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Background: Abnormal redox equilibrium is a major contributor to tumor malignancy

and treatment resistance. Understanding reactive oxygen species (ROS) metabolism is

a key to clarify the tumor redox status. However, we have limited methods to evaluate

ROS in tumor tissues and little knowledge on ROS metabolism across human cancers.

Methods: The Cancer Genome Atlas multi-omics data across 22 cancer types and

the Genomics of Drug Sensitivity in Cancer data were analyzed in this study. Cell

viability testing and xenograft model were used to validate the role of ROS modulation in

regulating treatment efficacy.

Results: ROS indexes reflecting ROS metabolic balance in five dimensions were

developed and verified. Based on the ROS indexes, we conducted ROS metabolic

landscape across 22 cancer types and found that ROS metabolism played various roles

in different cancer types. Tumor samples were classified into eight ROS clusters with

distinct clinical and multi-omics features, which was independent of their histological

origin. We established a ROS-based drug efficacy evaluation network and experimentally

validated the predicted effects, suggesting that modulating ROS metabolism improves

treatment sensitivity and expands drug application scopes.

Conclusion: Our study proposes a new method in evaluating ROS status and offers

comprehensive understanding on ROS metabolic equilibrium in human cancers, which

provide practical implications for clinical management.

Keywords: pan-cancer, ROS metabolism, multi-omics landscape, ROS-targeted therapy, predictive model

INTRODUCTION

On a global level, cancer is a dominant and burdensome challenge for modern molecular medicine
(1). While many resources have been directed to this area, we still have far to go before we fully
understand the cellular and the molecular mechanisms behind tumorigenesis and malignancy
progression. In recent years, metabolic abnormalities have been flagged as hallmark phenotypes
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in most human cancers (2, 3); therefore, considerable efforts have
been made to target metabolic vulnerabilities, which hold great
promises for cancer treatments (4).

Oxygen metabolism lies at the heart of biology, as it supports
energy production, which inevitably generates unstable oxygen
derivatives, i. textite., reactive oxygen species (ROS) (5). These
species are generated either in the mitochondria, via electron
escape from the respiratory chain, or in the cytoplasm, via
oxygen oxidized by the NOXs families or the DUOXs families.
Proper relatively low ROS level is essential for maintaining
cellular processes since it can work as a second messenger
to facilitate the proliferation of cells, whereas excessive ROS
accumulation is toxic, forcing cells to endure harmful oxidative
stress conditions. Besides that, the type and the subcellular
location of ROS are also essential for maintaining cellular
processes. In general, cancer cells lie in increased ROS levels
due to over-activated oxygen metabolism. As a consequence,
these cells develop sophisticated anti-oxidant systems to
maintain ROS levels at optimal concentrations (6). Considerable
evidence has shown that ROS dysregulation activates oncogenic
pathways and promotes phenotypic transformation to a
malignant state (7). However, current ROS metabolic studies
are faced with dilemmas: why ROS-generating or ROS-
scavenging processes are both deemed oncogenic events (8, 9).
Therefore, the exploration of ROS status across cancer types
is urgently required to clarify ROS metabolic equilibrium in
tumor biology.

ROS plays an important role in modulating treatment
outcome. On one hand, conventional anti-tumor therapies
have used ROS (such as hydroxyl radicals or singlet oxygen)
as common mechanisms to damage tumor cells (10, 11).
The activation of ROS-scavenging systems eliminates these
overloaded radicals, leading to therapy resistance. On the
other hand, ROS, as a second messenger regulating oncogenic
signaling like NF-KB and PI3K-AKT, abolishes or reduces
pathway-targeting regimens (12). Therefore, ROS modulation
is a promising strategy to improve the therapeutic efficacy
of established treatments (13, 14). However, ROS modulation
strategy only achieved limited advances (7, 15) and even led to
opposite clinical outcomes in different cancer types (16, 17). This
situation may be due to a lack of methods to comprehensively
evaluate ROS status (18). Currently, ROSmetabolism is primarily
assessed by fluorescence probes reacting directly with ROS or
by quantifying the expression of key ROS metabolic enzymes
(19, 20). However, these twomeasures show limitations in clinical
use due to methodological reasons. By using fluorescence probe
method, tumor cells need to be separated and prepared into single
cell suspension, while tumor is characterized as an abnormal
organ that ROS metabolic status of tumor cell suspension ignore
the widespread role of tumor microenvironment. Additionally,
ex vivo preparation including cell separation, cultivation, and
incubation for several hours dramatically alters ROS status in
vivo. On the other hand, detecting the expression of key enzyme
is limited due to only revealing specific steps of ROS metabolism.
However, ROS metabolism is a cascade process with complex
generating and scavenging interactions that the state of a step
cannot fully represent the entire equilibrium exactly. Therefore,

novel methodologies and approaches are required to evaluate
ROS status in cancer management.

In this study, we investigated The Cancer Genome Atlas
(TCGA) multi-omics data (21) to comprehensively explore
ROS metabolism across 22 human cancers. We developed a
transcriptomic-based method to depict ROS metabolism in
five dimensions (accumulation, oxidative stress, scavenging,
biosynthesis, and subcellular sources), which provides several
advantages over traditional testing methods. Cancer patients
were classified into eight clusters, based on our ROS indexes,
with various clinical and molecular features. We also observed
that anti-tumor drug efficacy was predicted by our indexes;
furthermore, we demonstrated that treatment efficacy was
improved by modulating ROS metabolism. Taken together, this
study provides a methodological framework to understand ROS
metabolism across various cancer types. Importantly, the study
provides insightful perspectives on ROS clinical evaluations and
translational medicine.

MATERIALS AND METHODS

Data Sources
mRNA, somatic mutations, and clinical data from 22 solid
tumors were downloaded from the TCGA data portal (https://
portal.gdc.cancer.gov/), while miRNA, protein expression, and
copy number variation (CNV) were downloaded from the
UCSC Xena website (https://xenabrowser.net). Drug sensitivity
area under the dose–response curve (AUC), IC50, and gene
expression profiles for treated cell lines were downloaded from
the Genomics of Drug Sensitivity in Cancer (GDSC) website
(http://www.cancerrxgene.org/downloads) (22). Gene signatures
of biological processes (C5.BP.v6.1) were downloaded from the
Molecular Signatures Database (http://software.broadinstitute.
org/gsea/index.jsp) (23).

Bioinformatic Analysis
Bioinformatic analysis was done as follows with R package
or online websites. The code can be acquired from the
corresponding author upon request.

Gene Set Interaction Analysis
To find out the interactions between different gene sets, Amigo2
was used to explore the interactions between different gene sets
(amigo.geneontology.org/) by drawing directed acylic graph. GO
ID was used as input for Amigo2 analysis, and the result was
visualized with Cytoscape.

GSVA Analysis
To evaluate the gene set expression among different patients
or different CCLE cell lines, GSVA R package was used (24).
RNA-seq expression profile and gene signature were used as
the input.

Calculating the Geometric Mean
Evaluation of Gene Sets
Geometric mean of gene sets was acquired by calculating the
geometric mean of the gene expression that consists this gene set.
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Evaluation of ROS Metabolism by a
Five-Dimensional Index
A five-dimensional index was put forward by combining
the ROS-metabolism-related gene sets acquired from MsigDB
database with proper operation. The geometric mean of each
gene set was chosen for further operation. Details about the five
indexes can be found in Supplementary Table 3.

Reclassification of the TCGA Samples
Reclassification of the TCG samples was done by using the
hierarchical clustering method provided by pheatmap R package.
The five ROS indexes of each TCGA sample were used as
clustering features, and eight clusters were acquired.

T-SNE Analysis
T-SNE package of R was used to profile ROSmetabolism patterns
to see whether ROS indices can be used to distinguish different
samples. The five ROS indexes of each TCGA sample were used
as inputs for T-SNE analysis.

Tumor Purity, Immune Score, and Stromal
Score Calculation
Microenvironment composition parameters including tumor
purity, immune score, and stromal score were calculated as
previously described using the estimate method (25).

Protein–Protein Interaction Analysis
The protein–protein interaction analysis was done by the String
website (https://string-db.org), and the protein with a degree
larger than 1.5-fold of the average degree of the input genes was
defined as the hub gene.

Definition of Drug Sensitivity and Drug
Resistance
The classification of being drug-sensitive or drug-
resistant was defined according to GDSC’s work (26).
Briefly, if the IC50 of a certain drug was higher than the
maximum screening concentration, the drug was defined as
chemotherapeutically resistant; otherwise, the drug was defined
as chemotherapeutically sensitive. The maximum screening
concentration is determined using clinical data indicating peak
plasma concentrations in human projects.

The Relationship Between Drug Sensitivity
Data and ROS Indexes
The relationship between drug sensitivity data and ROS indexes
was done by the following steps: (1) the expression of ROS
indexes among different cell lines was calculated in the same way
as the TCGA samples by using the expression profile of different
cell lines provided in the GDSC website and (2) calculating the
Spearman correlation between ROS indexes and IC50 data.

Outlier Filtering
After the scores of each index were calculated, outliers indicated
by R were removed. In general, approximately the top and
the bottom 5% of samples of each index was removed to
filter outliers.

Cell Culture
Human glioma cell line U87, human glioma cell line LN229,
human glioma cell line U251, human acute myeloid leukemia
cell line THP-1, and human renal carcinoma cell line ACHN
were purchased from the Chinese Academy of Sciences cell
bank (Shanghai, China). The U87, LN229, and U251 cells were
maintained in Dulbecco’s Modified Eagle’s medium (HyClone,
Logan, UT, USA). The THP-1 cells were maintained in Roswell
Park Memorial Institute-1640 medium (HyClone), and the
ACHN cells were maintained in Minimum Eagle’s Medium
(HyClone). All cell lines were supplemented with 10% fetal
bovine serum (HyClone) and 1% penicillin/streptomycin (Gibco,
Carlsbad, CA, USA) at 37◦C in 5% CO2. Hydrogen peroxide
(H2O2) was added according to experimental requirements, but
generally, 1–20µM was considered a low concentration, while
10–100µMwas considered a high concentration according to the
specific cell line chosen and the specific experiment conducted.

Western Blotting
Cells were lysed in RIPA lysis buffer for 30min and centrifuged at
12,000 rpm for 15min at 4◦C. The supernatant was removed, and
protein concentration was measured by the BCA protein assay
method according to the manufacturer’s protocol (Beyotime,
Shanghai, China). Then, 20 ug of protein from each sample
was separated by electrophoresis, transferred to polyvinylidene
fluoride membranes (Millipore, MA, USA), and blocked in 5%
skimmed milk for 1 h at room temperature. Primary antibodies
(p-NF-KB, Cell Signaling Technology, Boston, USA; NF-KB,
Cell Signaling Technology, Boston, USA; p-ERK, Cell Signaling
Technology, Boston, USA; ERK, Cell Signaling Technology,
Boston, USA; p-AKT, Cell Signaling Technology, Boston, USA;
AKT, Cell Signaling Technology, Boston, USA; p-STAT3, Cell
Signaling Technology, Boston, USA; STAT3, Cell Signaling
Technology, Boston, USA; and GAPDH, Proteintech, Wuhan,
Hubei, China) were incubated with membranes overnight. On
the following day, secondary antibodies (peroxidase-conjugated
affinipure goat anti-rabbit IgG or anti-mouse IgG, Proteintech,
Wuhan, Hubei, China) were used at room temperature for 1 h.
Protein bands were detected using chemi-luminescence ECL
reagents (Tanon, Shanghai, China).

Immuno-histochemical Staining
Immuno-histochemical staining was performed as previously
described (1). Briefly, sections were hybridized with a primary
antibody (Ki-67, Servicebio, Wuhan, Hubei, China) at 4◦C
overnight and, on the next day, hybridized with a secondary
antibody (goat anti-rabbit, Servicebio, Wuhan, Hubei, China)
at 37◦C for 30min. After washing in phosphate-buffered
saline, sections were stained with DAB (Servicebio, Wuhan,
Hubei, China) for 3min, rinsed in water, and co-stained
with hematoxylin.

Detection of ROS in vitro
Cells were plated in 96-well plates (five replicates per condition, at
2.5 × 103 cells per well) and incubated overnight at 37◦C in 5%
CO2 before detecting. Total amount of ROS was detected with
(DCFH-DA); mitochondrial ROS was detected with MitoSOX.
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After the cells have adhered to the plate, these were pretreated
with 150 uM of Trig for 24 h to detect the biosynthetic ability
of ROS or pretreated with 50 uM of H2O2 for 6 h to detect the
scavenging ability of ROS.

Cell Proliferation Assay
The effects of drugs with different ROS levels on cell proliferation
were determined by the CellTiter 96 Aqueous One Solution Cell
Proliferation Assay Kit (Promega, Madison, WI, USA) according
to the manufacturer’s instructions. Cells were plated in 96-well
plates (three replicates per condition at 5× 103 cells per well) and
incubated overnight at 37◦C in 5% CO2. On the following day,
the cells were treated with different concentrations of H2O2 or N-
acetyl-L-cysteine (NAC) with selected drugs simultaneously. In
detail, 5µM of H2O2 was used to perform as second messengers,
while 15µMof H2O2 was used to bring cells into oxidative stress;
NAC was added with a concentration of 2.5mM; bortezomib
was used with a concentration of 10 nM with H2O2 or with a
concentration of 5 nM with NAC in the U87 cell line, with a
concentration of 5 nM with H2O2 or with a concentration of
2.5 nM with NAC in LN229 cell line and with a concentration of
20 nM with H2O2 or with a concentration of 10 nM with NAC
in U251 cell line; docetaxel was used with a concentration of
40 nM; methotrexate was used with a concentration of 8µM; and
vorinostat was used with a concentration of 5µM. Then, 20 µl
of CellTiter 96 Aqueous One Solution reagent was added directly
to the wells, incubating for 2 h and recording the absorbance at
490 nm on an EnVision Plate Reader (Perkin Elmer, Waltham,
MA, USA) at 0, 24, 48, and 72 h post-drug administration.
Data analysis was performed using Prism version 7.00 (Graph
Pad software). Unpaired Student’s t-test was applied as the
statistical method.

In vivo Xenograft Drug Sensitivity Assay
Twenty athymic female BALB/c nude mice (5 weeks old) were
obtained from Beijing Vital River Laboratory Animal Technology
Co., Ltd. (Beijing, China). Approximately 2× 106 U87 cells were
transplanted into the right flank of the animals in inoculation
volumes of 200 µl sterile media. At day 7 after implantation,
the animals were randomly assigned to one of four groups with
different purposes. From that time on, bortezomib and H2O2

were administrated as follows before the animals were sacrificed.
Bortezomib (MCE, NJ, USA) was administered (0.40 mg/kg)
i.p. every 3 days after the animals were assigned to different
groups. H2O2 was received 1 h after bortezomib administration
by intra-tumoral injection, with a concentration of 5µM, and the
injection volume is 10% of the tumor volume. The tumor volume
was calculated by length × width2/2. Unpaired Student’s t-test
was applied as the statistical method.

Statistical Analyses
All statistical analyses were performed using R 3.5.1 (https://
www.r-project.org), SPSS 12 (http://www.spss.com), or Prism
7.0 (https://www.graphpad.com/scientific-software/prism/).
Prognostic values of gene sets or indices were analyzed by
univariate Cox regression analysis. Patient survival in different
clusters was analyzed using log-rank and Kaplan–Meier analyses.

Unpaired comparison using chi-square test was used to find the
characteristic mutations in each cluster. Unpaired comparison
using Student’s t-test was used to find the altered miRNA or gene
ontology in each cluster. CNV with frequency larger than 10%
was defined as characteristic CNV. Unpaired Student’s t-test
was used to analyze the difference of drug efficacy between the
high-index group and the low-index group. A two-tailed p <

0.05 was accepted as statistically significant. Multiple testing
correction using Bonferroni method was conducted in necessary
situations, and false discovery rate (FDR) < 0.05 was defined as
the statistical threshold.

RESULTS

A Five-Dimensional Index That Reflects
ROS Metabolic Status
To explore ROS metabolic processes in different cancer types,
multi-omics data were firstly downloaded from the TCGA
website and Xena website (Figure 1A). We then summarized
17 established gene sets associated with ROS metabolism from
the Msigdb database (Supplementary Table 1), and GSVA was
used to qualify a gene set’s activities. Since survival was the
most important factor in cancer therapy, we firstly explore the
prognostic value of the ROS-related gene sets. The univariate
Cox model was conducted to test their prognostic values. We
found that all ROSmetabolic processes (100.0%) show prognostic
values at least in one cancer type, and the prognostic status of
15 cancer types was determined at least by one ROS process
(Figure 1B, Supplementary Table 2; for visualization, HR <

1 was transformed into (-1)/HR). Thirteen processes exerted
divergent prognostic roles in different cancer types, e. g., the
positive regulation of ROS metabolism was a risk factor in lower-
grade glioma (LGG) but served as a protective factor in kidney
renal clear cell carcinoma (KIRC). LGG was also highlighted
as a cancer type whose outcome was determined by most ROS
metabolic processes (13/17, 76.5%).

Since most ROS metabolic processes are characterized by a
cascade of reactions, we next sought to depict the interplay
of different ROS metabolic processes. Using Amigo2, we drew
the directed acylic graph of these gene sets. According to the
interactions between the ROS gene sets, the ROS metabolic
processes could be classified into three groups, including (1) ROS
biosynthesis, (2) ROS scavenging, and (3) ROS-mediated cellular
stress (Figure 1C). These three groups contained a modest
overlap, such that eight and five common genes were identified
among them and their regulatory processes, respectively
(Supplementary Figures 1A,B). These results indicated that
ROS metabolism is a complex cascade process.

To comprehensively depict this complex cascade process,
we developed a transcriptome-based approach containing five
indexes to depict the landscape of ROS metabolism based on one
study. This study measured several coefficients and put forward
several equations in the cascade of ROS metabolism (27). Index
I reflected ROS accumulation, index II reflected oxidative stress
levels, index III indicated ROS scavenging abilities, index IV
cataloged ROS biosynthetic ability, and index V represented ROS
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FIGURE 1 | Overview of reactive oxygen species (ROS) metabolism across different cancer types. (A) Sample composition in this study (cancer types = 22, n =

9,440). Sample number varied from 45 in CHOL to 1,222 in BRCA. (B) Univariate cox results of each ROS metabolism-related gene set score in different cancer

types. All ROS metabolic processes show prognostic values at least in one cancer type; 15 cancer types were determined at least by one ROS process; 13 processes

exerted divergent prognostic roles in different cancer types. red = risk factor, blue = protective factor; *p < 0.05, **p < 0.01, ***p < 0.001; hazard ratio (HR) lesser

than 1 is transformed into (-1) * 1/HR. (C) Interactions between ROS-metabolism-related gene signatures and other related signatures: red = biosynthetic related

signatures, blue = metabolic-related signatures, yellow = response-related signatures. (D) Computational comparison and experimental comparison of ROS

metabolism between U87 and LN229. U87 showed a higher ROS accumulation, a stronger ROS scavenging ability, a stronger ROS generating ability, and a severer

ROS stress condition compared to LN229. ****p < 0.0001. (E) Overview of ROS-metabolism-related indexes: index I, ROS accumulation; index II, oxidative stress;

index III, ROS scavenging ability; index IV, ROS biosynthetic ability; and index V, subcellular ROS origins.

subcellular sources (mitochondria/cytoplasm; a higher index V
value indicated more ROS generated from the mitochondria
as biological byproducts). Detailed calculating formula can be
found in Supplementary Table 3.

To verify the reliability of our indexes, we calculated
the value of each index in well-established tumor cell lines
(Supplementary Table 4). We selected two well-established
glioblastoma multiforme (GBM) cell lines (LN229 and U87) for
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in vitro experiments to validate the bioinformatics result. In
comparison with LN229, U87 possessed higher indexes I and IV
and lower indexes II, III, and V (Figure 1D). DCFH-DA was
used to compare the ROS accumulation (index I) between these
two cell lines, showing that U87 was enriched with ROS than
LN229. To test the ROS scavenging ability (index III) between
these two cell lines, exogenous H2O2 was administered 2 h before
DCFH-DA application. Less ROS remained in LN229 medium
than in U87 medium, which indicated that LN229 was featured
by a powerful ROS scavenging ability. To compare the ROS
biosynthesis ability (index IV) between these two cell lines, cells
were pretreated with Trig for 24 h to block the ROS scavenging
process, and U87 showed higher ROS biosynthetic ability than
LN299. Then, Mitosox was used to detect mitochondrial ROS
accumulation. We found that U87 and LN229 had similar
mitochondria ROS accumulation. Considering the lower ROS
accumulation in LN229 than in U87, LN229 displayed a
higher mitochondria/cytoplasmic ratio (index V) (Figure 1D).
Therefore, the ROS computational results were validated by
experiments, indicating that our method was competent to
precisely evaluate ROS metabolic status (Figure 1E). Then, we
used our indexes to evaluate ROS metabolism in TCGA samples.
After calculating and filtering the outliers indicated by R software,
7,559 samples in TCGA across 22 cancer types were included for
analysis (Supplementary Figure 1C).

Finally, we performed correlation analyses to explore
the interactions between each index using TCGA samples
(Supplementary Table 5). Index I was highly associated with
index IV (r = 0.81, p < 0.0001), indicating that cellular ROS
accumulation was predominantly determined by biosynthetic
ability. Besides that, index III and index IV exhibited no
correlations (r = −0.005, p = 0.9822), suggesting that
ROS scavenging and ROS biosynthetic abilities were two
independent processes.

Characterization of ROS Indexes Across
Different Cancer Types
We firstly depicted index distributions to investigate ROS
metabolic status across different cancers (Figure 2A). We
observed distinct ROS metabolic profiles in several cancer
types. Gliomas, including GBM and LGG, had the highest ROS
accumulation, which could be explained by its strongest ROS
biosynthesis but relatively weakened scavenging ability. We also
observed that cancers such as adrenocortical carcinoma (ACC)
and skin cutaneous melanoma exhibited lower profiles of most
ROS indexes, suggesting a relative lack of ROS metabolism in
these cancers.

We then explored the prognostic influences of ROS indexes in
cancers and observed different prognostic effects of ROS indexes
among cancer types (Figure 2B; Supplementary Table 6). For
cancers such as KIRC and LGG, most ROS indexes (four out of
five in LGG and three out of five in KIRC) had prognostic values.
However, for ACC and breast invasive carcinoma (BRCA), no
indexes were statistically significant. Index II was highlighted
to correlate with overall survival in most cancer types (N =

7), indicating the prognostic importance of oxidative stress in
human cancers.

Finally, we assessed similarities and differences of ROS
metabolism in different cancer types. The arithmetic
averages of each index were used to represent the average
ROS metabolism in each cancer type. By using hierarchical
clustering to the arithmetic averages, cancer types were
classified into five groups based on ROS metabolic status
(Figure 2C and Supplementary Figure 2A). Group 1, which
mainly consisted of squamous and gynecological carcinomas,
showed elevated oxidative stress. Group 2, which mainly
contained adenocarcinomas, was characterized by increased
ROS scavenging abilities. Group 3 constituted tumors of the
central nervous system (GBM and LGG) and showed high levels
of ROS accumulation and generation potential. Groups 4 and 5
were characterized by low andmoderate ROSmetabolic patterns,
respectively. These results suggest different distributions and
clinical features of ROS metabolism in human cancers.

Tumors Are Classified Into Eight Clusters
According to ROS Indexes
To discriminate tumor samples according to ROS metabolic
status, hierarchical clustering was used to classify all tumor
samples, regardless of their histological types. Patients
were classified into eight clusters according to ROS indexes
(Figure 3A, Supplementary Table 7). Density curves suggested
that eight ROS clusters owned distinct ROS metabolic
phenotypes (Figure 3B). Cluster I was characterized by high ROS
levels and enhanced biosynthetic processes. Cluster II exhibited
elevated oxidative stress levels. Cluster IV was characterized by
a reinforced ROS scavenging phenotype. Cluster VII tumors
were associated with ROS generated from the mitochondria.
We next analyzed tumor composition for each cluster. Clusters
I, IV, and VII were relatively homogenous, whereas the other
clusters were heterogeneous (Figure 3C). Clusters I, IV, and VII
mainly consisted of gliomas (79.3%), pancreatic adenocarcinoma
(98%), and liver hepatocellular carcinoma (96.9%), respectively.
Importantly, almost all (95.8%) glioma (GBM and LGG) patients
were grouped into cluster I, while other tumor types were
divided into several clusters. Further t-SNE analyses showed
that ROS metabolism provided a novel perspective to reclassify
tumors, which is independent of their pathological diagnosis
or histological origin (Figure 3D). With regards to prognostic
implications, patients in different ROS clusters experienced
different clinical outcomes (Figures 3E,F, p < 0.0001). Clusters I
and IV had significantly reduced survival times, while cluster II
and VIII had significantly prolonged survival times. To eliminate
the effect of cancer type in determining a patient’s survival, we
also calculate the hazard ratio (HR) of different cancer types in
different clusters, and the result is consistent with the pan-cancer
survival analysis. For ESCA and KIRC, patients that were
classified in cluster I have shown a reduced survival time than in
other clusters; for HNSC and BLCA, patients in cluster II had a
prolonged survival time than in other clusters, while for LUAD
and HNSC, patients who fell in cluster VIII had a prolonged
survival time compared to those in other clusters (Figure 3G).
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FIGURE 2 | Overview of reactive oxygen species (ROS) indexes across different cancer types. (A) The distribution of ROS indexes across different cancer types.

Glioma, including lower-grade glioma (LGG) and glioblastoma multiforme (GBM), had the highest level of ROS accumulation and ROS biosynthetic ability, while

adrenocortical carcinoma or skin cutaneous melanoma exhibited lower profiles of most ROS indexes. (B) Prognostic value of ROS indexes across different cancer

types: positive, risk factor; negative, protective factor; solid square, with significance; the square size is negatively correlated with p-value. The hazard ratio is

Ln-transformed. (C) Five groups of ROS metabolic patterns: from left to right, group 1 to group 5. Group 1, which mainly consisted of squamous and gynecological

carcinomas, showed elevated oxidative stress. Group 2, which mainly contained adenocarcinomas, was characterized by increased ROS scavenging abilities. Group

3 constituted tumors of the central nervous system (GBM and LGG) and showed high levels of ROS accumulation and generation potential. Groups 4 and 5 were

characterized by low and moderate ROS metabolic patterns, respectively.

Taken together, our ROS indexes reclassified tumor samples into
eight ROS clusters with important clinical implications.

Molecular and Biological Landscapes in
ROS Clusters
To gain some insights of ROS metabolism from a multi-omics
perspective, we next integrated mutations, CNVs, miRNAs,
and RPPA data to identify key multi-omics features driving
different ROS metabolism (Figure 4, Supplementary Table 8).
Considering mutations, cluster VI has the largest number and
the highest frequency of mutations, while cluster IV was just
characterized by mutations on KRAS and SMAD4. Cluster
I was characterized by enrichment of mutations in IDH1
(52%, FDR = 1.42 × 10−8) and ATRX (27%, FDR = 0.0232),
consistent with their predominance in glioma samples (28). As
for CNVs, several chromosomal loci were identified with various
amplification or deletion frequencies among ROS clusters. Two
important tumor-suppressor genes, CDKN2A (chromosome
9p21.3) and CDKN2B (chromosome 9p21.3), were deleted in all
clusters except for II. In cluster I, the EGFR locus (chromosome
7p11.2, 14.3%) was significantly amplified, consistent with EGFR
chromosomal amplification during glioma progression (29).

miRNA expression also varied in different ROS clusters. Featured
up-regulated miRNA varied from 144 in cluster I to 0 in cluster
III, while down-regulated RNA varied from 106 in cluster IV
to 0 in cluster III and cluster V. Interestingly, we observed that
featured miRNAs activating (miR-128, FDR = 2.78 × 10−3) or
suppressing (miR-146, FDR = 2.95 × 10−3 and miR-27, FDR =

1.33 × 10−11) NF-κB were, respectively, up- or down-regulated
in cluster I. Furthermore, reverse-phase protein array-based
analyses provided important molecular clues in different clusters.
Mtor (FDR = 3.18 × 10−3) and p-Mtor (FDR = 2.62 × 10−3)
were found to be up-regulated in cluster I, which was consistent
with the highest ROS accumulation level in this cluster. Besides
that, p-AKT (FDR = 1.04 × 10−4) was up-regulated in cluster
I, which could further accelerate the phosphorylation of NF-KB.
In cluster IV, increased ROS scavenging phenotypes may be
derived from over-phosphorylated AMPK (FDR= 1.23× 10−4),
which is critical for activating antioxidant pathways (30). The
multi-omics alterations would lead to functional changes of
tumor samples and functional enrichment analysis, indicating
that homogenous clusters tended to have more characteristic
GO alterations than heterogeneous clusters. Consistent with
miRNA profiling, NF-κB negative-regulation-related GOs
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FIGURE 3 | Samples can be reclassified into different clusters according reactive oxygen species (ROS) indexes. (A) Clustering analyses of samples based on ROS

indexes: from left to right, cluster I to cluster VIII. Cluster III had the largest number of samples, while cluster VII had the lowest number of samples. (B) Distribution

density of each index in each cluster: from left to right, cluster I to cluster VIII. Cluster I was characterized by high ROS levels and enhanced biosynthetic processes.

Cluster II exhibited elevated oxidative stress levels. Cluster IV was characterized by a reinforced ROS scavenging phenotype. Cluster VII tumors were associated with

ROS generated from the mitochondria. (C) The composition of cancer types and histological origins in each cluster: left, cancer type; middle, clustering cluster; right,

histological origin. Clusters I, IV, and VII were relatively homogenous, whereas other clusters were heterogeneous. (D) t-SNE based reducing dimension analysis using

ROS indexes, cancer types, or histological origins to separate cancer samples. ROS indexes could be used to reclassify The Cancer Genome Atlas samples. (E)

Survival curves of clusters (I–VIII), using the log-rank method. Clusters I and IV had significantly reduced survival times, while cluster II and VIII had significantly

prolonged survival times. (F) Comparison of prognosis differences between each cluster: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Horizontal direction:

blue = poor prognosis, pink = good prognosis. Vertical direction: pink = poor prognosis, blue = good prognosis. (G) Survival comparison of cancers between

different clusters: *p < 0.05, **p < 0.01.

(Go_Negative_Regulation_of_Nf_Kappab_Transcription_Factor
_Activity, FDR=9.67 × 10−6 and
Go_Negative_Regulation_of_I_Kappab_Kinase_Nf_Kappab_
Signaling, FDR = 1.96 × 10−4) were down-regulated in cluster
I. Taken together, these results provide an overview of the
multi-omics differences associated with ROS metabolism.

Recent research has emphasized the role of the tumor
microenvironment in tumor biology, as there appears to
be complex mutual interplay between ROS expression and
microenvironment remodeling (15). Microenvironment
parameters, including tumor purity and immune and stromal
scores (25), were calculated to explore the microenvironment
composition in ROS clusters. The positive relationship
between index I and tumor purity indicated that tumor
cells predominantly contributed to ROS accumulation
(Supplementary Figures 2B–D). Strong correlations were

observed between index V and microenvironment composition
parameters, further suggesting that mitochondria-derived ROS
was predominantly responsible for tumor microenvironment
establishment (Supplementary Figures 2B–D). We next
assessed the cellular proportions for each ROS cluster. As
expected, microenvironment composition varied among
ROS clusters. Cluster IV had the lowest enrichment of
tumor cells, coupled with the most abundant leukocyte and
stromal cell levels (Supplementary Figure 3A). Prognostic
analyses indicated that tumor purity, immune score, and
stromal score played important roles in determining clinical
outcomes in cluster I (Supplementary Figures 3B–D), which
was consistent with our previous study (25). Additionally,
immune cells and stromal cells were risk indicators for cluster
III, whereas tumor cell proportions had limited prognostic
implications (Supplementary Figures 3B–D). These results
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FIGURE 4 | Multi-omics characteristics of eight reactive oxygen species (ROS) clusters. Multi-omics characteristics including mutation, copy number variation (CNV),

micro-RNA, protein, Gene Ontology (GO), and tumor purity alterations in each ROS cluster. For mutations, characteristic mutations with most occurrences are

shown—for CNV: red = amplification, blue = deletion; for micro-RNA, protein, and GO: red = up-regulated, blue = down-regulated; and for tumor purity: red = high

purity, blue = low purity.

together indicated that ROS metabolism modulated cellular
composition and determined the clinical significance of
tumor microenvironments.

The Impact of ROS Metabolism on Drug
Responses
Since ROS metabolic phenotypes were distinct among the above-
mentioned clusters, we sought to explore whether various ROS
status determined the therapeutic efficacy of anti-tumor drugs.
We reviewed information from 251 anticancer drugs applied to
1,066 cancer cell lines (Genomics of Drug Sensitivity in Cancer)
(22) by calculating the index value and drug AUC. We found
that 81.3% of drugs (204/251) correlated with our ROS indexes
(Supplementary Table 9). The correlation between drug AUC
and indexes was used to establish a drug efficacy evaluation
network (Figure 5A). Our results indicated that indexes I and II
were important nodes for the network, highlighting their roles
in regulating drug efficacy. Notably, increasing index I mainly
positively correlated with the IC50 of drugs targeting kinases

on oncogenic pathways, while index II predominantly sensitized
tumor cells to drugs targeting the PI3K/mTOR pathway, kinases,
chromosome modifications, and the cell cycle.

Four out of five drugs with highest correlations to index I were
signaling or kinase inhibitors [dasatinib inhibits STAT3 pathway
(31); bortezomib inhibits NF-KB pathway (32); docetaxel inhibits
PI3K-AKT pathway (33), while trametinib inhibits MEK-ERK
pathway (34)]. These key pathways are important in cellular
survival, proliferation, or angiogenesis in tumor biology. With
ROS accumulation increasing, the IC50 of these four drugs
also increases (Figure 5B, p < 0.0001). Then, we hypothesized
that ROS, as a second messenger, can alter the pathway
activation and thus change the IC50 of specific targeting drugs.
Considering that glioma was characterized by ROS accumulation
and generation, we selected two well-established glioma cell
lines (U87 and LN229) to conduct in vitro studies. THP-1,
a peripheral monocyte cell line was also cultured to further
validate our findings. By supplementing cells with exogenous
H2O2, NF-κB and ERK were activated in these three cell
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FIGURE 5 | Reactive oxygen species (ROS)-based drug efficacy evaluation network. (A) Associations between index values and drug sensitivities across 1,066

cancer cell lines, using Spearman’s rank correlation. Indexes I and II were important nodes for the network. Increasing index I mainly positively correlated with the IC50

of drugs targeting kinases on oncogenic pathways, while index II predominantly sensitized tumor cells to drugs targeting the PI3K/mTOR pathway, kinases,

chromosome modifications, and the cell cycle. Red line = positive correlation, green line = negative correlation. Only drugs with moderate correlations are shown:

yellow circle = drugs, blue circle = drug targets. (B) Heat map showing drugs with significant correlations with indexes I and II. The left panel shows index I and

correlated drugs. The right panel shows index II and correlated drugs. With ROS accumulation increasing, the IC50 of four drugs correlated with index I increased;

with oxidative stress degree deepening, normal cell cycle or DNA modification process would be affected and decrease the IC50 of the drugs correlated with index II.

From green to pink, the IC50 increases; ****p < 0.0001. (C) By supplementing cells with exogenous H2O2, NF-κB and ERK were activated in these three cell lines; the

STAT3 pathway was inhibited in glioma U87 and LN229 cell lines while activated in the THP-1 cell, whereas the AKT pathway was activated in U87 and THP-1 cell

lines but inhibited in LN229 cell line. (D,E) The maximum concentration tolerance in the body of drugs from (B) and potential synergic strategies to decrease drug

IC50. For drugs correlated with index I, N-acetyl-L-cysteine should be combined to increase drug efficacy, while for drugs correlated with index II, anti-oxidant inhibitor

should be combined to increase drug efficacy.

lines; the STAT3 pathway was inhibited in glioma U87 and
LN229 cell lines while activated in the THP-1 cell, whereas
the AKT pathway was activated in the U87 and THP-1 cell

lines but inhibited in LN229 cell line (Figure 5C). Thus, the
drug targeting oncogenic pathway activity could be modulated
by ROS.
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On the other hand, eight out of the 11 drugs (methotrexate,
vorinostat, I-BET-762, NPK76-II-21-1, Navitoclax, PHA-793887,
AT-7519, and TPCA-1) with the highest correlation to index II
were cell cycle or chromosome modification inhibitors. With
oxidative stress degree deepening, normal cell cycle or DNA
modification process would be affected and decrease the IC50 of
the eight drugs (Figure 5B, p < 0.0001).

Next, we proposed a ROS combining strategy to decrease
the IC50s of the above-mentioned drugs. We set the maximum
safety concentrations of each drug as a threshold to determine
whether combined approaches should be used. When a drug’s
IC50 correlated with index I and was greater than the safety
concentration, ROS scavenging compounds, e. g., NAC, was used
in combination to abolish ROS activating effects on oncogenic
pathways (Figure 5D). If an index II correlated drug’s IC50 was
greater than the safety concentration, anti-oxidant inhibitors
could be combined to abolish normal ROS responses and force
cells into oxidative stress (Figure 5E). Therefore, regulating ROS
metabolism in this manner may be a promising approach to
improving drug efficacy and expanding drug applications.

Drug Efficacy Can Be Modulated by ROS
Administration
To test the accuracy of our combining strategy, four drugs in
phase III clinical trials or already with broad clinical uses were
selected for further investigation. Bortezomib (NF-κB inhibitor)
and docetaxel (PI3K/AKT inhibitor) demonstrated significant
correlations with index I, indicating that ROS accumulation may
abrogate the anti-tumor effects of these drugs. Methotrexate
(DNA replication inhibitor) and vorinostat (HDAC inhibitor)
generated significant correlations with index II, indicating that
oxidative stress may augment the anti-tumor effects of these
drugs (Supplementary Table 9). Cell lines were filtered out
according to the drug IC50. Glioma cells were preferentially used
for studies, attributing to the above-mentioned importance of
ROS metabolism in glioma. Supposedly sensitive and resistant
cell lines (defined whether the putative IC50 could exceed
the maximum screening concentration provided by the GDSC
database) were cultured to test drugs which were correlated with
indexes I and II, respectively. With low H2O2 supplied together
simultaneously, the supposedly sensitive cell lines became
resistant to bortezomib and docetaxel (Figure 6A), whereas
high H2O2 concentrations sensitized cell lines to methotrexate
and vorinostat when being supplied simultaneously (Figure 6B).
Besides that, to further investigate the anti-tumor effect of
bortezomib in glioma cell lines related to ROS, we also conducted
the antagonized experiment using two other glioma cell lines,
U251 and LN229. Similar to the U87 cell line, low concentrations
of H2O2 could diminish the anti-tumor effect in U251 and LN229
cell lines (Supplementary Figures 4A,C).

We next validated our findings in an in vivo xenograft
experiment. Bortezomib is effective in reducing tumor burden
by targeting the NF-κB pathway (32). However, the latest clinical
trial showed that bortezomib failed to prolong the survival
time of glioma patients (ClinicalTrials.gov: NCT00512798).
Here we observed that glioma was characterized by high

TABLE 1 | Potential Biomarkers Related to five ROS Indexes.

Index Positive direction biomarker Negative direction biomarker

Index I PINK1 CYBA, SOD3, NOS3, NCF2,

NOX4, TGFB1, EDN1, ICAM1,

IL6

Index II NA PINK1, GPR37

Index III TGFB1, EDN1, ICAM1, IL6,

PTGS2, INS

BNIP3

Index IV TLR4, EGFR NA

Index V PGD, XYLB, TALDO1, TKT CYBA, NCF1, NCF2

ROS accumulation; therefore, it was reasonable to test
whether the treatment failure for bortezomib was derived
from excessive ROS. Exogenous low H2O2 concentrations
were used to mimic elevated ROS levels in glioma tissue.
We found that although bortezomib inhibited tumor
growth, the administration of H2O2 fully abolished the
established antitumor effects (Figures 6C,D). Immuno-
histochemical staining for Ki67 indicated that bortezomib
suppressed tumor cell proliferation, which was rescued by
supplementing with H2O2 (Figure 6D). Consistent with in
vivo experiments, although bortezomib could inhibit NF-
KB activation partially with exogenous H2O2 added, the
activation level was still higher than no exogenous was added
(Figure 6E).

Standard dosage of bortezomib treatment will increase the
hazard ratio of serious adverse events (grades 3 and 4) (35),
which urges us to explore how to achieve therapeutic efficacy with
reduced dosage. Therefore, we tried to investigate whether half-
dose bortezomib can inhibit tumor growth when combined with
NAC, which decreases ROS accumulation. The cell viability assay
has shown that although U87, U251, and LN229 were resistant
to half-dose bortezomib, the resistance could be reverse by
supplementing NAC (Figure 6F, Supplementary Figures 4B,D).
We observed that half-dose bortezomib failed to inhibit
the NF-KB pathway, while the combined administration of
NAC and half-dose bortezomib effectively abolish NF-κB
activation (Figure 6G). These results together suggest that
ROS metabolism status plays an important role in modulating
drug efficacy, which is meaningful in sensitizing drugs and
reducing dosage.

Potential Biomarkers Related to the ROS
Indexes
Finally, to promote the clinical translation of our method, we
tried to find the potential biomarkers related to our five ROS
indexes. Two strategies were applied to achieve this goal. Firstly,
protein–protein interaction analysis was used to define the hub
genes of each index. Next, the correlation between hub gene
expression and index value was calculated. A hub gene with |R|
larger than 0.2 was considered to be a potential biomarker. All
the biomarkers identified are summarized in Table 1.
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FIGURE 6 | Drug efficacy can be modulated by targeting reactive oxygen species (ROS) metabolism. (A) The drug efficacies of bortezomib and docetaxel were

assessed by adding a low concentration of H2O2 together as assessed by cell proliferation assay. The antitumor efficacy of these two drugs was diminished by

exogenous ROS. Error bars indicate the mean ± SD; ns = no significance, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (B) The drug efficacies of

methotrexate and vorinostat were increased by adding a high concentration of H2O2 together as assessed by cell proliferation assay. Error bar indicate the mean ±

SD; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. (C) The tumor inhibitory effects of bortezomib were abolished by exogenous low H2O2 concentrations in a

U87 subcutaneous xenograft model; *p < 0.05. Error bars indicate the mean ± SEM. (D) Immuno-histochemical staining for Ki67 shows that the proliferative inhibition

of bortezomib was rescued by exogenous low H2O2 concentrations. (E) The NF-κB inhibitory effects of bortezomib were rescued by H2O2 in U87 and LN229 cell

lines. (F) Half-dosage of bortezomib could be sensitized by NAC in U87 cell lines; ***p < 0.001. (G) Half-dosage of bortezomib together with NAC could inhibit NF-κB

pathway in U87 and LN229 cell lines.
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DISCUSSION

Aberrant ROS production and scavenging are key tumor
characteristics for maintaining optimal redox homeostasis (4).
The effects of antitumor therapies may be abolished by powerful
anti-oxidant capabilities within tumors, but they can be rescued
by combinatorial strategies targeting redox homeostasis (12,
36). Therefore, the comprehensive evaluation of ROS status is
important for understanding tumor biology and the development
of effective therapies. However, current methods fail to reflect
the interior redox balance because of methodological limitations
and are therefore insufficient to fully guide ROS metabolic
modulating strategies in clinical situations. In this study, we
developed a new method to comprehensively evaluate intrinsic
ROS biotransformation abilities, whereby we reclassified tumor
patients and established therapeutic regimens according to ROS
metabolic status.

The comprehensive evaluation of ROS metabolism is essential
to investigate homeostatic redox balance. Current methods
mainly focus on directly measuring ROS concentrations,
relying on fluorescent ROS probes. By using these methods,
specimens must be incubated with probes for a period of time,
which may dramatically alter ROS levels from endogenous
levels (19). In addition, probes are limited to detecting ROS
in single cells, whereas tumors are characterized by high
cellular heterogeneity and a complex microenvironment. The
assessment of key enzymes in ROS metabolic processes, such
as superoxide dismutase, GPX, and PRDX, is also widely
used to characterize ROS (20). However, ROS comprises a
group of oxygen derivatives, which are constantly generated
and scavenged in subcellular compartments by fluctuating
cascades; therefore, detecting specific enzymes does not reflect
cascading ROS metabolism. To comprehensively understand
ROS metabolic status in cancer, some studies have attempted to
simultaneously detect these cascading ROSmetabolism pathways
(7, 27). However, harsh experimental conditions often limit their
translation to clinical practice. In recent years, evidence has
suggested that gene signatures are reliable in evaluating biological
phenotypes (28, 37). Here we summarized ROS metabolic gene
signatures and developed five ROS indexes. These indexes
reflected ROS metabolism, including (1) ROS accumulation, (2)
oxidative stress levels, (3, 4) biosynthetic and scavenging abilities,
and (5) subcellular origins. Our approach has several advantages:
firstly, both cellular status and intrinsic ability are evaluated;
secondly, complete ROS metabolism is evaluated, rather than
single reactions, and thirdly, our approach has huge practical
potential when aligned with sequencing technologies and other
proteomic, genomic, and metabolomic developments.

Metabolic alterations are important for tumorigenesis and
tumor development (38). However, we have little knowledge
on ROS metabolism in determining human cancer outcomes.
Here we observed that ROS indexes exerted different prognostic
values, depending on the cancer type. These findings are
consistent with previous studies showing that important ROS
enzymes act as bidirectional prognostic indicators in different
cancers (39, 40). ROS accumulation, represented by index I,
was positively and negatively correlated with survival times in

LGG and KIRC, respectively. This observation may derive from
their distinct basal ROS metabolism status (Figure 2A). LGG
was characterized by the highest levels of ROS accumulation;
therefore, further ROS production and enrichment may alter
the subtle redox homeostasis, thus inducing programmed cell
death. In contrast, KIRC had the lowest ROS accumulation; thus,
an enriched ROS status could facilitate aggressive progression.
These findings highlighted the importance of intrinsic ROS status
to help guide and modulate ROS metabolism.

Increasing evidence has suggested that different cancer types
share substantial biological similarities (41, 42). Reclassifying
tumors, regardless of different cancer types, may help redesign
more effective clinical trials (43, 44). Here we classified
tumor samples into eight clusters based on ROS metabolic
indexes. Distinct ROS metabolic phenotypes were observed
among our clusters. Notably, cluster I was characterized by
the highest levels of ROS accumulation and generation. This
cluster was primarily composed of glioma (79.3%) tumors,
and most glioma samples were classified to cluster I (95.8%).
However, the composition of other clusters was heterogeneous,
indicating that tumors originating from other organs tended
to share substantial ROS metabolic similarities. Notably, GBM
and LGG had equal ROS metabolism levels, distinguishing
them from other tumor samples. The brain is physically
characterized by ROS enrichment, as it consumes up to
20% of the body’s oxygen. High tumor cell proportions
and characteristic hypoxic microenvironments further facilitate
glioma ROS production (45, 46). Multi-omics analyses suggested
that recurrent oncogenic molecular events in cluster I, e. g., IDH1
mutation (47) and EGFR amplification (48), reprogrammed
tumors to a ROS promoting status. Therefore, ROS modulating
strategies against gliomas are reasonably trans-applied to patients
with abundant ROS accumulation or harboring multi-omics
features to glioma. For cancers like ESCA and KIRC, patients
with high ROS accumulation have also shown reduced survival
time compared to their counterparts (Figure 3G).

During tumor therapy, additional ROS may be generated
to disrupt an already established tumor redox homeostasis
(10). Here we established a ROS-based drug efficacy predicting
approach. ROS levels and cellular responses were highlighted
due to their substantial roles in regulating antitumor drug
responses. Of these drugs, pathway inhibitors were antagonized
by low supplemented ROS levels, while chromosome or cell cycle
targeting drugs were augmented by damaging normal cellular
responses, which was consistent with previous reports (4, 13, 49)
and verified by our studies. NF-κB signaling is accepted as an
oncogenic pathway; however, targeting NF-κB by bortezomib
failed to prolong patient survival times in a recent clinical
trial, including patients with glioma, melanoma, and lymphoma
(32). We found that the antitumor effects and NF-κB inhibition
of bortezomib was abrogated by increasing ROS levels. NF-
κB pathway can inhibit Nrf2 pathway and increase the ROS
level in the tumor microenvironment, which might provide an
explanation in bortezomib resistance. In our study, we found one
possible measure to sensitize bortezomib by adding NAC. These
findings provide novel clues about targeting treatment resistance.
ROS establishes a complex regulatory network by acting as a
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second messenger (7). Even when inhibitors specifically block
some key nodes, ROS rescues or bypasses the inhibition to
support tumor progression (50). Therefore, modulating ROS
metabolism will be helpful in improving targeted treatment
outcomes. Our ROS indexes may equally provide references for
evaluating ROS status, selecting suitable patients, and predicting
treatment responses.

Taken together, we developed a robust method to provide
an overall assessment of ROS metabolism. Using this method,
tumor samples were reclassified in terms of ROS status, which
provided novel clinical and molecular insights. We established
a ROS-based drug efficacy evaluation network, suggesting that
ROS modulation is helpful in improving treatment responses
and expanding drug applications. Taken together, this study
highlights the importance of ROS homeostasis in human cancers
and provides novel information on developing diagnostic models
and treatment strategies.
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