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With the increasing daily workload of physicians, computer-aided diagnosis (CAD)
systems based on deep learning play an increasingly important role in pattern
recognition of diagnostic medical images. In this paper, we propose a framework
based on hierarchical convolutional neural networks (CNNs) for automatic detection
and classification of focal liver lesions (FLLs) in multi-phasic computed tomography
(CT). A total of 616 nodules, composed of three types of malignant lesions
(hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and metastasis) and
benign lesions (hemangioma, focal nodular hyperplasia, and cyst), were randomly
divided into training and test sets at an approximate ratio of 3:1. To evaluate the
performance of our model, other commonly adopted CNN models and two physicians
were included for comparison. Our model achieved the best results to detect FLLs, with
an average test precision of 82.8%, recall of 93.4%, and F1-score of 87.8%. Our model
initially classified FLLs into malignant and benign and then classified them into more
detailed classes. For the binary and six-class classification, our model achieved average
accuracy results of 82.5 and73.4%, respectively, which were better than the other three
classification neural networks. Interestingly, the classification performance of the model
was placed between a junior physician and a senior physician. Overall, this preliminary
study demonstrates that our proposed multi-modality and multi-scale CNN structure can
locate and classify FLLs accurately in a limited dataset, and would help inexperienced
physicians to reach a diagnosis in clinical practice.
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INTRODUCTION

Liver cancer, which is one of the most malignant types, represents
the second-highest leading cause of cancer death in men
worldwide, with a 5-year survival rate of less than 18% (1, 2).
Hepatocellular carcinoma (HCC) is the most common type of
liver cancer, accounting for approximately 90% of the total (3).
Apart from HCC, several other types of lesions also frequently
occur in the liver, including malignant lesions such as intrahepatic
cholangiocarcinoma (ICC), metastases of malignant tumors from
other tissues, benign lesions such as hemangioma (HEM), focal
nodular hyperplasia (FNH), and cysts. Therefore, early detection
and precise classification of focal liver lesions (FLLs) are
particularly important for subsequent effective treatment.

Diagnostic radiographic imaging such as dynamic contrast-
enhanced computed tomography (CT) provides useful
information for the differential diagnosis of the aforementioned
FLLs (4, 5). However, there are two obvious deficiencies. First, the
evaluation of these images is usually subjective, as it is mostly
dependent on the physicians’ experience. Second, physicians have
to decide on the presence of lesions based on an exhaustive
examination of slice-by-slice in CT images, which is very time-
consuming.A recent study reported that, in some cases, radiologists
have to readCT images at a speedof every 3–4 s per imageduring an
8 h workday to meet their workload demands (6). Under such
constraints, errors are inevitable because radiology relies on visual
perception and decision-making in cases of uncertainty (7, 8). The
automatic detection and classification of lesions in diagnostic
images using a computer-aided diagnosis (CAD) system has been
developed to overcome these issues.
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Deep learning (DL), an emerging branch of machine learning,
can automatically extract and learn features from data in a
complex nonlinear procedure based on a neural network
structure (8, 9). At present, numerous studies have shown that
DL, particularly convolutional neural network (CNN) models,
can be used for pattern recognition of various organs and tissues,
such as lung (10), renal (11), breast (12), retina (13), and skin (14)
in diagnostic medical images, and can achieve satisfactory results.
Two-dimension (2D) CNN models used on each CT or magnetic
resonance imaging (MRI) slice have become mainstream to detect
or classify FLLs (15–18). However, there are two disadvantages.
First, they ignore the problem of the spatial discontinuity between
the slices (19), leading to detection failure in some slices and
diagnostic errors. Second, they focus on either the detection task
alone or the classification task alone, ignoring the interconnection
between them.

Therefore, three-dimension (3D) approaches may be more
favorable, particularly for classification, as they can address the
problem of discontinuity and can provide more detailed spatial
and structural information of the lesions. Much research has
focused on the detection and classification of lung nodules
using 3D strategies (10, 20–22). However, 3D approaches
are not perfect for the detection of FLLs in a limited dataset,
particularly 3D deep CNNs (19). The detection of FLLs is more
difficult due to the variation in the six types of FLLs present in the
background (e.g., blood vessels and bile ducts) and inherent
characteristics (e.g., size, texture, density, and scale), as shown
in Figure 1. Besides, compared to 2D CNNs, 3D CNNs usually
suffer from parameter explosion and slow inference speed due to
the additional dimension (23). Thus, approaches that lie
FIGURE 1 | Representative images of focal liver lesions (FLLs) in different phases of dynamic contrast-enhanced computed tomography (CT). The contours
represent the manually labeled boundary of the nodules.
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somewhere between 2D and 3D (i.e., 2.5D) may be a preferred
option to detect FLLs.

In this study, we developed a strategy based on a multi-
modality and multi-scale CNN structure, composed of three
2.5D Faster R-CNN w/FPN and one 3D ResNet-18, for the
automatic detection and classification of FLLs in three-phases
(unenhanced, arterial, and portal venous phases) of CT images,
respectively. Through a series of comparison experiments, we
show that our established model performed better than other
commonly adopted strategies, and would help physicians to
diagnose FLLs in their daily practice.
MATERIALS AND METHODS

Dataset
The multi-phasic CT data used in this study were collected from
January 2016 to December 2018 via the picture archiving and
communication system (PACS) in our institution. After searching
and excluding non-FLL cases, 435 patients with a total of 616 liver
lesions were enrolled in this study. The inclusion criteria were as
follows: at least one FLL appeared in the CT image; malignant
tumors had corresponding pathological diagnosis results; patients
had not undergone any disease-related treatment before CT
inspection, including transarterial chemoembolization therapy,
surgery, radiofrequency abolition, and systemic chemotherapy;
image quality was high and clear.

Among the 616 liver lesions, 280 (109 HCCs, 95 ICCs, and 76
metastases) were confirmed to be malignant tumors by tissue
biopsy or postoperative pathology, and the remaining 336 (120
HEMs, 101 FNHs, and 115 cysts) were diagnosed as benign
nodules through pathological analyses or a combination of
typical image performance and clinical data. This retrospective
study was approved by the institutional review board of the
Second Affiliated Hospital, Zhejiang University School of
Medicine and the need for patient informed consent was waived.

CT Image Acquisition
Dynamic contrast-enhanced CT scanning was performed using
three manufacturer’s CT models, i.e., SOMATOM Definition AS
(Siemens), Brilliance iCT 256 (Philips), and Optima CT540 (GE
Medical system), with the following parameters: tube voltage,
120 kVp; tube current, 250–600 mAs; pitch spacing 0.5–1 mm;
and single collimation width, 0.625–1.25 mm. Three phasic
images from unenhanced, arterial, and portal venous phases
were enrolled in this study. During the enhancement phases, the
concentration of contrast agents was determined by the patients’
body weight, with the criterion of 300 mg/mL iodine for patients
weighing less than 60 kg, and 350 mg/mL iodine for those
weighing more than 60 kg. In general, a total volume of 80–
100 mL contrast material was injected into the patients at a rate
of 3–4 mL/s with the use of a power injector via an 18- or 20-
gauge cannula in the antecubital vein.

The scanning time of the arterial and portal venous phases
was determined by the dose and injection rate of the contrast
agents. In our institution, the scanning time of the arterial phase
Frontiers in Oncology | www.frontiersin.org 3
lasted ~20 s, during which the enhancement of the abdominal
aorta reached its peak, and the CT enhancement value of the liver
parenchyma was less than 10 HU. The period ended when the
enhancement of the aorta decreased slightly, and the
enhancement value of the liver parenchyma was between 10–
20 HU. The scanning time of the portal venous phase usually
started at 60 s after injection of the contrast medium. The slice
thicknesses of the unenhanced and contrast-enhanced images
were 5 mm and 0.8–5 mm, respectively.

Data Annotation and Processing
To maximize the quality and resolution of CT images, all of the
images were exported from our institution’s PACS and stored in
a Digital Imaging and Communications in Medicine (DICOM)
format. Medical image processing software (ITK-SNAP (24)),
was used to label the regions of interest (ROIs) of the liver lesions
in each CT image slice by two physicians (with 3 years’
experience in abdominal CT reporting), and then these ROIs
were confirmed by another physician (with 30 years’ experience
in abdominal CT reporting). Large blood vessels and bile ducts
were excluded as much as possible from the region of the lesions.
Among the 616 liver lesions, a quarter of nodules were randomly
selected to make up the test set, and the remaining nodules
formed the training set. Data augmentation is often used in the
training set during deep learning to improve learning and extract
features (25). In this study, each image was augmented randomly
using the following five strategies: random flipping, random
rotation, brightness transformation, Gaussian blur, and
elastic transformation.

Hierarchical Multi-Phase Lesion Detection
and Classification Framework
The main architecture of the framework used in this study is
shown in Figure 2A. Our framework contains three 2.5D
detection networks (Faster R-CNN w/FPN (26)) and one 3D
classification network (ResNet-18 (25)) which were used for
feature extraction and learning. Following the detection and
classification networks, post-processing and voting modules
were applied, respectively, to process the received information
further and to generate detection and classification outputs.

Detection Networks
Three detection networks were utilized for lesion localization in
three phases of CT images, respectively. All three detection
networks shared the same architecture because the scale of each
type of lesion in different phases was almost identical, and
differences in the six lesion types in each phase were similar.
The first reason ensures that the detection networks can utilize the
same receptive field and bounding box settings during network
training and inference, and the second reason requires networks
with similar learning abilities. We utilized a modified Faster R-
CNN w/FPN to detect the six types of FLLs in three phases. The
network was composed of five components: a backbone
convolutional network for basic feature learning and generating
feature maps, a feature pyramid network (FPN) to exploit the
inherent multi-scale, pyramidal hierarchy of the backbone
network to construct feature pyramids with marginal extra cost,
January 2021 | Volume 10 | Article 581210
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a region proposal network (RPN) that outputs a set of rectangular
object proposals with objectness scores, and two sub-networks that
produce bounding box regression and foreground/background
classification. A detailed diagram of our detection network is
shown in Figure 2B. As described in the Introduction section, a
trade-off between 2D and 3D is better for deep CNN training. We
defined our 2.5D strategy as follows: To input each of the detection
networks, each slice in a single CT image was concatenated with
the two nearest neighbor slices (if these existed). The input size of
the detection networks was 512×512×3. The ground truth label of
one input was the annotation of the lesions in the center slice. For
our task, we utilized ResNet-101 as proposed in a previous study
(25), as our backbone network. Instead of using ROIPool (27) to
extract small feature maps (e.g., 7×7) from each ROI (26, 28),
ROIAlign (29) was utilized to obtain better results. Nine anchors
with three aspect ratios [(1.5:1, 1:1, 1:1.5)] at three scales [(1, 21/3,
22/3)] were utilized on each of the pyramid levels. Each anchor was
assigned with a 2-dimensional one-hot vector representing its class
(background, foreground) and a 4-dimensional vector
representing the coordinates of the upper left and lower right
corners of the rectangular box surrounding the objects.
Frontiers in Oncology | www.frontiersin.org 4
The classification sub-networks were supervised by binary cross-
entropy (BCE) loss and the localization networks were supervised
by smooth L1 loss (28). Because the backbone networks were
utilized for basic feature learning and were deep, to train them
from scratch would be time-consuming. Thus, we initialized
parameters in the backbone networks with pre-trained parameters
on the ImageNet dataset (30) before network training, and fine-
tuned them with CT images afterwards. This kind of transfer
learning strategy can effectively improve the representativeness of
models (31). Parameters outside the backbone networks were
randomly initialized by drawing weights from a zero-mean
Gaussian distribution with a standard deviation of 0.01. The
networks were trained for 200 epochs with a batch size of eight
and the Adam optimizer (32). The learning rate started at 1e-3 and
was decreased at the 40th, 80th, and 120th epochs by multiplying
by 0.1.

After acquiring the detection outputs, we applied non-
maximum suppression (NMS) to the proposal regions based
on their classification scores to reduce redundancy (28). The
Intersection-over-Union (IoU) threshold of the NMS was set to
0.5. Finally, we collected all of the localization results in each CT
A

B

FIGURE 2 | The main architecture of the hierarchical multi-phase lesion detection and classification framework. (A) The entire framework is constructed by three
2.5D detection networks (Faster R-CNN w/FPN) and one 3D classification network (ResNet-18). (B) The detailed architecture of the detection networks is composed
of five components: a backbone convolutional network for basic feature learning and generating feature maps, a feature pyramid network (FPN) to exploit the
inherent multi-scale, pyramidal hierarchy of the backbone network to construct feature pyramids with marginal extra cost, a region proposal network (RPN) that
outputs a set of rectangular object proposals with objectness scores, and two sub-networks that produce bounding box regression and foreground/background
classification. Abbreviations: NC, non-contrast; HA, hepatic artery; PV, portal venous; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; Met,
metastasis; HEM, hemangioma; FNH, focal nodular hyperplasia.
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image and generated a minimum circumscribed cuboid (MCC)
for each lesion detected.

Classification Network
Because the outputs of detection networks only classify regions
into foreground and background, we required a classification
network to classify the foreground into detailed FLL types. We
utilized a 3D version of ResNet-18 by modifying all of the 2D
operations in a previous study (25) to 3D. It should be noted
that because the lesions detected in the detection networks were
not the same size, the input size of the CNNs during training
should remain the same if the batch size is larger than 1. We
resized all of the regions to 64×64×64 as the input for 3D
ResNet-18. However, in real-world applications, not all three
phases of the CT images are always captured. It may not be
sufficient to concatenate the three phases of the CT images as
the input for 3D ResNet-18. For this reason, we input each
phase of each case into the network successively and utilized a
voting strategy that collected the classification scores of
multiple phases and calculated the average classification
results for each CT image.

The 3D ResNet-18 was supervised by cross-entropy loss. We
randomly initialized the parameters by drawing weights from a
zero-mean Gaussian distribution with a standard deviation of
0.01. The network was trained for 200 epochs with a batch size of
eight and a stochastic gradient descent (SGD) optimizer with a
momentum of 0.9 and weight decay le-4. The learning rate
started from 1e-3 and was decreased at the 60th and 120th
epochs by multiplying by 0.1.

Observer Study Evaluation
To compare the performance between our framework and
humans in the classification of FLLs, two physicians (with 3
and 8 years of experience in abdominal CT interpretation,
respectively) were enrolled in the observer study. The
physicians did not participate in the model construction and
data processing. In addition, the histopathology and other
clinical data of the FLLs were not available to them. Each
physician independently classified the FLLs from the test
dataset into two and six categories using three-phasic CT
images (unenhanced, arterial, and portal venous phases).

Statistical Analyses
Because our framework contained two types of outputs
(detection and classification results), different metrics were
used for their evaluation.

Precision, recall, and F1-score were utilized to evaluate whether
the FLLs were detected using our detection networks, and IoU was
utilized to evaluate the size of the detected regions compared to
ground truth annotation. Using the ground truth acquired from
the annotation by the physicians, we categorized the prediction of
the detection networks as true-positive (TP), false-positive (FP),
true-negative (TN), and false-negative (FN). We denoted positive
as detecting the FLLs and negative as detecting the background.
True and false correspond to the presence of- and the absence of a
match with the annotation results, respectively. The precision,
recall, and F1-score could then be calculated as follows:
Frontiers in Oncology | www.frontiersin.org 5
Precision =  
TP

TP   +   FP
,  Recall =  

TP
TP   +   FN

,   and   F1

=  
2 ∗   Precision ∗Recall
Precision + Recall

:

IoU is defined as follows:

IoU =
detected   regions ∩     annotated   regions
detected   regions   ∪     annotated   regions

Sensitivity, specificity, receiver operating characteristic (ROC)
curves, area under the receiver operating characteristic curves
(AUCs), and average accuracy were utilized to evaluate the
performance of the classification results. For each FLL class c,
we denoted positive as classifying FLLs into c, and negative as
classifying FLLs into other classes. True and false corresponded
to the presence of- and the absence of a match with the
annotation results, respectively. Sensitivity was equal to recall
as defined above, and specificity and accuracy were calculated as
follows:

Specificity =  
TN

TN   +   FP
,  Accuracy

=  
TP   +  TN

TP   +   FP   +  TN   +   FN
:

The trained framework was tested by inputting CT images in
the test dataset to the three detection networks as inputs. Then
the detection and classification outputs were obtained, and the
above metrics were calculated by comparing the outputs with the
ground truth annotation. Our framework was trained and tested
five times to reduce the variance of the neural network training,
and the averaged results are reported.
RESULTS

Evaluation of FLL Detection
After training, all FLLs in the test set were evaluated via our
established detection network. We conducted five experiments
using the same settings to reduce the variance in the training of the
neural networks, and further evaluated the detection performance
based on the metrics obtained from the test set. Representative
images of the detection frames generated by the model for five test
cases are presented in Figure 3. As shown in Figure 3A, an HCC
lesion with a maximum diameter of 2.6 cm, was easily detected in
3D CT images. The 2D IoU values of the nodule in the transverse,
sagittal, and coronal planes were 0.82, 0.90, and 0.92, respectively,
and the 3D IoU value reached 0.82. For benign lesions, Figure 3B
shows the detection result for a HEM, with a maximum diameter
less than 3 cm. After analyses and calculation, the 3D IoU value of
the lesion was 0.78. However, a small number of lesions with
relatively small diameters or densities close to that of the
surrounding liver parenchyma or blood vessels were easily
overlooked and were ultimately not detected by our model
(Figures 3C–E). In general, our framework achieved an average
test precision of 82.8%, recall of 93.4%, F1-score of 87.8%, and a
3D IoU value of 34.8% (Table 1).
January 2021 | Volume 10 | Article 581210
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To evaluate the performance of our detection networks, we
compared our results with RetinaNet, a commonly adopted
detection network (33), and with the original Faster R-CNN
(28). We also evaluated the importance of post-processing (the
NMS module) and the performance of networks using different
dimensions. We utilized the same network settings and hyper-
parameters for all of the network training to ensure fair
comparisons. For the 3D networks, the detection outputs were
already cuboid, and so the MCCmodule was of no value and was
not utilized under these conditions.
Frontiers in Oncology | www.frontiersin.org 6
The results of comparison experiments are listed in Table 1.
Faster R-CNN commonly outperformed RetinaNet. This may be
because Faster R-CNN is a two-stage detection network, which
makes it more complicated and time-consuming (34). In terms
of the different dimensions in the same network structures, 2.5D
networks commonly outperformed 2D networks, and 3D
networks performed the worst. Furthermore, the networks
commonly achieved better results with post-processing,
indicating the importance of post-processing. Overall, 2.5D
Faster R-CNN with post-processing performed better than all
A

B

C

D

E

FIGURE 3 | Representative images of the model-generated detection frames of lesions for five test cases in the transverse, sagittal, and coronal planes. Manually
labeled and model-generated frames of (A) HCC, (B) HEM, (C) metastasis and HEM, (D) HCC, (E) FNH are shown in green and red, respectively.
January 2021 | Volume 10 | Article 581210
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of the other experiments, and our modified 2.5D Faster R-CNN
w/FPN achieved the best results. This suggests that our modified
network structure is effective and would lead to improved
FLL detection.

Evaluation of FLL Classification
After the lesions were detected using our detection network, they
were classified using the 3D ResNet-18 deep neural network. This
was divided into two steps. We first classified FLLs into malignant
(HCC, ICC, and metastasis) and benign (HEM, FNH, and cyst),
after which they were further classified into detailed classes. The
binary and six-class classification results were evaluated. To
further assess the performance of our classification network, we
compared the results with both the commonly adopted
classification networks (2D Faster R-CNN (28), 3D VGG-16
(35) and the original 2D ResNet-18 (25)) and those of two
physicians (a junior and senior physician with 3 and 8 years of
experience in abdominal CT reporting, respectively).

For the binary classification, our model achieved an average
classification accuracy of 82.5% with an average sensitivity of
76.6%, and specificity of 88.4% for malignant lesions, as well as
an average sensitivity of 88.4% and specificity of 76.6% for
benign lesions (Table 2). Through a series of comparison
experiments, the performance of our 3D ResNet-18 model was
better than the other three networks, and particularly the 2D
Frontiers in Oncology | www.frontiersin.org 7
networks (Table 2). In the observer study, the junior physician
(physician 1) obtained slightly worse results than our model,
where the overall accuracy was 80.4%, and the sensitivity and
specificity of malignant lesions were 73.7 and 87.3%, respectively
(Table 2). However, the classification results obtained from the
senior (physician 2) were better than our model (Table 2). In
addition, a ROC curve was generated by varying the probability
threshold at which the model would classify a lesion as malignant
(Figure 4). From that, our model achieved a better result with an
AUC of 0.921 compared to 0.861 in 2D ResNet-18 and 0.907 in
3D VGG-16 models, respectively.

For the six-class classification, our model sensitivity ranged
from 46.4% (for ICC) to 93.1% (for FNH), with specificity ranging
from 91.9% (for HEM) to 98.6% (for cyst) (Table 3). As can be
seen, the model’s performance in fine classification of benign
lesions was higher than that of malignant lesions. This may be
because malignant lesions are more similar in their inherent
characteristics compared to benign lesions, and therefore, more
samples are needed to improve the accuracy. As depicted in
Table 4, our model achieved the best results with an average
accuracy of 73.4% across the six lesion types compared to the other
three networks. Moreover, the AUCs of each category ranged from
0.766 (for ICC) to 0.983 (for cyst) in our 3D ResNet-18 model,
which outperformed the 2D ResNet-18 and 3D VGG-16 networks
(Figure 5). Similar to the binary classification results, the
TABLE 2 | Binary classification results of different networks and physicians.

Approach Malignant Benign Average accuracy (%)

Sen. Spe. Sen. Spe.

(%) (%) (%) (%)

2D ResNet-18 (25) 70.1 82.0 82.0 70.1 76.2
2D Faster R-CNN (28) 65.6 78.9 78.9 65.6 72.7
3D VGG-16 (35) 74.8 86.2 86.2 74.8 81.1
Physician 1 73.7 87.3 87.3 73.7 80.4
Physician 2 80.8 88.8 88.8 80.8 84.6
Our 3D ResNet-18 76.6 88.4 88.4 76.6 82.5
January 2021 | Vol
“Sen.” is short for sensitivity, “Spe.” is short for specificity. “Physician 1” and “Physician 2” represent the junior and senior physicians, respectively.
The bold values represent the results obtained from our proposed model.
TABLE 1 | Detection results of different networks in comparison experiments.

Approach Post-process Dimension Precision (%) Recall (%) F1-score (%) IoU (%)

RetinaNet (33) No 2 70.3 89.2 78.6 27.8
3 72.2 85.4 78.2 26.8
2.5 71.1 89.8 79.4 29.1

Yes 2 74.9 88.1 81.0 30.1
3 78.0 81.8 79.9 29.3
2.5 75.4 88.9 81.6 30.8

Faster R-CNN (28) No 2 71.5 90.1 79.7 28.8
3 72.8 86.0 78.9 27.9
2.5 72.1 91.9 80.8 29.9

Yes 2 77.4 88.6 82.6 31.5
3 79.2 83.5 81.3 30.3
2.5 77.8 90.1 83.5 32.3

Ours Yes 2.5 82.8 93.4 87.8 34.8
ume 10 | Article
CNN, convolutional neural network; IoU, intersection-over-union.
The bold values represent the results obtained from our proposed model.
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performance of our model in the six-class classification was better
than the junior physician but worse than the senior physician
(Table 4). However, the total time taken for our model to detect
and analyze each lesion was 2 ± 0.5 s, whereas it was 21.4 ± 9.2 s
and 27.2 ± 9.3 s for the physicians, respectively (Table 4). This
suggests that our model saves time and may help physicians with
their diagnoses in daily clinical practice.
DISCUSSION

Due to the increasing incidence of liver lesions and the increased
workload of physicians, it is increasingly important to use
noninvasive imaging analysis techniques to improve the accuracy
of lesion detection and discrimination. In this study, we developed
a CAD framework based on hierarchical CNN structures, which
could simultaneously detect and classify six types of hepatic lesions
in multi-phasic CT images, and achieve good results.

The advantages of DL systems are that they can constantly
recognize, extract, and learn the different hierarchical features
that are invisible to the human eyes. This assists physicians in
Frontiers in Oncology | www.frontiersin.org 8
detecting and classifying lesions, particularly those with atypical
features in the images obtained. Previous studies have shown that
CNN models can be used for the detection or classification of
FLLs in single- or multi-phasic CT images by previously
grouping those lesions into one to five categories (16, 17, 36–
38). However, we investigated six types of hepatic lesions in our
study, and three-phasic CT images from three scanners were
utilized for the model training. This not only improved the
ability of the model to detect lesions but also allowed the model
to learn more features from dynamic contrast-enhanced CT
images, thus facilitating subsequent nodule classification.
Besides, it also demonstrated the robustness of our model
using heterogeneous imaging sources from different CT
scanners and acquisition protocol settings.

Chen et al. (39) demonstrated that both classification and
localization of liver lesions could be handled using a dual-
attention dilated residual network. However, we proposed three
2.5D Faster R-CNN w/FPN and one 3D ResNet-18 for the
detection and classification tasks, respectively. We did not utilize
the detection networks for both detection and classification even if
they were able to classify the detected regions because the
classification sub-networks in the detection networks were
relatively shadowy, which makes the patterns within the six
types of lesions difficult to learn. A relatively deep classification
network would be required. On the other hand, our detection
networks utilized a 2.5D strategy that divided each CT image into
groups. The direct classification of each group generated different
classes for a single lesion. To extract the features in the six types of
lesions better, and to maintain the consistency of the lesion types,
a 3D deep classification network was set up alone.
TABLE 3 | Six-class classification results of different networks and physicians.

Approach HCC ICC Metastasis HEM FNH Cyst

Sen. (%) Spe. (%) Sen. (%) Spe. (%) Sen. (%) Spe. (%) Sen. (%) Spe. (%) Sen. (%) Spe. (%) Sen. (%) Spe. (%)

2D ResNet-18 (25) 53.3 83.6 41.3 89.1 53.1 82.6 68.0 81.9 85.1 89.3 81.1 89.8
2D Faster R-CNN (28) 51.1 81.9 38.6 88.7 49.6 81.5 65.2 80.4 82.7 87.8 80.1 87.5
3D VGG-16 (35) 62.4 91.2 44.9 94.3 62.7 92.6 77.1 90.5 90.7 91.7 89.5 96.3
Physician 1 52.2 90.8 59.1 98.7 54.5 97.4 85.2 99.3 87.5 93.4 92.0 98.7
Physician 2 82.6 94.7 68.2 98.0 77.3 96.0 92.6 97.3 83.3 98.0 92.0 95.9
Our 3D
ResNet-18

63.0 93.1 46.4 95.8 63.6 93.3 77.8 91.9 93.1 95.1 90.0 98.6
January 2021 | Volum
e 10 | Artic
“Sen.” is short for sensitivity, “Spe.” is short for specificity. “Physician 1” and “Physician 2” represent the junior and senior physicians, respectively.
The bold values represent the results obtained from our proposed model.
TABLE 4 | Average accuracy and runtime of networks and physicians for six-
class classification.

Approach Average accuracy (%) Runtime (S, mean ± SD)

2D ResNet-18 (25) 63.6 2.6 ± 0.4
2D Faster R-CNN (28) 62.2 1.8 ± 0.3
3D VGG-16 (35) 72.0 2.4 ± 0.3
Physician 1 72.7 21.4 ± 9.2
Physician 2 83.2 27.2 ± 9.3
Our 3D ResNet-18 73.4 2.0 ± 0.5
“Physician 1” and “Physician 2” represent the junior and senior physicians, respectively.
SD, standard deviation.
The bold values represent the results obtained from our proposed model.
FIGURE 4 | ROC curves of different networks for binary classification. The
performance of physicians in the observer study is also shown in the graph.
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To address problems of spatial discontinuity in 2D CNN
models (19) or parameter explosion and slower inference speed
in 3D CNN models (23), we utilized a 2.5D strategy for lesion
detection, which was a trade-off between 2D and 3D.
Comparison experiments with another two CNN models
showed the superiority of our modified model. Furthermore,
we evaluated the importance of the model dimensions in the
detection task. The 2.5D networks commonly outperformed the
2D networks, and the 3D networks performed the worst. The
reason that 2D networks outperformed 3D networks is that more
parameters were utilized for feature learning of each pixel/voxel
in the CT images. Even if the 2D networks ignored the problem
of the spatial discontinuity between the slices, they were still able
to learn better within each slice. The 2.5D networks with post-
processing performed the best because it utilized fewer
parameters than the 2D networks for feature learning of each
pixel/voxel, but the spatial discontinuity problem was alleviated.

The classification performance of our model was variable
overall, with an average accuracy of 82.5 and 73.4% for binary
and six-class classification, respectively. The finding was inferior to
that of previous studies used a 2D CNN model (15, 18). However,
our classification of liver lesions differed as it was based on the
regions obtained from the previous detection networks, and we
utilized the 3D CNN model. In addition, compared to 2D CNN
structures, 3D CNNs utilize all of the spatial-temporal information
contained in the 3D space, instead of just the local features, which
assists with pattern recognition (40). This was validated in our
experiments. Similar to the previous study (18), our model’s
performance in fine classification of malignant nodules was
Frontiers in Oncology | www.frontiersin.org 9
lower than that of benign nodules, especially in ICC type. The
reasons caused the lower accuracy of malignant lesions maybe as
follows. Firstly, the variation of background (e.g., peritumoral
enhancement and bile ducts dilation) and inherent characteristics
(e.g., size, texture, density, and scale) in ICC CT imaging is more
heterogeneous, and therefore, more samples should be included to
improve the overall accuracy. Secondly, thinner layer-thickness of
CT can improve the resolution and continuity of lesion region,
which in turn helps to learn more detailed imaging features.
Besides, introducing medical history and laboratory test results
to CT imaging may be of better diagnostic value. To clinically
evaluate the model, two physicians were enrolled in the observer
study who classified the same cases in the test set. Interestingly, the
classification performance of the model was placed between that of
a junior physician and a senior physician. The diagnostic accuracy
of the junior physician may increase or exceed that of the model if
additional image sequences and clinical data are provided.
However, for the model, limited data are an important factor
that inhibits its performance.

While the results are promising and indicate the feasibility of
our framework for the automatic and image-based detection and
differentiation of malignant and benign FLLs, there are some
limitations. First, overfitting is a critical issue attributed to the
size of the dataset, particularly in complex models such as CNNs
(9, 41). Because all of the data were collected from a single center,
problems of bias and insufficient data were inevitable, resulting
in a limited performance of the model during the training phase.
To improve the applicability of the model and accelerate clinical
transformation, additional training, and independent test sets
A B C

D E F

FIGURE 5 | ROC curves of different networks for discriminating (A) HCC, (B) ICC, (C) metastasis, (D) HEM, (E) FNH, and (F) cyst. The performance of physicians in
fine classification is also shown in the graph.
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from other institutions should be included. Second, we adopted
some strategies to improve the models’ performance, such as an
NMS module to reduce the redundant bounding boxes, and the
detection and classification networks supervised by the ground
truth labels separately to achieve better results during network
training. However, for a cascaded and coupled design, it’s possible
to degenerate the performance of classification network due to the
error accumulation caused by the anterior detection networks.
Third, lesions with a low incidence or those difficult to diagnose
preoperatively were not enrolled in this study. Because the
framework was effective for detecting and classifying six types of
hepatic lesions commonly encountered in daily clinical practice,
we will focus on uncommon types of liver lesions in the future.
Besides, there was no corresponding histopathological assessment
of all of the liver lesions. Because most benign lesions can be
diagnosed by typical imaging findings or continuous follow-up
evaluation, and do not involve subsequent surgical treatment, it is
difficult to evaluate the histopathology for all lesions. For lesions
without histopathological evaluations, ROIs were labeled by two
physicians who analyzed all of the available imaging sequences
and clinical data.

In summary, this preliminary study demonstrates that our
proposed multi-modality and multi-scale CNN structure can
locate and classify FLLs accurately, which could potentially be
useful to help inexperienced physicians arrive at a diagnosis in
daily clinical practice. With the increasing demand for
radiological services, collaborative workflows that combine the
experience and knowledge of physicians with DL-based CAD
systems can provide more accurate disease diagnosis and higher
quality patient care in a time- and labor-saving manner.
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