use of bi- and tri-valent
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T cell engagers (BiTEs, TriTEs) to deplete CD206 and FRb
expressing TAMs, inhibition of CXCR2 alongside T cell
immunotherapy (e.g. nivolumab), or TAM repolarization (to
an M1 phenotype) using tyrosine kinase inhibitors (256)

Research on TAM-targeting CAR T cells, TAM repolarizing
agents or harnessing effector function of CAR-Ms is rapidly
evolving. Further work is required to study the potential use of
TAM inhibition in conjunction with immunotherapy in
sarcomas to further boost anti-tumor immunity.
CONCLUSIONS

It is evident there is remarkable growth in the field of
oncologic immunotherapy originating from overall improved
understanding of the interaction of cancer cells, TME, and
the host immune system. To enhance responses against
pediatric sarcomas, new immunotherapy targets and rational
combinations of existing immunotherapeutic agents are being
investigated. As one of the major components of the TME,
TAMs play an intricate role in the regulation of immune
suppression within the tumor microenvironment, augmenting
angiogenesis, and promoting tumor metastasis formation. All of
these are growing areas of research for potential targets in the
Frontiers in Oncology | www.frontiersin.org 12
treatment of pediatric sarcomas. In this review, we discussed the
numerous roles TAMs play in driving the immunosuppressive,
tumor-promoting environment in the TME, as well as in
promoting metastasis, and how this may be reversed in
pediatric sarcomas. TAMs are an emerging novel target that
has the potential to circumvent immune evasion and hopefully
improve survival for pediatric sarcoma patients.
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