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Copy number aberrations (CNV/CNA) represent a major contribution to the somatic
mutation landscapes in cancers, and their identification can lead to the discovery of
oncogenetic targets as well as improved disease (sub-) classification. Diffuse large B cell
lymphoma (DLBCL) is the most common lymphoma in Western Countries and up to 40%
of the affected individuals still succumb to the disease. DLBCL is an heterogenous group
of disorders, and we call DLBCL today is not necessarily the same disease of a few years
ago. This review focuses on types and frequencies of regional DNA CNVs in DLBCL, not
otherwise specified, and in two particular conditions, the transformation from indolent
lymphomas and the DLBCL in individuals with immunodeficiency.

Keywords: copy number aberrations, genetic alteration, lymphoma, diffuse large B cell ymphoma, hematological
malignancies, MYC, TP53, CDKN2A

INTRODUCTION

Copy number aberrations (CNV/CNA) represent a major contribution to the somatic mutation
landscapes in cancers, and their identification can lead to the discovery of oncogenetic targets as well
as improved disease (sub-) classification (1, 2). In malignant lymphomas, the contribution of partial
and complete chromosomal CNV had been recognized early on through cytogenetic analyses (3, 4)
and interphase fluorescence in-situ hybridization (FISH) studies (5, 6). The more systematic,
genome-wide mapping of CNVs has been facilitated through the development of chromosomal
comparative genomic hybridization (CGH) (7, 8) followed by array-based CGH technologies
(aCGH) (9, 10) with increasingly higher spatial resolution, as well as through the widespread
adoption of SNP-arrays (11) for copy number profiling. More recently the application of high
throughput sequencing approaches (12, 13) has led to increasingly precise identification of regional
gains or losses of genomic material (14-21), although the frequently used whole-exome sequencing
strategies (WES) have limited precision for CNV mapping (22) compared to high-resolution
genomic array technologies or whole-genome sequencing WGS). Diftuse large B cell lymphoma
(DLBCL) is the most common lymphoma in Western Countries and up to 40% of the affected
individuals still succumb to the disease (23-26). DLBCL is an heterogenous group of disorders as it
has been demonstrated by studies that have explored transcriptome profiles and/or at DNA
alterations in large series of cases (2, 3, 5,7, 12, 17, 19, 23, 27-40). It is important to mention that the
disease we call DLBCL is not necessarily the same of what we called DLBCL just a few years ago.
Indeed, the so called “double” or “triple hit lymphomas”, a subgroup of cases with particularly poor
prognosis and previously largely included within DLBCL, are now regarded a distinct entity (“High-
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grade B-cell lymphoma with MYC and BCL2 and/or BCL6
rearrangements”) separate from the “DLBCL, not otherwise
specified (NOS)” as expressed in the 2017 WHO classification
(24, 31, 39, 41-43). A similar path was previously followed for
primary mediastinal B-cell lymphoma (PMBCL), which, based
on its very peculiar features (44, 45), was separated from DLBCL
and it is considered a distinct clinicopathologic entity (24). Here,
we will review the DLBCL genomics with a particular focus on
types and frequencies of regional DNA CNVs in DLBCL, not
otherwise specified and in two particular conditions, the
transformation from indolent lymphomas and the DLBCL in
individuals with immunodeficiency.

CNVS AND DLBCL

Within DLBCL, at least two main subtypes have been recognized, in
which the gene expression profiles show similarities with two types
of normal B-cells: the germinal center B-cell like (GCB) subtype and
an activated B cell-like (ABC) subtype (15, 46-51). Clinically, those
subtypes are characterized by prognostic differences; patients with
an ABC DLBCL have a worse outcome than those with GCB
DLBCL when treated with the standard chemo-immunotherapy
chemotherapy regimen R-CHOP (24, 48,49). Genetically, GCB and
ABCDLBCL present a series of subtype-specific lesions that explain
can explain the different biology of the disease, but they also share
others that, with a couple of exceptions (BCL6 and MEF2B
alterations), are not DLBCL specific and can be observed in other
lymphoma types or even in other cancers. Both GCB and ABC
DLBCL present genetic alterations on genes encoding chromatin
modifiers [KMT2D/MLL2 or KMT2C/MLL3 (mutations);
CREEBBP (mutations or 16p13 deletions) or EP300 (mutations or
22q13 deletions)], the germinal center master regulator BCL6
(BCL6 chromosomal translocations, MEF2B mutations), proteins
involved in DNA damage response ([TP53 (mutations or 17pl13
deletions)], or proteins contributing to immune surveillance [B2M
(mutations or 15921 deletions); CD58 (mutations or 15q21
deletions)]. ABC DLBCL is characterized by lesions in genes
involved in NF-xB pathway and B-cell receptor (BCR) signaling
[TNFAIP3 (mutations or 6q23 deletions); MYD88, CD79A, CD79B,
CARDII (mutations)], cell cycle [CDKN2A/B (9p21 deletions)],
terminal B cell differentiation [PRDMI (mutations or 6q21
deletions); SPIB (19q13 gains and amplifications)], and apoptosis
[BCL2 (18q21 gains or amplifications)]. In addition, ABC DLBCL
have common gains affecting chromosome 3, which could might
contribute to immune escape (FOXPI, 3p14), NF-xB pathway
activation (NFKBIZ, 3q12) and B cell differentiation arrest (BCL6,
3927) (4,7,13,15,17,27,30-32, 34, 36, 38, 40, 48, 49, 52-54). GCB
DLBCL presentslesions leading to deregulated cell motility [GNA13
(mutations)], apoptosis [BCL2 (chromosomal translocations)], cell
cycle [MYC (chromosomal translocations)], chromatin regulation
[EZH2 (mutations)], immune escape TNFRSF14 (mutations or
1p36 deletions), PI3K/AKT signaling [PTEN (10q23 deletions);
MIRI7HG (13@31 gains or amplifications)], and DNA damage
response [INGI (deletions)]. As for ABC DLBCL, also GCB DLBCL

present some recurrent gains affecting specific (gains of 2p16 with
REL) orlarge and still not fully characterized regions (chromosomes
7 and 12) (15, 16, 49-51, 55, 56). Figure 1 shows examples of
genomic profiles obtained in DLBCL.

The inferior outcome given by the ABC COO alongside the
discovery of pathways specifically deregulated in this subtype led
to clinical studies designed to target the activation of NF-xB
pathway activation. Unfortunately, no advantages for the
experimental arms were observed in any of the phase III trials
that were looking for improvements in patients classified as ABC
DLBCL using gene-expression profiling (34, 59, 60). A possible
explanation of these negative results could be not only that
treatments that have been explored are not optimal but also that
the GCB and ABC subtypes defined at RNA level still comprise
too heterogenous patients populations. The latter possibility is
strongly sustained by recent studies that have looked at the
genetic heterogeneity of DLBCL patients and have led to three
novel subclassifications (19-21, 54).

A first classification identifies five clusters (C1-C5) (19) (Table
1). C1 (18% of DLBCL) has cases with BCL6 chromosomal
translocations, active NOTCH signaling (NOTCH2 mutations,
SPEN inactivation), active NF-kB pathway (TNFAIP3 mutations
or deletions, BCLI10 mutations), and immune escape mechanisms
(inactivation of CD70, CD58, FAS, and structural variations of PD-
L1 and PD-L2). C2 (21% of DLBCL) is a mixture of GCB and ABC
DLBCL, which share lesions in genes involved in the DNA damage
response (TP53 inactivation), cell cycle (inactivation of CDKN2A
and RBI), PI3K/AKT signaling (MIR17HG amplifications), and
apoptosis (MCLI gain or amplifications). C3 (13% of all DLBCL)
includes GCB-DLBCL with lesions affecting chromatin regulation
(EZH2 mutations, KMT2D mutations, CREBBP or EP300
mutations or deletions), PI3K/AKT signaling (PTEN deletions or
mutations, nTOR mutations, MIR17HG amplifications), apoptosis
(BCL2 chromosomal translocations), cell motility (GNAI3
mutations), and germinal center program (MEF2B or IRF8
mutations). The GCB DLBCL C4 (17% of all DLBCL) contains
cases with genetic lesions affecting chromatin structure (mutations
in linker and core histone genes), immune escape (CD83, CD58,
and CD70), NF-xB pathway (mutations of CARDI1, NFKBIE, and
NFKBIA), BCR and PI3K signaling (mutations of RHOA and
SGK1), cell motility (GNAI3 mutations), and RAS/JAK/STAT
signaling (BRAF and STAT3 mutations). The last one, C5 (21% of
all DLBCL) comprises ABC DLBCL cases with BCL2 gains,
concordant MYD88 L265P/CD79B plus additional lesions such as
gains of 3q, 19q13.42 and inactivation of PRDMI.

The second classification originally identified four subtypes
(EZB, MCD, N1, and BN2) (20), which more recently have been
extended to six (21) (Table 2). Cluster EZB (22% of DLBCL)
resembles C3 and the genomic lesions of GCB DLBCL with lesions
in genes coding for proteins involved in chromatin regulation
(EZH2 mutations, KMT2D mutations, CREEBBP or EP300
mutations or deletions), apoptosis (BCL2 translocations),
immune escape (TNFRSFI14 mutations or deletions), cell motility
(GNA13 mutations), JAK/STAT signaling (STAT6 mutations or
amplifications, SOCSI mutations or deletions), PI3K/AKT
signaling (PTEN deletions, mTOR mutations, and MIRIZHG
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FIGURE 1 | Circos plot summarizing all the copy number changes observed in de novo DLBCL (n. = 22), Richter syndrome (RS, n. = 59), HIV-DLBCL (n. = 50), PT-
DLBCL (n. = 44), and transformed FL (tFL, n. = 79). For each histology, the layers represent the frequency of copy number loss (blue) and gain (red). Data are
obtained from published papers (28, 30, 33, 57, 58). The plot has been generated using Circos tool (v. 0.69) (53).

amplifications), immune escape (inactivation of TNFRSF14, CIITA,
HLA-DMA), and REL amplifications. The MCD cluster (8% of
DLBCL), similar to the C5, contains almost exclusively ABC-
DLBCL with aberrant activation of the chronic BCR and NF-«xB

signaling (mutations of MYD88, CD79A, CD79B, and CARDI1),
impaired terminal B cell differentiation (PRDMI mutations or
deletions, SPIB gains or amplifications), deregulated cell cycle
(CDKN2A/B deletions), and immune escape (mutations or

TABLE 1 | DLBCL subtypes according to Chapuy et al. (19).

DLBCL COO % MUTATIONS GENOMIC LESIONS
subtype
C1 ABC 18% BCL10, TNFAIP3, UBE2A, CD70, B2M, NOTCH2, TMEMB30A, FAS, ZEB2, GAINS: +5pFUSIONS AND TRANSLOCATIONS: 3g27
HLA-B, SPEN, PDCD1LG2/CD274 (BCL6), 9p24 (PDCD1LG2/CD274), 3928 (TP63)
c2 ABC/ 21% TP53 GAINS: +1923 (MCL1), +13931 (MIR17HG), plus additional
GCB gross aberrations.LOSSES: -17p13 (TP53), -9p21 (CDKN2A),
-13q14 (RB1), -1942, plus additional gross aberrations.
C3 GCB 13% BCL2, CREBBP, EZH2, KMT2D, TNFRSF14, HVCN1, IRF8, GNA13, MEF2B, ~ LOSSES: -10¢23 (PTEN).FUSIONS AND TRANSLOCATIONS:
PTEN 18921 (BCL2).
C4 GCB 17% SGK1, HISTTHTE, NFKBIE, BRAF, CD83, NFKBIA, CD58, HIST1H2BC, -

STAT3, HIST1H1C, ZFP36L1, KLHL6, HIST1H1D, HIST1H1B, ETS1, TOX,
HIST1H2AM, HISTTH2BK, RHOA, ACTB, LTB, SF3B1, CARD11, HIST1H2AC
C5 ABC 21% CD79B, MYD8S, ETV6, PIM1, TBL1XR1, GRHPR, ZC3H12A, HLA-A PRDM1,

BTG1
co* ABC 4% -

GAINS: +18q (BCL2, MALT1), +3q, +18p, +3p, +19q13.42,
+190.LOSSES : -17G25.1, -19p13.2, -6g21 (PROM1).

*unclassified.
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TABLE 2 | DLBCL subtypes according to Wright et al. (21).

DLBCL COO0 % MUTATIONS GENOMIC LESIONS
subtype
MCD ABC 9% MYD88 L265P, CD79B, PIM1/2, HLA-A/B/C, BTG1/2, GAINS: +18021 (BCL2), +19913 (SPIB, SLC1A5),+19p13 (DAZAP1).LOSSES:
CDKN2A, ETV6, OSBPL10, TOX, MPEG1, SETD1B, -6p21 (HLA-A/B/C, TAP1), -8q12 (TOX), -6g21 (PRDMT1), - 1p13 (CD58), -9p21
KLHL14, TBL1XR1, GRHPR, PRDM1, CD58, TAP1, (CDKN2A).FUSIONS AND TRANSLOCATIONS: 9p24 (PDCD1LG2/CD274).
FOXC1, IRF4, VMP1, SLC1A5, DAZAP1, BCL11A,
PPP1RIB, ILTORA, IL16, CHST2, ARID5B, WEET,
KLHL42 TNRC18
EZB GCB 20% EZH2, TNFRSF14, KMT2D, CREBBP, FAS, IRF8, EP300, GAINS: +2p16 (REL), chromosome 12p, + 12q13 (STAT6), chromosome 21, +
MEF2B, CIITA, ARID1A, GNA13, STAT6, EBF1, GNAI2, 13031 (MIR17HG)LOSSES: -10023 (PTEN), -1p36 (TNFRSF14, ARID1A), -
C100rf12, BCL7A, HLA-DMB, S1PR2, MAP2K1, FBXO11 12q13 (KMT2D), -16p13 (CREBBP, CIITA), - 10024 (FAS), -22q13 (EP300),
-17024 (GNA13), -5033 (EBFT1), -10q24 (C100RF12), -15q22 (MAP2K1), -2p16
(FBXO11).FUSIONS AND TRANSLOCATIONS: 18021 (BCL2), 16p13 (CIITA).
N1 ABC 2% NOTCH1, IRF2BP2, ID3, BCOR, EPB41, IKBKB, GAINS: 4p.
ALDH18A1
BN2 ABC/ 13% NOTCH2, TNFAIP3, DTX1, CD70, BCL10, UBE2A, GAINS: +1p12 (NOTCH2), +1p22 (BCL10), +16p12 (PRKCB).LOSSES: -6023
GCB TMEMB0A, KLF2, SPEN, CCND3, NOL9, TP63, ETST1, (TNFAIP3), -6g14 (TMEMB30A), -1p36 (SPEN), -3928 (TP63).FUSIONS AND
HIST1H1D, PRKCB, HIST1H2BK, TRIP12, KLHL21, TRANSLOCATIONS: 3q27 (BCL6).
TRRAP, PABPC1
ST2 GCB 6% TET2, SGK1, DUSP2, ZFP36L1, ACTG1, ACTB, ITPKB, LOSSES: -16p13 (SOCST).
NFKBIA, STAT3, EIF4A2, JUNB, BCL2L1, DDX3X,
SOCS1, CD83, P2RY8, RFTN1, RAC2, XBP1, SEC24C,
MED16, PRRC2C, EDRF1, DOCKS, CLTC, ZNF516,
WDR24, ZC3H12D
A53 ABC/ 6% TP53, B2M, TP53BP1, TP73 GAINS: +6p21 (CNPY3), +3012 (NFKBIZ), plus additional gross
GCB aberrations.LOSSES: -17p13 (TP53), -15g21 (B2M), -15q15 (TP53BP1), -13034
(INGT), 1p36 (TP73), plus additional gross aberrations.
unclassified ABC/ 37% - -
GCB

deletions of HLA-A, HLA-B, HLA-C, and CD58). The N1 subtype
(2% of DLBCL) mostly contains ABC DLBCL with Notch activation
(NOTCH1I mutations), NF-xB pathway (TNFAIP3 mutations or
deletions), and impaired terminal B cell (lesions of IRF4, ID3, and
BCOR). The BN2 (15% of DLBCL), similar to C1, contains both
GCB and ABC DLBCL and it is enriched of cases with Notch
activation (NOTCH2 mutations or amplifications, mutations of
DTX1 or SPEN), BCL6 translocations, NF-xB signaling
(inactivation of TNFAIP3 or TNIPI and gains or amplification of
PRKCB and BCL10), immune escape (CD70 inactivation), cell cycle
(CCND3 mutations), and cell migration (CXCR5). Since with this
classification almost half of DLBCL cases did not fit in any defined
subgroup (20), two additional subtypes have been proposed (ST2
and A53) (21). The ST2 subtype (6% of DLBCL) is consists mostly
of GCB DLBCL and is characterized by mutations in TET2, SGK1
and JAK/STAT (SOCSI and STAT3 mutations), and homing
effectors (GNAI3 and P2RYS8). The A53 subtype is enriched of

ABCDLBCL and is characterized by TP53 mutations and deletions,
with extensive aneuploidy, plus deletions of the B2M locus,
amplifications of CNPY3 (6p21), 6q losses (TNFAIP3 and
PRDM]1), gain/amplification of 3q (NFKBIZ) and BCL2
amplifications. Moreover, following the development of a double-
hit gene expression signature identifying GCB-DLBCL patients
with no evidence of a dual hit at FISH analysis but an outcome
similar to the double-hit patients (36), the EZB group has been
divided based on the presence (EZB-MYC+) or absence (EZB-
MYC-) of a double hit (DHIT) signature (21).

Starting from a series of 928 cases that included also not de
novo DLBCL and that were analyzed with a targeted panel of 293
genes, the last classification identifies five subgroups, with names
based on their most common lesion (MYD88, BCL2, SOCS1/
SGKI, TET2/SGKI, and NOTCH2), leaving 27% of cases
unclassified (54) (Table 3). The MYDS88 cluster (16%) contains
mostly ABC, and genes commonly mutated are MYD88 (L265P),

TABLE 3 | DLBCL subtypes according to Lacy et al. (54).

DLBCL subtype coo % MUTATIONS GENOMIC LESIONS*

MYD88 ABC 16% MYD88, PIM1, CD79B, ETV6 LOSSES: -9p21 (CDKNZ2A).

BCL2 GCB 19% EzH2, BLC2, CREBBP, TNFRSF14, KMT2D FUSIONS AND TRANSLOCATIONS: 18qg21 (BCL2),
SOCS1/SGK1 GCB 12% SOCS1, CD83, SGK1, NFKBIA, HISTTH1E -

TET2/SGK1 GCB 11% TET2, BRAF, SGK1, KLHL6, ID3 -

NOTCH2 ABC/GCB 15% NOTCH2, BLC10, TNFAIP3, CCND3, SPEN FUSIONS AND TRANSLOCATIONS: 3927 (BCL6).
unclassified ABC/GCB 27% - -

*the studly performed targeted DNA sequencing on all the cases, while FISH analyses for BCL2 and BCL6 translocations were not done in all the cases done (54). CDKN2A data, based on

sequencing data.
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PIM1I, CD79B, and ETV6 with also CDKN2A losses. The cluster
overlaps with C5 and MCD from the other classifications (19, 21)
and contains primary extranodal DLBCL (CNS; testis, breast).
The BCL2 cluster (19%) includes mostly GCB DLBCL and the
majority of the cases that bear a BCL2 translocation. It has high
frequency of mutations of EZH2, BCL2, CREBBP, TNFRSF14,
KMT2D, and MEF2B. The cluster overlaps with previously
described C3 and EZB (19, 21) and contains most of the
transformed FL included in the series. The SOCS1/SGK1 group
(12%) presents mutations of SOCSI, CD83, SGK1, NFKBIA,
HISTIHIE, and STAT3. The TET2/SGKI1 cluster (11%) includes
cases with mutations of TET2, SGKI, KLHL6, ZFP36L1, BRAF,
MAP2K1, and KRAS. Both the SOCS1/SGK1 and the TET2/SGK1
clusters contain mostly GCB and overlap with the ST2 and C4 of the
other classifications. Importantly, the SOCS1/SGK1 cluster also
includes the PMBCL cases included in the study (STAT3 and SOCS1
mutations). The last cluster NOTCH2, 15%) presents mutations of
NOTCH2, BCL10, TNFAIP3, CCND3, SPEN, TMEM30A, FAS, and
CD70, and cases with BCL6 translocations. It has both GCB and
ABC and it overlaps with the previously reported BN2 and C1
clusters (19, 21).

Although similar genetic features are picked up by the three
classifications (19-21, 54), the final overlaps are only partial
(Table 4), largely due to the approaches used by the Investigators
to tackle the issue of DLBCL heterogeneity. However, the two
large ABC and GCB subtypes have now been split in subgroups
of cases bearing more similar genomic landscapes, and, thus,
perhaps sharing more similar responses to targeted therapies
(Table 4). New generation of clinical trials can now be designed
to assess targeted agents, for example in addition to R-CHOP, in
much better genetically defined subgroups of patients.

Interestingly, the genetics of the individual subtypes suggest that
some DLBCL derive from the transformation of indolent
lymphomas and/or that they follow specific pathogenetic
mechanisms at least partially shared by other lymphoid
neoplasms. These connections are evident for C5, MCD, MYD88
(primary extranodal DLBCL of the central nervous system or of the
testis; transformed Waldenstrom macroglobulinemia), C3, EZB,
BCL2 [follicular lymphoma (FL); transformed FL; Burkitt
lymphoma), N1 [(NOTCHI1 mutated chronic lymphocytic
leukemia (CLL)], C2, BN2, NOTCH2 (transformed MZL), and

ST2 (nodular lymphocyte-predominant Hodgkin lymphoma; T
cell/histiocyte-rich large B cell lymphoma) (19-21, 54).

COPY NUMBER CHANGES AND
TRANSFORMATION FROM INDOLENT
LYMPHOMAS TO DLBCL

Copy number changes play important role in the transformation
from indolent lymphomas to DLBCL and their presence can also be
associated with a higher risk of transformation. Deregulation of
MYC via DNA gains, amplifications or chromosomal translocation
is the most frequent event occurring at the transformation from FL
to DLBCL, followed by inactivation, mainly by DNA loss, of
CDKN2A/B, of B2M (losses or mutations) and activating
mutations of PIM1 (28, 61). Transformed FL also have higher
frequency of 3q and 11q gains than FL (28). Transformed FL and
GCB DLBCL are phenotypically similar but their genomic profiles
are not the same (28). Here, they present similar frequencies of 1p
losses and 2p gains, but overall fewer occurrences of 13q gains
(MIR17HG) or losses (INGI), as well of PTEN losses at 10q.
Deletions of TNFAIP3 and of CDKN2A are more common in
transformed FCL than in GCB DLBCL (28).

A quite similar pattern is observed in the transformation from
CLL to DLBCL (Richter syndrome) with the deletion at the
CDKNZ2A/B locus as the most common acquired event (33, 37,
62). Despite the morphological appearance, as a whole, Richter
syndrome has a CNV pattern that differs from de novo DLBCL,
largely due to the under-representation of DNA gains and losses
that are common in the latter disorder. Richter syndrome samples
have a higher frequency of deletions at 7q31-q36 (still undefined
role) and of the CLL related losses at 13q14.3 and 11q22.3 as well as
trisomy 12 (Figure 2). Interestingly, copy number changes define
two main subtypes of Richter syndrome (33). A first group (50% of
Richter syndrome) bears TP53 inactivation (by loss or by somatic
mutations) and/or CDKN2A loss, alongside MYC gain/
amplifications, 13q14.3 loss and additional lesions (33). A second
group has almost exclusively trisomy 12 (33).

Regarding the risk of transformation to DLBCL, deletions at
1p35, 6q and copy neutral LOH at 16p have been associated with

TABLE 4 | Overlaps among DLBCL classifications and potential therapeutic interventions.

Cell of origin DFCI/HMS NCI** (20, HMRN*** Potential therapeutic interventions”

(46, 47) *(19) 21), (54)

ABC Ch5 MCD MYD88 Lenalidomide; BTK inhibition; IRAK4 inhibition; BET inhibition; PISK/mTOR inhibition; JAK/STAT inhibition;
* PKCB inhibition BCL2 and BCL-XL inhibition

ABC * N1 * Immune checkpoints; Notch1 inhibition

GCB C3 EZB BCL2 PIBK/mTOR inhibition; EZH2 inhibition; BCL2 inhibition; MYC inhibition; CREBBP inhibition

GCB C4 * SOCS1/ JAK/STAT inhibition; BRAF/MEKT inhibition
SGK1

GCB * ST2 TET2/ PI3K inhibition; JAK2 inhibition
SGK1

GCB/ABC C1 BN2 NOTCH2  BET inhibition; PI3K/mTOR inhibition; Lenalidomide; NF-kB inhibition; PKCB inhibition; BCL2 inhibition;

Notch2 inhibition
GCB/ABC c2 A53 NEC NF-kB inhibition; CDK inhibition

*Dana-Farber Cancer Institute/Harvard Medical School; **National Cancer Institute; ***Haematological Malignancy Research Network; N19-21).
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FIGURE 2 | Example of genomic profile of a RS case bearing the typical CDKN2A and MIR15/16 deletion. Profiles obtained using the Affymetrix Genome-Wide
Human SNP Array Version 6.0 [modified from (33)]. Black, raw copy number values; red, smoothed copy number values. X-axis, genomic mapping; Y-axis, log2

higher risk of transformation to DLBCL in FL patients (32, 63).
The presence of losses at 17p (TP53), 15q (MGA), and gains at 2p
(MYCN, REL) and the lack of 13q14.3 deletions targeting MIR15/
MIRI6 appeared linked with a higher risk of transformation to
Richter syndrome from CLL (33).

COPY NUMBER CHANGES AND
IMMUNODEFICIENCY-RELATED DLBCL

As there are differences in recurring CNV patterns between GCB
and ABC DLBCL as well as between Richter syndrome and de novo
DLBCL, a similar observation can be made when comparing the
genomic profiles of DLBCL in immunocompetent individuals
versus immunodeficiency related DLBCL. This became evident
from studies comparing DLBCL obtained in persons with human
immunodeficiency virus (HIV) infection in the pre-HAART (highly

7 8

‘copy number (logzratio)

#10-983, GCB DLBCL

active antiretroviral therapy) (HIV-DLBCL) era, and in recipients of
solid organ transplants (PT-DLBCL) with DLBCL from
immunocompetent individuals, all analyzed with the same
platform and data mining workflow (30, 57). First, a higher
frequency of DNA breakages within fragile sites is seen in
immunodeficiency related DLBCL than in immunocompetent
cases, with perhaps a higher contribution of these changes to the
etiology of the disease. Since viral DNA can insert in fragile sites, the
immunodeficiency can expose the individuals to a multitude of
viruses, which could infect B cells and integrate in the genome,
preferentially at fragile sites (35, 38, 40, 52, 64-67).

Despite their phenotypic reminiscence of post-GC B-cells (29,
68), PT-DLBCL have a pattern of DNA gains and losses that is
different from ABC DLBCL, lacking gains of 3q and 18q (BCL2,
NFATCI) and losses of 6q (PRDMI1 and TNFAIP3) (57). Pre-
HAART HIV-DLBCL show genomic profiles that are intermediate
between ABC and GCB DLBCL, with more similarities towards the

16 [ 17 18 19 20 2 22 23

g 0 i

500108 100408

‘genome coordinate

150409

20008 I

13q gain

#10-974, ABC DLBCL

AR

‘copy number (log2ratio)
]

| w7‘ DREEEEE]
| |

|
1

- |

3q gain

TNFAIP3

Y-axis, log2 copy-number values.

150109

genome coordinate

300409

e |

18q gain

200409

FIGURE 3 | Examples of genomic profile of two DLBCL cases bearing GCB (above) or ABC (below) lesions among others. Profiles obtained using the Affymetrix
Genome-Wide Human SNP Array Version 6.0 [modified from (33)]. Black, raw copy number values; red, smoothed copy number values. X-axis, genomic mapping;
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latter. Indeed, HIV-DLBCL has GCB DLBCL lesions such as gains
of 2p, 7q, and 12q, as well as losses of 1p, but it also carries 3q and
18q gains, commonly associated with ABC DLBC, and lacks the 10q
deletions involving PTEN (30).

While gains of 1q, 11q and of chromosome 7 as well as 17p losses
are present in both immunodeficiency related and immunocompetent
DLBCL, deletions at 13q14 are usually absent (30, 57) suggesting a
possible role in immune escape for the inactivation of MIR15/MIR16
or of RBI, whose loci on 13q are frequently co-deleted in DLBCL (69).
Interestingly, the loss of RB1 has been associated with T-cells
exclusion in prostate cancer (70). Similarly, PT-DLBCL do not
show copy neutral LOH (CN-LOH) affecting 6p, a common feature
in different lymphomas including DLBCL and HIV-DLBCL. CN-
LOH on 6p is believed to contribute to the silencing of the major
histocompatibility complex (71) and DLBCL can indeed show
absence or reduced expression of MHC class II proteins (27, 71-
73). Importantly, the low MHC-II expression is associated with a
decreased number of infiltrating T cells and reduced cytotoxic CD8+
T cells activation (27). Thus, it seems that the immune escape induced
by the 6p copy neutral LOH is not required by PT-DLBCL but still
needed by HIV-DLBCL. This could be due to the ijatrogenic
immunosuppression lowering both CD4+ and CD8+ T cells in the
first lymphoma type while the viral infection causes a more
pronounced loss of CD4+ than of cytotoxic CD8+ T-cells.
Similarly, PT-DLBCL also have fewer B2M mutations—another
immune escape mechanism—than immunocompetent DLBCL (74). It
is also worth mentioning that among immunodeficiency related DLBCL
the presence of Epstein Barr virus (EBV) is associated with a lower
number of genomic lesions, both in terms of copy number changes and of
somatic mutations (30, 57, 74, 75).

A global view of the different genomic profiles of DLBCL,
Richter syndrome, immunodeficiency related DLBCL and
transformed FL can be seen in Figure 3.
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