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Background: This study aims to construct and validate a model based on convolutional
neural networks (CNNs), which can fulfil the automatic segmentation of clinical target
volumes (CTVs) of breast cancer for radiotherapy.

Methods: In this work, computed tomography (CT) scans of 110 patients who underwent
modified radical mastectomies were collected. The CTV contours were confirmed by two
experienced oncologists. A novel CNN was constructed to automatically delineate the
CTV. Quantitative evaluation metrics were calculated, and a clinical evaluation was
conducted to evaluate the performance of our model.

Results: The mean Dice similarity coefficient (DSC) of the proposed model was 0.90, and
the 95th percentile Hausdorff distance (95HD) was 5.65 mm. The evaluation results of the
two clinicians showed that 99.3% of the chest wall CTV slices could be accepted by
clinician A, and this number was 98.9% for clinician B. In addition, 9/10 of patients had all
slices accepted by clinician A, while 7/10 could be accepted by clinician B. The score
differences between the AI (artificial intelligence) group and the GT (ground truth) group
showed no statistically significant difference for either clinician. However, the score
differences in the AI group were significantly different between the two clinicians. The
Kappa consistency index was 0.259. It took 3.45 s to delineate the chest wall CTV using
the model.

Conclusion: Our model could automatically generate the CTVs for breast cancer. AI-
generated structures of the proposed model showed a trend that was comparable, or
was even better, than those of human-generated structures. Additional multicentre
evaluations should be performed for adequate validation before the model can be
completely applied in clinical practice.

Keywords: convolutional neural network, automatic segmentation, clinical target volume, breast cancer
radiotherapy, clinical evaluation
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INTRODUCTION

Breast cancer is one of the most common malignant tumours in
women. It was estimated that there were 2.1 million newly
diagnosed female breast cancer cases, and 0.6 million cancer
deaths in 2018 (1). Because radiotherapy and imaging quality
technologies have advanced over the past decades, radiotherapy
has become an effective treatment for breast cancer. A meta-
analysis has shown that radiotherapy for postmastectomy
patients can reduce locoregional recurrence, overall recurrence,
and mortality (2). The precise delineation of the clinical target
volume (CTV) is an essential step for accurate, individualized
treatment. However, this task is time consuming and largely
relies on the experience of oncologists. It is full of intra- and
interobserver variability (3), which may obviously influence the
efficacy of radiotherapy and the occurrence of complications (4).
In addition, with the development of adaptive radiotherapy in
recent years, clinicians are required to delineate the CTV
accurately in a short time. Facing these new challenges, the
application of artificial intelligence (AI) in radiotherapy may
provide a feasible solution.

AI has been widely used in radiotherapy, including
simulations (5), image segmentations (6, 7), treatment
planning (8, 9), and quality assurances (10). It can increase the
standardisation of working processes, lessen oncologists’ efforts
and improve homogeneity. The convolutional neural network
(CNN) has become the mainstream method for medical
semantic segmentation because it has better performance than
traditional atlas-based methods. It has been successfully applied
in contouring several cancers’ CTVs, such as nasopharyngeal
carcinomas (11), oropharyngeal carcinomas (12, 13), and rectal
cancer (14). Men (15) constructed a very deep dilated residual
network that could contour the CTVs automatically for patients
who underwent conservative breast surgery. However, there is
little research about CNNs being used for contouring the CTVs
of patients who underwent modified radical mastectomies.

The autodelineation of CTVs is more challenging than that of
organs at risk due to its low contrast visibility, potentially
undetectable tumour regions, and strong dependence on the
knowledge of clinicians. Specifically, the difficulties in contouring
CTVs for postmastectomy patients include unclear boundaries
and variability in the sizes and shapes of breasts. Since the
segmentation performance of atlas-based methods depends on
the accuracy of the image registration and the selected atlas (15),
the delineation results are not satisfactory. Deep learning-based
methods have the potential to obtain more accurate results. The
U-Net architecture (16), proposed for the biomedical imaging
community, has made significant contributions to the computer
vision field. The encoder-decoder paradigm has been proven to be
an effective way to conduct multilevel feature fusions. However,
the network is not deep enough to represent high-level features,
such as the structures that are of significant importance for breast
CTV recognition. We therefore employed deeper convolution
layers with the U-Net architecture as the backbone. To increase
the network depth and ease the training of the network parameters
simultaneously, the building blocks of the U-Net architecture were
replaced with residual blocks of convolutional layers (17). We
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trained the U-Net and our proposed method under the same
settings, and compared the predicted delineation results with the
performance of the U-Net as the baseline.
MATERIALS AND METHODS

Data and Pre-Processing
The CT data of 110 postmastectomy female patients were
collected from March 2019 to July 2019 at Peking Union
Medical College Hospital, Beijing, China. This study was
approved by the Institutional Review Board of Peking Union
Medical College Hospital. All patients met the indications for
radiotherapy after modified radical mastectomies. 9130 CT slices
were collected from those patients. Among the 110 patients, 54
received left chest wall radiotherapy, and the remainder received
right side radiotherapy. All patients were scanned by a Philips
Brilliance Big Bore CT scanner. Each CT image had a matrix size
of 512 × 512 with 1.1543 mm × 1.1543 mm pixel spacing, and the
thickness of each layer was 5 mm. The private information of
patients was kept confidential during the data collection and
processing. The delineation region of the chest wall CTV was
defined according to the RTOG guidelines (18), which was from
the caudal border of the clavicle head to the loss of apparent
contralateral breast in a CT scan; the medial boundary was the
sternal-rib junction, the lateral boundary was the mid-axillary
line excluding the latissimus dorsi muscle, the anterior boundary
was the skin and the posterior boundary was the rib-pleural
interface. All the data were approved by two radiation
oncologists who had more than 10 years of experience in
breast cancer radiotherapy.

The intensity of the input images was clamped to −1024 HU
and 1024 HU. A zero-mean normalization was applied to so that
the different features had the same scale and to speed up the
convergence of the weight parameters. “Ground truth (GT)”
stands for the manually generated reference segmentation. The
data were randomly divided into 3 groups. Eighty-eight cases
were included in the training set, 11 cases were included in the
validation set, and 11 cases were included in the testing set. In
addition, we randomly selected 10 cases that had been applied in
the clinic for further clinical evaluation.

Network Architectures
We implemented a 2.5d fully CNN architecture to conduct the
CTVmask segmentation task. The detailed network architecture is
shown in Figure 1. A U-Net backbone architecture consisting of
an encoding path and a decoding path was used. To obtain the 3D
information of CT scans, and maintain contour continuity, the
network was designed to assign three adjacent slices to three
channels as the input. The building blocks were replaced with
residual blocks to achieve consistent training as the network depth
increased. Batch normalization (19), a linear transformation of the
features, was used to reduce the covariance shift and accelerate the
training procedure. The encoding path contained five
convolutional layers and five residual blocks to gradually extract
the features of the CTV region from low-level to high-level. In the
decoder part, the upscaling was performed by using a nearest
February 2021 | Volume 10 | Article 581347

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Auto-Segmentation of Post-Mastectomy CTV
neighbors interpolation and was followed by a convolutional layer
and a residual block. The encoding path and decoding path were
combined together by a skip connection to concatenate the
multilevel features and to take advantage of both the low-level
and high-level information.

The original U-Net encodes relatively lower-level features
such as edges and intensity contrasts. By replacing the
convolutional layers with the residual blocks, our proposed
model captures both low-level features and high-level features
such as shapes, structures, and position relations to address the
challenges of CTV recognition. As an efficient end-to-end
training model, U-Net does not require a pretrained network
and could be trained from scratch to achieve accurate
segmentation results with very little labeled training data (16).
Our proposed model uses the residual blocks to increase the
network depth and eases the training of the network parameters
simultaneously, and could also be trained from scratch with the
amount of data we have.

A total of 99 patients’ CT scans were used for training and
validation. All the CT slices were used. We did not use any
pretrained models or transfer learning methods, and we trained
our model from scratch. A weighted sum of cross-entropy loss
and dice loss was used as the loss function. The output value of
the model was in the range of 0 to 1. Pixels with output values
larger than 0.5 were set as the foreground of the segmented mask.
A contour extraction was applied to the foreground afterwards.
The network was implemented using PyTorch 0.4.1 and Python
3.6 and trained on an NVIDIA GeForce GTX 1080 GPU with 8
GB memory. The entire network used the Adam optimizer with
an initial learning rate of 0.0001, and was decayed by an
exponential function with gamma 0.9 for every epoch. The
total epoch number was 100.

Quantitative Evaluation Metrics
The Dice similarity coefficient (DSC) (20) and Hausdorff
distance (HD) (21) are commonly used for evaluating image
segmentation performance. The DSC is defined as follows:
Frontiers in Oncology | www.frontiersin.org 3
DSC (A, B) =
2 A ∩ Bj j
Aj j + Bj j

where A represents the predicted mask, and B is the GT mask.
|A∩B| stands for the intersection of A and B.

The 95 HD is defined as:

95HD (A, B) = percentile ½h(A,B) ∪  h(B, A), 95th�

h(A,  B) = max  
a∈A 

min
b∈B

 jja� bjj

h(B,  A) = max  
b∈B 

min
a∈A

 jjb� ajj

||. || stands for the Euclidean norm of points A and B. A= {a1,
a2,…, an1} and B= {b1, b2,…, bn2} represent two finite point sets.
95HD indicates the 95th percentile of mismatches between A and
B (22). Both the DSC and 95HD were calculated at the two-
dimensional level. Since our model was based on the U-Net
model, we used the same data to train U-Net and then compared
the DSC and 95HD with those of the proposed model.

Since the above evaluation does not completely reflect the
segmentation quality, it is not clear whether it is significant for
clinical practice. Therefore, it is also necessary for clinicians to
evaluate the model.

Clinical Evaluation
The evaluation was conducted by two other experienced
clinicians, A and B, in our centre, who did not participate in
the CTV contouring. Ten patients were selected randomly from
the clinical work. The manual reference contours were separated
into the GT group, while the corresponding contours generated
by the proposed model belonged to the AI group. Then, the AI
results and GT results of each case were randomly labeled 1 or 2.
If AI was labeled 1, then GT was 2. Two clinicians were asked to
score the 1 and 2 results, slice by slice, via a blind evaluation.
Table 1 shows the evaluation criteria. A score higher than 2
indicates that the contours were acceptable for clinical practice.
FIGURE 1 | Overview of our proposed network.
February 2021 | Volume 10 | Article 581347
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Consistency Test
Ten slices from each CTV were randomly selected to mark the
contours of both AI and GT simultaneously, and these slices
constituted a dataset of 100 cases. Two clinicians blindly selected
one contour that was better for clinical application. If the AI
group was better, it was recorded as a positive result; otherwise, it
was recorded as a negative result.

Time Cost
The processing time was measured for AI, and pre- and post-AI
assistance, in the delineation of CTV for postmodified radical
mastectomy radiotherapy.

Statistical Analysis
For the DSC and 95HD, a Wilcoxon signed-rank test was
performed to verify whether the differences between our model
and U-Net were statistically significant. The same test was
performed to see if the differences in the scores given by the
two clinicians were statistically significantly different.
Furthermore, McNemar’s test and a consistency test were
performed to check the evaluation consistency of the
two clinicians.
RESULTS

Segmentation Performance
The mean DSC of our proposed model is 0.90 ± 0.02, while that
of U-Net is 0.88 ± 0.02 (P=0.007). The 95HD was 5.65 ± 1.29 mm
in our model and 6.33 ± 1.63 mm in U-Net (P=0.037). The
Frontiers in Oncology | www.frontiersin.org 4
results of our model were not significantly different between the
right side (DSC 0.90 ± 0.02, 95HD 5.94 ± 1.56) and the left side
(DSC 0.90 ± 0.03, 95HD 5.31 ± 0.64, P=0.810 and 0.422,
respectively). A detailed result is given in the Supplementary
Material Table 1. The box plots are shown in Figure 2.

Clinical Evaluation
The DSC and 95HD values per patient are given in
Supplementary Material Table 2. The evaluation results from
the two clinicians are shown in Table 2, and the distribution of
the clinical evaluation scores is shown in Figures 2, 3. Figure 4
shows an example segmented slice that is produced by the
proposed model. If a score is higher than 2, this layer is
acceptable for clinical applications. Therefore, the results given
by clinician A show that 99.3% of the chest wall CTV slices from
the AI group, and all the chest wall CTV slices from the GT
group, can be accepted. The evaluation results from clinician B
show that 98.9% of the chest wall CTV slices from the AI group,
and all the chest wall CTV slices from the GT group, can be
accepted. In addition, 9/10 of patients had all slices accepted by
clinician A, while 7/10 could be accepted by clinician B. The
score differences between the AI group and the GT group showed
no statistically significant differences for either clinician (P=0.075
and P=0.444). The average scores given by clinician A were 2.97
(2.87–3.00) for the AI group, and 2.92 (2.82–3.00) for the GT
group, while the average scores from clinician B were 2.88 (2.83–
3.00) for the AI group, and 2.82 (2.21–3.00) for the GT group.
The score differences were statistically significant between the
two clinicians in the AI group (P=0.008) but there was no
statistically significant difference in the GT group (P=0.721).
The box plots of the mean scores are shown in Figure 5.

Consistency Evaluation
The evaluation results are shown in Table 3. Clinician A thinks
that 60% of the CTV slices delineated by AI are better than the
CTVs generated manually, while this number is 37% for clinician
B. McNemar’s test is statistically significant (P <0.001), which
means that the positive rates of the two clinicians are different.
The Kappa consistency index was 0.259 (P<0.05), which means
that the consistency between these two clinicians was poor. The
evaluation results are shown in Figure 6.
TABLE 1 | The grading form used for CTV evaluation.

Score Grade Criteria

3 No
revision

The segmentation is perfect and completely acceptable for
treatment.

2 Minor
revision

The segmentation needs a few minor edit but has no
significant clinical impact without correction.

1 Major
revision

The segmentation needs significant revision. Treatment
planning should not proceed without contour correction.

0 Rejection The segmentation is unacceptable and needs to be redrawn.
A B

FIGURE 2 | The box plot of the mean DSC (A) and the 95HD (B) results of proposed model and U-Net. *stands for P < 0.05, and **stands for P < 0.01.
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Timing Performance
The training time of the proposed model was 6 h using a GTX
1080 GPU. It takes more than 20 min for an oncologist to
delineate a chest wall CTV completely. However, our model only
Frontiers in Oncology | www.frontiersin.org 5
needs 3.45 s to finish this task. With the assistance of AI, the
contouring time was reduced to 10 min for an oncologist. This
result indicates that this model can efficiently shorten the
contouring time for clinicians.
Clinician A Clinician B

FIGURE 3 | The distribution of the scores of the chest wall CTVs given by the two clinicians. The score is defined as 0, rejection; 1, major revision; 2, minor revision;
3, no revision.
TABLE 2 | The evaluation results from the two clinicians.

Score Clinician A Clinician B

AI group GT group AI group GT group

0 0 (0%) 0 (0%) 0 (0%) 0 (0%)
1 2 (0.7%) 0 (0%) 3 (1.1%) 0 (0%)
2 4 (1.4%) 23 (7.7%) 28 (9.8%) 54 (18.1%)
3 278 (97.9%) 276 (92.3%) 253 (89.1%) 245 (81.9%)
Total 284 299 284 299
P value 0.075 0.444
February 2021 | Volume 10 | Article 5
AI, artificial intelligence; GT, ground truth.
FIGURE 4 | An example of segmented slice. This slide was graded 1 score by both two clinicians. The red line showed AI contours in three views. While the green
line was GT contours.
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DISCUSSION

To improve the working efficiency and reduce intra- and
interobserver variability, we constructed a neural network
model that can automatically delineate a chest wall CTV for
Frontiers in Oncology | www.frontiersin.org 6
breast cancer. We evaluated the segmentation performance and
used a blind method to compare the delineation results with
structures generated manually.

The delineation of the CTV is one of the most important steps in
radiotherapy, and the accuracy is closely related to tumour control.
Some studies have found that variations exist between different
observers and different institutions, despite following the same
contouring guidelines (3, 23). AI has been demonstrated to be an
effective method to improve contouring accuracy and reduce
variability (24). In regards to a postmastectomy CTV, the most
important challenge is that some boundaries are not clear. The
cranial and caudal planes of the contralateral breast are
heterogeneous in different women, which will then affect CTV
delineation. Since the lateral thoracic artery is destroyed after
surgery, it is difficult to determine the position of the mid-axillary
line without an anatomical reference mark. In addition, the RTOG
guidelines recommend the interface between the ribs and pleura as
the posterior boundary of the CTV. Most clinicians in our
institution still use the RTOG guidelines, so the guidelines are
also utilized in this study to ensure the proper implementation of
the blind method.

Currently, there are very few studies in the field of chest wall
CTV contouring with CNN models. The highest mean DSC was
0.84 when using atlas-based methods (25), while the mean DSC of
our model was 0.90, with the potential for even better performance.
However, the direct comparison of parameters is meaningless
because the performance of the segmentation model largely
depends on its ability to extract features, and in the consistency of
the training data. Before moving into the next step of training, our
data were strictly reviewed by experienced oncologists to minimize
the variation in our data for further comparison.

From Table 2, we found that 97.9% of the CTV slices
contoured by AI were accepted by clinician A and 89.1% by
clinician B. Compared with human-generated structures, AI-
generated structures are comparable or even better. Therefore,
FIGURE 5 | The box plots of the mean scores assigned by the two
clinicians. The score differences are statistically significantly different between
the two clinicians in the AI group. **stands for P < 0.01.
TABLE 3 | The results of the consistency evaluation.

Clinician B Clinician A Total

Positive Negative

Positive 29 8 37
Negative 31 32 63
Total 60 40 100
A B C D

FIGURE 6 | The results of the consistency test. The red lines represent the structures delineated by AI while the green lines stand for the structures contoured
manually. Column (A) indicates that both clinicians think that AI is better, columns (B, C) suggest that the two clinicians have opposite opinions, and column (D)
indicates that both clinicians think GT is better.
February 2021 | Volume 10 | Article 581347
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our model can be applied in clinical practice, and it may alleviate
tedious workloads and reduce variations in the real world.
According to Figure 4, we noticed that most slices that
required minor or major corrections were located on cranial
and caudal planes. The possible reason is that the delineation
process needs to integrate information from multiple slices up
and down, while the available information near cranial and
caudal levels is limited, resulting in unsatisfactory contouring
results. In addition, there was a statistically significant difference
in scores between the two clinicians in the AI group, which
means that AI delineations cannot meet all personal preferences.

In the consistency evaluation, AI-generated contours were
directly compared with manual contours on the same slice. The
results show that 29%, or even a higher proportion of AI-
generated contouring were better, which suggests that the
quality of CTV delineations could be improved with the
assistance of AI. There are three possible reasons accounting
for the poor consistency. First, the two clinicians had different
understandings of the boundaries of the CTV, especially the
medial and lateral boundaries. Second, clinicians may identify
some implicit manual traces, and then choose the human-
generated CTV as the better one. In addition, similar contours
may lead to random selections.

There are three limitations in our study. First, the study was a
single-centre study with a small sample size, which created a
generalization problem. The results of our study can provide
a reference for CTV delineation in patients with breast cancer.
However, a multicentre evaluation with more cases should be
performed in the future for better validation. Second, the model
may not meet all clinicians’ preferences. Multiple institutions
could achieve a consensus on delineation guidelines and provide
a larger dataset, which will make the treatment in each centre
more standardized. Finally, the grading process is subjective.
Individual variations still need to be analysed in clinical practice.
CONCLUSIONS

In this study, a novel CNN model is generated to delineate CTVs
for postmastectomy patients automatically. The clinical
evaluation results show that AI-generated structures trended
towards being comparable, or even better, than human-
generated structures. Our study provides a reference for CTV
delineation in patients with breast cancer. We hope this work will
help relieve clinicians from tedious contouring work, and
Frontiers in Oncology | www.frontiersin.org 7
minimize delineation variations from different centres.
However, additional multicentre evaluations with more cases
are needed before the model can be completely applied in
clinical practice.
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