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During tumor progression, cancer cells rewire their metabolism to face their bioenergetic
demands. In recent years, microRNAs (miRNAs) have emerged as regulatory elements
that inhibit the translation and stability of crucial mRNAs, some of them causing direct
metabolic alterations in cancer. In this study, we investigated the relationship between
miRNAs and their targets mRNAs that control metabolism, and how this fine-tuned
regulation is diversified depending on the tumor stage. To do so, we implemented a paired
analysis of RNA-seq and small RNA-seq in a breast cancer cell line (MCF7). The cell line
was cultured in multicellular tumor spheroid (MCTS) and monoculture conditions. For
MCTS, we selected two-time points during their development to recapitulate a
proliferative and quiescent stage and contrast their miRNA and mRNA expression
patterns associated with metabolism. As a result, we identified a set of new direct
putative regulatory interactions between miRNAs and metabolic mRNAs representative
for proliferative and quiescent stages. Notably, our study allows us to suggest that miR-
3143 regulates the carbon metabolism by targeting hexokinase-2. Also, we found that the
overexpression of several miRNAs could directly overturn the expression of mRNAs that
control glycerophospholipid and N-Glycan metabolism. While this set of miRNAs
downregulates their expression in the quiescent stage, the same set is upregulated in
proliferative stages. This last finding suggests an additional metabolic switch of the above
mentioned metabolic pathways between the quiescent and proliferative stages. Our
results contribute to a better understanding of how miRNAs modulate the metabolic
landscape in breast cancer MCTS, which eventually will help to design new strategies to
mitigate cancer phenotype.

Keywords: cancer metabolism, miRNA-mRNA interaction, multicellular tumor spheroids, bioinformatics, miRNA
target prediction
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INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs of
approximately 22 nucleotides in size that are related to critical
regulatory functions in a plethora of biological processes, associated
with healthy and dysfunctional physiological states (1, 2). Themost
common and well-documented functions of miRNAs are to be
endogenous negative regulators of the translation and contribute to
the mRNAs instability. This regulatory capacity is carried out
through direct base pairing to the target sites in the 3′
untranslated regions of an mRNA (3). To date, there are more
than 1,900 mature human miRNAs according to the latest build
(build 22) of the Sanger Centre miRNA database miRBase (http://
www.mirbase.org). To highlight their regulatory relevance, last
estimations suggest that this set of miRNAs target at least 60% of
humanmRNAs (4). For this reason,miRNAshave surged as crucial
post-transcriptional regulators whose dysregulation can be tightly
associated with aberrant gene expression in complex human
diseases such as cancer (5).

Incancer research, there are amyriadofpublicationsuncovering
the role of miRNAs during their pathogenesis and progression (6,
7). Despite their broad dysregulation, miRNAs can be functionally
classified as oncogenes or tumor suppressors (8). This fact leads to
most of the human tumors present a unique pattern of expression,
setting a large and complex network of interactions between
oncogenes being activated and the loss of various tumor
suppressors. Regardless of this variation in the genetic profiles,
these interactions between oncogenes and tumor suppressors can
directly or indirectly induce metabolic alterations that favor the
survival and growth of the tumoral cells (9). For instance, there is
experimental evidence that miRNA-143 down-regulates
Hexokinase 2 (HK2) which promotes cancer progression and the
reduction in glucose metabolism (10). Hence, miRNAs participate
in the control of metabolic reprogramming by regulating the
expression of mRNAs whose protein products regulate directly
metabolic machinery (11, 12). Despite the substantial progress in
this area, we still need to complete the puzzle and establish the role
ofmiRNAs onmetabolic rewiring into cancer progression and how
this could be exploited as therapeutic targets in cancer.

A major impediment in cancer treatment is the drug resistance
due to the heterogeneous subpopulations of cells within the tumor
with different cell-cycle phases (13, 14). The cell cycle is the
mechanism associated with proliferation, cellular division and
DNA replication. It is mainly divided into four phases: G1-phase
where proteins necessary for S-phase progression are accumulated,
the S-phase period where DNA synthesis occurs, the G2-phase
where proteins required for mitosis are produced and theM-phase
phase where mitosis and separation occurs (15). Also, cells may
occasionally exit from the cell-cycle and enter a phase of quiescence
called the G0-phase (16). With this in mind, models that closely
resemble human cancer cell-cycle heterogeneity are essential for
understanding the growthmechanisms and for the development of
new treatments. For this reason, MultiCellular Tumor Spheroids
(MCTS) models have been used to study and reproduce the
gradients between proliferating and quiescent cells, cell-cell
interaction, low drug penetration and resistance of quiescent cells
located in the deepest and hypoxic regions (17–19).
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In the present study, we proceeded with a experimental and
computational pipeline to report new plausible miRNA-mRNA
pairs interactions involved in the metabolic rewiring of cancer,
using an in vitroMCTSmodel of a luminal A breast cancer cell line
(MCF7), the most prevalent subtype in womenworldwide (20). To
explore the regulatory effect of miRNAs over metabolism, we
accomplished a longitudinal study of the MCTS in a period of 19
days of progression. In this interval of time, the MCTS owns cell
populationswith different cell cycle stages, particularly proliferative
and quiescent cells, which can provide differences in the metabolic
phenotype as time passes. Using this model, we conducted a whole
transcriptome analysis, including RNAs and small-RNAs, to
describe how miRNAs influence metabolism. Our paired analysis
of RNAseq and small RNAseq allowed us to conclude that whereas
glycerophospholipid and glucose metabolism are down-regulated
in proliferative enriched MCTS, oxidative phosphorylation, and
amino acid biosynthesis is down-regulated in quiescent enriched
MCTS. Overall our study highlighted the crucial role ofmiRNAs to
guide the metabolic phenotype inMCF7MCTS. Notably, the set of
miRNAs modulating the expression of various metabolic mRNAs
seems to be a promising avenue to design new in vitro strategies to
mitigate the malignant phenotype in cancer.
MATERIALS AND METHODS

Experimental Procedures
MCF7 Monoculture
Breast cancer cell line MCF7 (ATCC HTB-22TM, Manassa, VA,
USA) was grown in DMEM (ATCC 30-2002, Manassa, VA, USA)
containing 4 mM L-glutamine, 4,500 mg/L glucose, 1 mM sodium
pyruvate, and 1,500 mg/L sodium. Media was supplemented with
10%v/v of FBS (ATCC30-2020,Manassa,VA,USA).Themediawas
replaced every 2 days with freshmedia. Cells were incubated under a
humidified atmosphere with 5% CO2 and 95% air at 37°C. For all
experiments, 70–80% confluent monoculture with less than 9
passages were used.MCF7 cell line was validated using STR analysis.

Generation and Disaggregation of Multicellular
Tumor Spheroids (MCTS) Cultures from MCF7
The generation of MCTS was carried out using a liquid overlay
technique. A single-cell suspension of MCF7 at a density of 1x106

cells was loaded into 12.5 cm2 suspension culture flasks
(UltraCruz sc-200257, Tex, USA) containing 5 mL of L-15
media (ATCC 30-2008, Manassa, VA, USA) supplemented
with 5% v/v of FBS. Flasks were placed in an orbital incubator
at 37°C under constant orbital shaking of 59 rpm for 6 and 19
days (21). The media was replaced every 2 days with fresh media.

For disaggregation, the 6 and 19 day-old MCTS were harvested
and transferred to 1.5 mL tubes. TheMCTSwere washed with PBS
1X (VWR97062-732, PA, USA). Accutase (Invitrogen 00-4555-56,
CA,USA)was added and the reactionwas carried out for 45min. at
37°C with orbital shaking. Every 5 min. the MCTS were mixed
gently by pipetting during the accutase reaction. To ensure optimal
disaggregation, Trypsin-EDTA (0.25% Trypsin, 1mM EDTA)
solution was added for 5 min at 37°C. The trypsin reaction was
stopped by adding media with FBS in a 1:1 ratio. Finally, cells were
December 2020 | Volume 10 | Article 582396
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collected by centrifugation andwere suspended in 0.1%BSA inPBS
(Cell Signaling Technology BSA #9998, USA) solution.

MCTS Diameter Distribution
Diameter distribution of MCTS at 4, 7, 11, 15, 17, and 19 day-old
time was estimated by two steps. First, we took photos directly to
the MCTS culture, ensuring that almost all MCTS are positioned
at the center of the flask. Photos were taken using a Nikon Eclipse
TS100 Inverted Microscope. Following this, the images were
analyzed through the MorphLibJ package to directly estimate the
Feret diameter of all the MCTS in each picture (22). The Feret
diameter value reported in Figure 1 represents the mean value of
all MCTS properly measured for each time point. The diameter
distribution was calculated for three independent MCTS cultures
using the time points mentioned above (Table S1).

MCTS Culture Time Points Selection
To evaluate the abundance of cells in proliferative and quiescent
stages inside theMCTS through time, we selected four-time points:
6, 8, 17, and 19 days. The first two time points (6 and 8 days) of
MCTSculturewere chosenbecause after 6daysalmost every cellhas
been aggregated to form an MCTS. The next two time points were
picked because after 20 days of MCTS culture necrotic population
started to appear, a condition that was avoided in our study.

Immunophenotyping
The 6-, 8-, 17-, and 19-day oldMCTS cultures were disaggregated as
described in Generation and Disaggregation of Multicellular Tumor
Spheroids (MCTS) Cultures from MCF7 section. Therefore, we took
an aliquot of 3x106 cells of each MCTS culture. Fixation was carried
out using PFA 4% for 10min. at room temperature and rinsing three
times with PBS 1X. Subsequently, the permeabilization was
accomplished by adding ice-cold methanol (90%) during 30 min.
in ice. Previous to the antibody staining, the methanol was removed
Frontiers in Oncology | www.frontiersin.org 3
by washing with PBS 1X and 1x106 cells were aliquoted. Then, the
cells were rinsed with 3 mL of incubation buffer (0.1% BSA in PBS)
three times. Staining was made by resuspending the cells with the
Ki67-Alexa Fluor® 488Conjugate (CST11882,Massachusetts, USA)
and p27-PE Conjugate (CST 12184, Massachusetts, USA) primary
antibodies (1:50) and incubating for 1 h at room temperature. Before
cell cytometry analysis, cells were resuspended in 500 µL of PBS 1X.
Finally, the immunophenotyping was done in a FACSAria
Cell Sorter.

RNA Extraction Method for MCTS and Monoculture
Total RNA was isolated from MCF7 monoculture, 6- and 19-day
old MCTS by a TRIzol (Invitrogen, CA, USA) adapted protocol.
Particular adjustments previous to theTRIzol extractionweremade
for both culture conditions. In the monoculture, we used a 70–80%
confluent culture, then we poured 1 mL of TRIzol directly to the
culture dish and homogenized until all cells were detached from the
dish. This step was assisted by the use of a scraper. In the 6- and 19-
day old MCTS culture, the MCTS were retrieved by centrifugation
and resuspended in 1mLofTRIzol. The solutionwas homogenized
vigorously until there were no cellular lumps. The subsequent steps
describedbelowwereused for bothculture conditions.Weadded10
µL of triton 2% (Merck T8787, St. Louis, USA) and incubated for
10min. at room temperature.Next, we added200 µLof chloroform,
mixed through inversion and incubated for 5 min. at room
temperature. Tubes were centrifuged at 12,000 rpm during
15 min. at 18°C. The aqueous phase was retrieved, we added 0.25
µL of glycogen as co-precipitation reagent (ThermoFisher R0561,
Waltham,USA)and isopropanolwas added ina1:1 ratio (regarding
TRIzol). The mixture was homogenized gently, incubated for
20 min. at −20°C and centrifuged at 13,000 rpm during 45 min. at
18°C. Finally, the pellet was washed three times with ethanol 75%,
dissolved in ultrapure DDW (not treated withDEPC) and stored at
−80°C.
A

B C

FIGURE 1 | MCF7 MCTS Model. (A) Representative images from MCF7 MCTS culture showing size differences along time. (B) MCTS diameter distribution
measurements, average MCTS measure per time point = 67, n = 3. (C) Immunophenotyping of MCTS subpopulations with flow cytometry using Ki67 and p27
markers in four temporal conditions: day 6, 8, 17, and 19. The expression of both markers showed statistical difference in the comparison between days 6 and 19.
Single asterisk indicates a statistical difference, P <0.05 (unpaired t-test with equality of variances in normalized measurements, t = ± 4.4629; df = 4).
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RNA-Seq and Small RNA-Seq Library Construction
and Sequencing
Previous to the library construccion we ensured that all RNA
samples have a minimum amount of 1 µg and the integrity value
of the samples have a RIN >7. The NGS was performed on total
RNA isolated as described in the previous sectionusing theNextSeq
platform (Illumina, Inc.). The library construction for RNA-Seq
and small RNA-Seq was made following the TruSeq RNA Library
Prep Kit (Illumina, Inc.) and the CD Small RNA Library Prep Kit
(Illumina, Inc.), respectively. The datasets presented in this study
canbe found inonline repositories. Thenamesof the repository and
accession number can be found below:ArrayExpress, Accession: E-
MTAB-9741 (https://www.ebi.ac.uk/arrayexpress/experiments/E-
MTAB-9741/)

Bioinformatic Analysis
Quality Determination and Pre-Processing
All the FASTQ files undergo quality evaluation using FastQC
software version 3 (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). The resulting output files were summarized
using the MultiQC tool (23). Only RNA-Seq FASTQ files were
pre-processed to remove low-quality information in the 3′ and 5′
end using Trimmomatic version 0.36 (24).

Alignment and Entity Quantification
For RNA-Seq FASTQ pre-processed files, the alignment was made
using Kallisto version 0.43.1 (25). The results were summarized
using the tximport package in R (26). For small RNA-Seq the
alignment was made using Bowtie2 version 2.3.2 (27) with the
parameters suggested in (28) and the human genome GRCh38
construction. The resulting SAM files were summarized using
FeatureCounts (29) with the hsa.gff file from miRBase v22.

Exploratory Analysis and Differential Expression
Analysis
The processed data was inspected for normalized data through
principal component analysis (PCA) plot (Figure S1). The
differential expression analysis was carried out with edgeR
package (30) version 3.26.8 for RNA-Seq and small RNA-Seq reads.

miRNAs Target Prediction for Metabolic mRNAs
To only obtain the Differential Expressed (DE) metabolic mRNAs
in each condition, we filtered the DE mRNAs using the KEGG
metabolic pathways gene list using an FDR <0.05 threshold. Next,
we used DE miRNAs and the metabolic DE mRNAs mentioned
before toobtain the plausiblemiRNAs-mRNApairs calculatedwith
miRGate (31). FrommiRGate analyseswe onlyused thepredictions
from Targetscan algorithm and the experimental validated
miRNA-mRNA pairs for further filters. We filtered the plausible
pairs when the log2FC has an inverse value between miRNAs and
the metabolic mRNAs. Finally, the selected pairs were filtered to
those who appear at least two times in a metabolic pathway.

Pathway Enrichment Analysis
Pathway enrichment analysis was done using two different
methods within Webgestalt (32). First method consists of
taking the full mRNA list into an over-representation analysis
Frontiers in Oncology | www.frontiersin.org 4
(ORA). Second, gene set enrichment analysis (GSEA) was made
using the mRNA differential expressed with a FDR <0.05. We
used the KEGG, GO, Panther, and wikipathway datasets.
RESULTS

MCTS Culture as a Model of Proliferation
and Quiescence
To explore the possible interaction between miRNAs and mRNAs of
metabolic genes in cancer, we carried out a MCTS culture with the
breast cancer cell line MCF7. We mainly used the human luminal A
(ER+, PR+,HER2-) cell line due to its high incidence inwomen breast
cancer patients worldwide (20). In this MCTS model, MCF7 cell
suspension was loaded on non-adherent plates to stimulate cell-cell
adhesion and promote well-rounded spherical structures. This
experimental model, and its implemented protocols, facilitated the
trackingof theprogressionof theMCTSandensured theproductionof
large batches of MCTS on diverse time points (Figure 1A). The Feret
Diameter reported in Figure 1B. is the average value of MCTS
measurements in each time point (Table S1). To select the optimal
timepointwhere theMCTS ismainly enriched in a cell cycle phase,we
assess the presence of a standard marker for proliferation (Ki67) and
quiescence (p27) in four-timepointsusing immunophenotyping.Also,
tocontrast thedifferencesacrossaclassical culturemethod,we included
a 2D model (monoculture) along all the study to compare against a
proliferative enriched MCTS and quiescent enriched MCTS. We
applied a t-test analysis over the relative composition of the
proliferative and quiescent population in monoculture and MCTS to
identify two sample times to proceed with NGS data analysis. The
statistical analysis showed significant differences in some samples
between the expression of Ki67 and p27 (Figure S2). As a result of
this study,we foundthatonly thecomparisonbetweenMCTSat6-and
19-day old showed statistical differences in both cell cycle markers
(Figure 1C). Consequently, these timepointswere selected to carry on
the transcriptome and small-RNAprofiling.These results indicate that
MCTS 6-day old are primarily enriched in proliferative cells (P-
MCTS), and MCTS 19-day old are principally enriched in quiescent
cells (Q-MCTS).

Bioinformatics Analysis of RNA-Seq and
Small RNA-Seq
To date, few computational tools can simultaneously accomplish
the analysis of RNA-Seq and small RNA-Seq. Among these
algorithms, miARma-Seq provides a multiprocess analysis tool
that can undergo these restraints and allow the study of
expression profiles of miRNAs and their targeted mRNAs (33). A
study combiningmRNA andmiRNA sequencing can undoubtedly
supply a proper framework to assess pair-wise connections between
miRNAs andmetabolic targetsmRNAs.With this aim inmind, we
implemented some changes in the original miARma-Seq pipeline,
using the best-suited tools for each processing module. The two
significant changes in the pipeline were performed in the alignment
tool for RNA-Seq data and the enrichment tool. Thus, we set
Kallisto and Webgestalt as the new processing tools (Figure 2).
An in-deepdescriptionof the adjustmentsmade for eachprocessing
module is described in themethods section. In brief, our pipeline is
December 2020 | Volume 10 | Article 582396
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integrated by a set of modules which embraces classical steps for
each technology (mRNA and microRNA) such as quality check,
alignment, differential expression, target prediction, and functional
analysis. A global view of the entire pipeline implemented in this
paper is depicted in Figure 2.

Differential Expression Analysis and Metabolic
mRNAs Target Prediction
In this section, we pursue two aims: explore how miRNA and
mRNAs expression changes among conditions; and identify
potential miRNAs-mRNA regulatory mechanisms at a metabolic
level. To assess the changes in RNA expression profiles among the
samples, we obtained the Differential Expressed (DE) profile of
mRNAs and miRNAs for each pair-wise comparison among P-
MCTS, Q-MCTS, and monoculture condition. From a statistical
point of view, we used an FDR <0.05 as a criteria to select those
mRNAs and miRNAs differentially expressed between conditions.
As a result, we identified a total of 1,289 mRNAs and 35 miRNAs
differentially expressed among all pairwise conditions. Particularly,
the comparison between P-MCTS and monoculture showed no
significant results. Therefore, to get insight of the regulation
differences we used only for this comparison a p-value <0.05. By
doing so, 15 uniquemiRNAswere added to the analysis. Figure 3A
summarize the set of DE mRNAs and miRNAs obtained per
comparison with the considerations indicated above.

In order to disentangle the metabolic rewiring accomplished
by miRNAs, we carried out a filter within the DE mRNAs to just
obtain the subset of mRNAs that codify for metabolic machinery.
This last analysis was accomplished by using the KEGG
metabolic pathways gene set (34). Subsequently, miRGate was
used to characterize in silico potential regulatory interactions
between the DE metabolic mRNAs and the miRNAs. As a result
of this bioinformatic analysis, 32 mRNAs and 24 miRNAs were
selected as miRNA-RNAs interactions obtained with the
considerations described in the miRNAs target prediction for
metabolic mRNAs section. To dissect which of these miRNAs-
mRNAs regulatory interactions between miRNAs and metabolic
mRNAs are unique or shared across the cultured conditions, we
visually recap their comparison in Figure 3B. As shown in this
last figure, the numerical distribution and percentage of miRNA
and their predicted DE mRNA targets shared and specific for
each condition are shown in Figure 3B. In the next section, we
present an in-deep analysis over these pairs of miRNAs-mRNA
interactions and its possible functional consequences.

Metabolic mRNAs-miRNAs Pairs Functions
In the previous section, we identified a set of 24 miRNAs and 32
mRNAs that could have a regulatory effect in the metabolic pathways
for the three comparisons. Based on this set of 24 miRNAs and 32
mRNAs, in this section we explored their pattern of expression and
their possible influence on signaling and metabolic pathways for each
pairwise condition, see Tables 1–3. In general terms, miRNA-mRNA
pairs could influence different signaling and metabolic pathways,
obtained as described in miRNAs Target Prediction for Metabolic
mRNAs section. For instance, in the comparison between Q-MCTS
and P-MCTS, we observed an upregulation of mRNAs in fatty acids
and lipid metabolism. Also, we noted a downregulation of the
Frontiers in Oncology | www.frontiersin.org 5
biosynthesis of amino acids. Furthermore, mRNAs participating in
glycolysis, oxidative phosphorylation, and glycan metabolism do not
show a particular preference for a comparison due to the disparity in
the pathway usage (Table 1). Comparative analysis betweenQ-MCTS
andmonoculture showed anup-regulation inmRNAsparticipating in
lipid metabolism, particularly the glycerophospholipid metabolism.
Notably, although we had a different set of DE mRNAs in each
condition, we observed that mRNAs in glycerophospholipid
metabolism remain up-regulated in Q-MCTS with respect to
all comparisons.

Among the exclusive overexpressed pathways in monoculture,
we stand out the inositol phosphate metabolism, purine
metabolism, glycosaminoglycan metabolism, and pathways such
as calcium and sphingolipid signaling pathways. The carbon
metabolism for this comparison also showed differences in
pathway usage (Table 2). Finally, the comparison between P-
MCTS and monoculture showed a preference for the biosynthesis
and degradation of the amino acids, the inositol metabolism, and
glycerophospholipid metabolism in P-MCTS. The monoculture
condition does not show a particular pathway usage for this
comparison; however there is an overexpression in GFPT2,
suggesting a UDP sugar metabolism preference (Table 3).

Functional Analysis
To obtain a global perspective in the pathways usage in the whole
mRNAdata, we accomplished a gene set enrichment analysis over all
the samples together. To this end,we applied anOverRepresentation
Analysis (ORA)andselected thosepathwayswithanFDR≤0.05.This
primary studyallowedus to identifypathways that changeover all the
samples. Interestingly the enrichment suggested pathways involved
in the spliceosome, cell cycle, proteolysis, protein processing, RNA
transport, carcinogenesis, thermogenesis, endocytosis, andmetabolic
pathways (Figure4A).Theresults recapitulatepathwaysaccording to
the selection of the samples, such as the cell cycle. However, this
method did not allow us to distinguish in which condition the
pathway was over-represented. Thus, we use a complementary
approach to achieve a more specific insight into the pathways
usage between comparisons. We carried out a GSEA using different
datasets for all pairwise comparisons. Figures 4B–D depicts some of
the main enrichment pathways defined in the KEGG database. In
general terms, we noted that most overrepresented pathways lead to
abnormal immune responses, metabolic rewiring, cell division,
subversion of cellular signaling pathways, and DNA replication and
repair.When comparing Q-MCTS vs. P-MCTS, we observed an up-
regulation of mRNAs in inflammatory responses and immune
suppression and a downregulation of steroid biosynthesis, cell
division, and DNA replication and repair (Figure 4B).

Comparative analysis between Q-MCTS and monoculture
showed an up-regulation in mRNAs participating in steroid
biosynthesis, glycerolipid metabolism and pathways involved in
abnormal immune responses, and a downregulation of ascorbate,
aldarate anddrugmetabolism, cell division, andDNAreplicationand
repair (Figure 4C). Taking these results together, we noticed that the
enriched pathways for the proliferative-like culture methods (P-
MCTS and monoculture) are very similar when compared to Q-
MCTS. Besides, Q-MCTS maintains the enrichment in pathways
involved in abnormal immune responses. Finally, the comparison
December 2020 | Volume 10 | Article 582396
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between P-MCTS and monoculture showed an up-regulation in
mRNAs participating in arginine and proline metabolism and a
downregulation in the immune responses and the cellular signaling
pathways (Figure 4D).

DISCUSSION

This study investigated the possible regulatory interactions
between miRNAs and its metabolic mRNAs targets in the
Frontiers in Oncology | www.frontiersin.org 6
human breast cancer cell line MCF7. This aim was particularly
carried out by applying and analyzing simultaneously RNA-seq
and small RNA-Seq of MCTS and monoculture. As a result, two
main findings can be highlighted. First, we provide new insights
into the regulatory mechanism by which miRNAs modulate
metabolic mRNAs to sustain cancer MCTS. Second, we have
accomplished an in-depth bioinformatics analysis to characterize
these miRNA regulations, and evaluate their consequences over
pathways sustaining phenotype in Q-MCTS, P-MCTS, and
FIGURE 2 | Bioinformatic pipeline workflow. Overview of the general modules implemented for the analysis of mRNA and microRNAs expression. Main modules are
indicated in purple. Output files are indicated in light pink. Our workflow shows the software applied in the major steps of RNAseq and small RNA sequencing
analysis: 1) Quality check, 2) Alignment, 3) Read count and differential expression, 4) Functional analysis; and 5) miRNAs target prediction.
December 2020 | Volume 10 | Article 582396
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monoculture conditions. In the following, we discuss and draw
some conclusions for each pairwise culture comparison.

Q-MCTS vs. P-MCTS Comparison
The comparison between Q-MCTS and P-MCTS reveals that
Q-MCTS primarily have low expression in miRNAs that control
the lipid metabolism and hexokinase 2 (HK2), setting a high
preference for glycerophospholipid and glycolytic metabolism
usage. On the other hand, P-MCTS down-regulates some
miRNAs that control the biosynthesis of amino acids and
oxidative phosphorylation through the targeting of NDUFB6
mRNA (Table 1). These results agreed with previous observations
dealingwithmiRNAsandcancer cellmetabolism.For instance,HK2
is thefirst rate-limiting enzymeof glycolysis, and its activity has been
predicted to be regulated by multiple miRNAs including the
confirmed negative regulation by miR-143 in breast cancer cell
lines (12). Here, we suggested a new regulatory interaction in HK2
mRNAmainly carried out bymiR-3143 and preferently activated in
P-MCTS when compared with Q-MCTS (Figure 5A).

In addition to the carbon metabolism, differences in the amino
acid and lipidmetabolismhavebeen reportedbefore andconsistently
observed in this study, seeFigure 5ALipids are essential biosynthesis
molecules for organelles and cells. The disturbance in lipid
metabolism guided by miRNA regulation is a particular feature of
Frontiers in Oncology | www.frontiersin.org 7
cancer metabolism (35–37). Here, we propose that miR-7974 and
miR-181a-5p regulate a set of mRNAs implicated in the lipid
metabolism, predominantly the glycerophospholipid metabolism.
These miRNAs are downregulated in Q-MCTS suggesting that the
lipid metabolism remains active. Meanwhile the lipid metabolism is
downregulated in P-MCTS by the list of miRNAs mentioned in
Table 1.Moreover, cancer cells have an increased demand for amino
acids to meet their rapid biosynthesis of proteins, nucleotides and
lipids, redox homeostasis, and energy metabolism. There is evidence
that miRNAs regulate amino acid catabolism in kidney cancer (38).
In our study, we observed that the low expression of miRNAs
regulating GLUL and PGAM1 mRNAs in P-MCTS assists their
rapid proliferation, maintaining a high expression in these mRNAs
to conserve the serine and glutamine pools. In Q-MCTS, the over-
expression of miR-663a and miR-1184 can downregulate the amino
acid metabolism to mainly depend only on a glycolytic and lipid
metabolism (Figure 5A).

Regarding the oxidative phosphorylation findings, the
overexpression of ATP6V1C1 in Q-MCTS, while in P-MCTS this
mRNA is downregulated by miR-15a-5p. The ATP6V1C1 gene
encodes a component of vacuolar ATPase (V-ATPase). The
V-ATPase complex is located at the plasma membrane and plays
an important role in tumor growth andmetastasis by the increment
in H+ secretion, granting tumor cells to survive in hypoxic
A

B

FIGURE 3 | Differential Expression Analysis Overview. (A) Venn diagram resulting from the DE mRNAs and DE miRNAs in the conditions comparisons with a
specified threshold. Orange, blue, and yellow represent the DE mRNAs in P-MCTS, Q-MCTS and monoculture conditions respectively. (B) Venn diagram resulting
from the DE metabolic mRNAs subset and DE miRNAs after the target prediction with paired information using miRGate.
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conditions and the consequent acidic tumor microenvironment
(39). Also, in a mouse breast cancer model was shown that the
Atp6v1c1 knockdown reduced invasion and migration (40). Based
on these facts,we suggest that the rewiringof themetabolic program
inQ-MCTS is due to the hypoxic conditions within theMCTS that
aid in acquiring a metastatic phenotype in the quiescent
subpopulation, unlike of its proliferative counterpart (Figure 5A).

Finally, we found that the dependence in the N-Glycan
metabolism is guided by two mRNAs: STT3B and MGAT5. The
expression of these mRNAs show an inverse regulatory phenotype.
While STT3B mRNA is mainly down-regulated in P-MCTS by a
group of miRNAs (miR-3143, miR-671-5p, and miR-454-3p),
MGAT5 mRNA is down-regulated in Q-MCTS by miR-1184.
The branching of the N-Glycans is implicated in the regulation of
surface levels of glycoproteins such as the epidermal growth factor
(EGF) and transforming growth factor-ß (TGF-b) receptors. Also,
the ablationofMGAT5mRNAin tumorcells leads to lessmetastatic
and less responsive to cytokines phenotype (41), and STT3B
participates in the epithelial-mesenchymal transition (EMT) in
cancer cells (42). For these reasons, we suggested that in Q-MCTS
and P-MCTS the metastatic potential could exist, no matter the
metabolic profile (Figure 5A).

Q-MCTS vs Monoculture Comparison
The comparisonbetweenQ-MCTSandmonoculture reveal thatQ-
MCTS primarily has low expression in some miRNAs that control
the glycerophospholipid biosynthesis and the glycolytic
Frontiers in Oncology | www.frontiersin.org 8
metabolism, suggesting a high preference for these metabolic
pathways. On the other hand, monoculture down-regulates
miRNAs regulating purine metabolism, inositol metabolism,
sphingolipid metabolism, and glycosaminoglycan biosynthesis
(Table 2). The obtained results showed that the down-regulation
in the glycolytic metabolism, mainly in HK2 is in agreement with
previous cancer metabolism reports. Here, we suggested a new
regulation carried out by miR-362-5p on HK2, which is intensified
in monoculture and diminished in Q-MCTS (Figure 5B).
Intriguingly, the down-regulation of HK2, is a frequent feature
for the proliferative-like models (P-MCTS and Monoculture),
although it is guided by different miRNAs depending on the
culture method. These results supply additional evidence pointing
out that the Q-MCTS depends on a glycolytic metabolism.

Additionally, the results showedanoverexpressionofmRNAsof
the purine metabolism in the monoculture. We also suggested that
this pathway is controlled by miR-3648, miR-663b, and miR193a-
5p targeting ADA, AMPD2, and HPRT1, respectively in Q-MCTS
(Figure 5B). The purines are essential components for RNA and
DNA production and provide the cofactors and energy to support
cell survival and proliferation (43). In concordance with our
findings, the pathway usage correlates with the high proliferative
rate seen by immunophenotyping with Ki67 (Figure S2),
suggesting its essential role in monoculture.

On the other hand, fructose and mannose metabolism seems to
have significant changes between these conditions. Based on our
analysis, we concluded that these pathways can be altered by two
TABLE 1 | Pathways affected by the mRNA-miRNA pairs for the comparison between Q-MCTS and P-MCTS.

hsa-miR-
7974

hsa-miR-
181a-5p

hsa-miR-
663a

hsa-miR-
1184

hsa-miR-
3648

hsa-miR-
454-3p

hsa-miR-
3143

hsa-miR-
671-5p

hsa-miR-
15a-5p

Glycerophospholipid
metabolism

DGKG +/-
PLA2G3 +/-
PLA2G4C +/-

Ether lipid metabolism PLA2G3 +/-
PLA2G4C +/-

Arachidonic acid metabolism PLA2G3 +/-
PLA2G4C +/-

Linoleic acid metabolism PLA2G3 +/-
PLA2G4C +/-

Alpha-Linolenic acid
metabolism

PLA2G3 +/-
PLA2G4C +/-

Ras signaling pathway PLA2G3 +/-
PLA2G4C +/-

Phospholipase D signaling
pathway

DGKG +/-
PLA2G4C +/-

Choline metabolism in cancer DGKG +/-
PLA2G4C +/-

Phosphatidylinositol signaling
system

DGKG +/-
ITPKB -/+ -/+ -/+

N-Glycan biosynthesis MGAT5 -/+
STT3B +/- +/- +/-

Oxidative phosphorylation ATP6V1C1 +/-
NDUFB6 -/+

Glycolysis/Gluconeogenesis HK2 +/-
PGAM1 -/+

Biosynthesis of amino acids GLUL -/+
PGAM1 -/+
Decem
ber 2020 |
 Volume 10 | A
To classify the profiles of expression between mRNA target and miRNA, we defined a two-component notation, which indicates their relative expression. Red shows the cases where
mRNA overexpress and miRNA downregulate their expressions in Q-MCTS with respect to P-MCTS (+/-). Green means the inverse situation and it was denoted as (-/+).
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TABLE 3 | Pathways affected by the mRNA-miRNA pairs for the comparison between P-MCTS and monoculture.

hsa-
miR-429

hsa-miR-
454-3p

hsa-
miR-940

hsa-
miR-
320c

hsa-miR-
19a-3p

hsa-miR-
1226-3p

hsa-
miR-492

hsa-
miR-
4721

hsa-miR-
26a-5p

hsa-
miR-940

Glycerolipid metabolism DGAT2 +/-

LPIN1 +/-
Inositol phosphate metabolism PLCB4 +/-

INPP5J +/-
Phosphatidylinositol signaling
system

PLCB4 +/-
INPP5J +/-

Valine, leucine and isoleucine
degradation

HMGCS1 +/-
ACADSB +/- +/- +/-

Amino sugar and nucleotide
sugar metabolism

GFPT2 -/+
GMPPB +/- +/- +/-

Glycerophospholipid
metabolism

LPIN1 +/-
PCYT1A +/-

Biosynthesis of amino acids PRPS1 +/-
PYCR1 +/-
Frontiers in Oncology | www.fron
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To classify the profiles of expression between mRNA target and miRNA, we defined a two-component notation, which indicates their relative expression. Red shows the cases
where mRNA overexpress and miRNA downregulate their expressions in P-MCTS with respect to monoculture (+/-). Green means the inverse situation, and it was denoted
as (-/+).
TABLE 2 | Pathways affected by the mRNA-miRNA pairs for the comparison between Q-MCTS and monoculture.

hsa-
miR-
7974

hsa-
miR-
3929

hsa-
miR-
663a

hsa-
miR-
3648

hsa-
miR-
663b

hsa-miR-
501-5p

hsa-miR-
193a-5p

hsa-miR-
362-5p

hsa-
miR-
3652

hsa-miR-
1226-3p

Phosphatidylinositol signaling
system

DGKG +/-
INPP5A -/+
ITPKB -/+ -/+ -/+
PLCB3 -/+

Glycerophospholipid metabolism DGKG +/-

PLA2G3 +/-

PLD3 +/-

Inositol phosphate metabolism INPP5A -/+
ITPKB -/+ -/+ -/+
PLCB3 -/+

Purine metabolism AMPD2 -/+
HPRT1 -/+
ADA -/+

Fructose and mannose metabolism HK2 +/-
KHK -/+
GMPPB +/-

Glycosaminoglycan biosynthesis -
heparan sulfate/heparin

XYLT2 -/+
NDST1 -/+

Phospholipase D signaling pathway DGKG +/-
PLCB3 -/+

Ether lipid metabolism PLA2G3 +/-
PLD3 +/-

Amino sugar and nucleotide sugar
metabolism

HK2 +/-
GMPPB +/-

Carbohydrate digestion and
absorption

HK2 +/-
PLCB3 -/+

Calcium signaling pathway ITPKB -/+ -/+ -/+
PLCB3 -/+

Sphingolipid signaling pathway PLCB3 -/+
CERS6 -/+
In the figure, we defined a two-component notation to classify the profiles of expression between mRNA target and miRNA, which indicates their relative expression. Red indicates
the cases where mRNA overexpress and miRNA downregulate their expressions in Q-MCTS with respect to monoculture (+/-). Green indicates the inverse situation and it was
denoted as (-/+).
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A

B

C

D

FIGURE 4 | Pathway Enrichment Analysis. Statistical evaluation of the fraction of mRNAs in a particular pathway found in the DE mRNAs across comparisons and in
the whole dataset. (A) Over-representation analysis. (B) GSEA. Comparison between Q-MCTS and P-MCTS. (C) GSEA. Comparison between Q-MCTS, and
monoculture. (D) GSEA. Comparison between P-MCTS and monoculture. Orange, magenta, green and light blue bars show statistically enriched pathways for all
data, Q-MCTS, P-MCTS, and monoculture, respectively.
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mRNAs:KHK andGMPPB. The expression of thesemRNAs shows
an inverse phenotype: while KHK upregulates its expression,
GMPPB downregulates its expression. This contrary behavior
leads to an unclear pathway usage. In Q-MCTS, we found that
KHKmRNA is mainly down-regulated by miR-3652, andGMPPB
mRNA is down-regulated in monoculture by miR-1226-3p. This
pathway could fuel the pentose phosphate flux and protein
synthesis, indirectly increasing tumor growth (44). Also, there is
experimental evidence indicating that fructose canbeusedbybreast
cancer cells specifically in glucose-deficiency environments (45)
Frontiers in Oncology | www.frontiersin.org 11
and theupregulationofKHK correlateswith tumormalignancy and
progression (46). Moreover, GMPPB overexpression is associated
with a favorable prognostic value in endometrial cancer (47).
Overall, we concluded that individual participation of these
mRNAs may lead to a more severe phenotype for the
monoculture model.

As discussed earlier, we observed a frequent disturbance in lipid
metabolism through all comparisons. This metabolic preference
remains in the comparison between Q-MCTS vs monoculture.
Specifically, the glycerophospholipid metabolism is overexpressed
A

B C

FIGURE 5 | Schematic illustration of altered metabolic pathways. Global metabolic prospect with the miRNAs involvement. (A) Q-MCTS and P-MCTS comparison.
(B) Q-MCTS and Monoculture comparison. (C) P-MCTS and Monoculture comparison. The block arrows indicated in brown, blue, and pink show the inhibition in
the metabolic pathway for Q-MCT, P-MCTS, and Monoculture, respectively.
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in Q-MCTS. Based on our bioinformatics analysis, a possible
explanation can be given due to the regulation on two miRNAs.
We suggest that miR-501-5p down-regulates PLD3 and miR-7974
down-regulatesDGKG andPLA2G3 inmonoculture. Furthermore,
CERS6 participating in the sphingolipid metabolism is
overexpressed in monoculture, and is down-regulated by miR-
3929 inQ-MCTS, seeFigure5B. Together these results showed that
there is no particular usage for the lipid metabolism in general.
However, the lipid categories can be exclusive to a cell cycle phase,
for instance, the glycerophospholipid metabolism being constantly
overexpressed in Q-MCTS.

Finally, the down-regulation ofGlycosaminoglycanmetabolism
in Q-MCTS is accomplished through the regulation of miR-3652
over NDST1 and XYLT2. Conversely, in monoculture, these two
mRNAsareoverexpressed.Another result indicates that the inositol
metabolism is up-regulated in monoculture, whereas in Q-MCTS
thispathway isdown-regulatedbymiR-663b,miR-3929,miR-3648,
and miR-663a. Remarkably, both metabolic pathways are used to
fuel signaling processes. In fact, glycosaminoglycans are part of the
extracellular matrix (ECM), which conducted interactions with
growth factors and cytokines implicated in cancer growth and
progression, mainly signaling cascades responsible for regulating
angiogenesis, invasion, and metastasis (48). Also, the mRNAs
involved in the inositol metabolism can sustain the PI3K-
dependent signaling pathways, promoting tumor growth and
invasiveness (49). The up-regulation in monoculture for both
metabolic pathways suggests that this preference is followed by
the high proliferation rates observed, especially in this
culture model.

P-MCTS vs Monoculture Comparison
The comparisonbetweenP-MCTSandmonoculture reveals thatP-
MCTS primarily has low expression in miRNAs that control the
biosynthesis of amino acids, inositol, valine, leucine, isoleucine, and
lipid metabolism. For instance, we found that the monoculture
solely down-regulates miR-492, which in turn regulates GFPT2, a
mRNA participating in amino and nucleotide sugar metabolism
(Table 3). The phenotype in this metabolic pathway is mainly
influenced by twomRNAs:GFPT2 andGMPPB. The expression of
these mRNAs shows an inverse phenotype.While one upregulates,
the other downregulates its expression. In P-MCTS,GFPT2mRNA
is mainly down-regulated by miR-492, and GMPPB mRNA is
down-regulated in monoculture by miR-940, miR4721, and miR-
1226-3p. The abundance of the nucleotide pools limits the cancer
proliferative capacity (50), suggesting that both models require this
pathway to maintain their proliferative capacity, regardless of the
pathway regulation.

Additionally, the comparative analysis showed an overexpression
of mRNAs involved in the lipidmetabolism in the P-MCTS.Mainly,
theglycerolipid andglycerophospholipidmetabolismarea consistent
result across all comparisons, showing a preference in the MCTS
models (Q-MCTS and P-MCTS). However, in monoculture this
pathway is down-regulated by miR-429 targeting DGAT2, LPIN1,
and miR-26a-5p targeting PCYT1A (Figure 5C). These results
correlated with the fact that the highest levels in lipid profiles are
found in the most aggressive breast tumors (51), suggesting that the
Frontiers in Oncology | www.frontiersin.org 12
lipid metabolism can promote malignancy in the MCTS models,
despite the differences in the proliferation rates.

Likewise, our analysis showed an overexpression in the
biosynthesis and degradation of amino acid in P-MCTS.
Additionally, in monoculture, we suggested that the amino acid
biosynthesis is down-regulated by miR-320c and miR-940 targeting
PRPS1 and PYCR1, respectively. Also, the amino acid degradation is
down-regulated by miR-320c targeting HMGCS1, and ACADSB is
down-regulated by a set of miRNAs; miR-19a-3p, miR454-3p, and
miR-1226-3p (Figure 5C). These results agreewith a proteome study
in 3D cancer cultures (52), which suggest that spheroid cultures rely
on amino acid utilization.

Finally, the overexpression in the inositol metabolism is
accompanied by the up-regulation of PLCB4 and INPP5J in P-
MCTS. Conversely, in monoculture, this pathway is down-
regulated by miR-454-3p and miR-940, targeting these two
mRNAs. These results suggest that this pathway and their
corresponding fueled signaling pathways, such as PI3K, may be
upregulated in the MCTS model.

Altered Signaling Pathways
Our analysis mainly focused on metabolic alterations; however, other
pathways presented significant perturbations to explore more deeply.
For instance, we found that pathways associated with cell division,
DNA replication and repair are enriched in the proliferative-like
models (P-MCTS and Monoculture). As we expected, these results
are in agreementwith the demands for sustaining a rapid proliferation.
Complementary, inflammatory responses and immune suppression
are enriched pathways for the Q-MCTS (Figure 4). Furthermore, our
analysis makes evidence that Q-MCTS phenotype points to the
overrepresentation in inflammatory cytokines, which have a key role
in cancer progression via the stimulation of the epithelial-to-
mesenchymal transition, and augmentation of metastasis in cancer
(53). Another important and recurrent result is the overrepresentation
of the ferroptosis. This pathway is characterized by iron-dependent
accumulation of reactive oxygen species (ROS) within the cell, leading
to cell death. Therefore, activation of ferroptosis derives in a selective
elimination of some tumor cells (54). Together, these results suggest
that the Q-MCTS can selectively enhance an invasive phenotype. As a
whole, these observationsmirror an orchestrated response to integrate
the cancer phenotype, and it is in agreementwith the fact that different
tumor clonal subpopulations can diversify their task to maintain their
growth and malignancy (14).

Outlook
Metabolic reprogramming plays an essential role in tumor
development and metastasis. Besides, targeting cancer
metabolism remains a great promise in developing anti-cancer
therapies. As we propose here, several miRNAs may be controlling
various metabolic pathways during MCTS progression. Although
the model used in this study has limitations and the suggested
interactions require subsequent experimental validation, we
postulate the presence of new miRNAs-mRNA interactions that
can modulate the metabolic landscape in the different cell
populations that coexist during MCTS growth. In this context,
other reports showed that miRNAs deregulation does not alter the
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growth innormal cells, but it has a reduction in the growthof cancer
cells (55–57).Although theprogress in the effectiveness ofmiRNAs/
anti-miRs delivery in vivo is still a major obstacle in clinics, our
results highlight the miRNAs associated with metabolic changes in
breast cancer as possiblemarkers in peripheral blood since they are
less labile than mRNAs and as therapeutic targets in cancer.
Likewise, many functional activities of miRNAs and targets are
unknown during tumor progression, so it is important to study
them to understand how tumor cells propitiate its phenotype.
Hopefully, our approaches and findings can be useful to verify
experimentally these microRNA-mRNA interactions and explore
their pragmatic implications for developing more effective cancer
treatments that will target metabolic alteration within
tumor subpopulations.
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