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The CRISPR/Cas system has stood in the center of attention in the last few years as

a revolutionary gene editing tool with a wide application to investigate gene functions.

However, the labor-intensive workflow requires a sophisticated pre-experimental and

post-experimental analysis, thus becoming one of the hindrances for the further

popularization of practical applications. Recently, the increasing emergence and

advancement of the in silico methods play a formidable role to support and boost

experimental work. However, various tools based on distinctive design principles

and frameworks harbor unique characteristics that are likely to confuse users about

how to choose the most appropriate one for their purpose. In this review, we will

present a comprehensive overview and comparisons on the in silico methods from the

aspects of CRISPR/Cas system identification, guide RNA design, and post-experimental

assistance. Furthermore, we establish the hypotheses in light of the new trends

around the technical optimization and hope to provide significant clues for future

tools development.

Keywords: CRISPR/Cas system, In silico methods, CRISPR/Cas system identification, guide RNA design, post-

experimental assistance

INTRODUCTION

The mysterious veil of the genome and transcriptome in diverse organisms is being uncovered
owing to contributive sequencing efforts. Even so, the functions of most genes remain unknown
(1). The toughest challenge has been to associate phenotype changes to alterations on genetic layers.
The state-of-the-art CRISPR/Cas system for genetic manipulation is an emerging tool to solve
this nerve-wracking problem (2). CRISPR/Cas system is developed from a prokaryotic adaptive
immune defense mechanism against the exogenous nucleic acids in archaea and bacteria (3), which
follows a base-pairing rule between target and guide RNA (gRNA). The role of gRNA is to steer
Cas enzyme to the custom positions in the presence of a protospacer adjacent motif (PAM) or
protospacer flanking sequence (PFS) (4). PAM/PFS is a recognizable component following the
target sites that enables precise cleavages on exogenous nucleic acids complementary to gRNA.
In different types of CRISPR/Cas systems, gRNA could be the CRISPR RNA (crRNA), a kind
of short non-coding RNAs derived from CRISPR arrays, or the synthetic formed by crRNA and
trans-activating crRNA (tracrRNA). Besides, the category of CRISPR/Cas systems can be divided
into two classes and subdivided into six types and 30 subtypes by different kinds of Cas effector
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module organizations, the position of the CRISPR array and
acquisition module (5). As shown in Figure 1A, type I, III, and
IV CRISPR/Cas systems have multi-subunit effector complexes
and thereby collectively belong to class 1, while class 2 containing
type II, V, and VI systems has a simpler architecture composed of
only one protein effector (6–8).

Up to now, CRISPR/Cas system has been extensively
applied in fundamental studies (9) as well as clinical practices
across multiple diseases (10, 11). Of note, the discovery
and implementation of CRISPR/Cas system require an
intricate workflow (Figure 1B) including CRISPR/Cas system
identification and selection, gRNA design, transfection, single-
cell clone establishment, clone screening, and systematic
mutation analysis (12–14). Each step expends considerable time,
money, and manpower. Fortunately, the advance in computer
science creates scope for remedying the deficiency and fueling
the overall procedure (Figure 1B). In silico methods based on
different algorithms and frameworks harbor different merits and
are appropriate for diverse applications. Even though a variety
of in silico tools goes on a growth spurt over recent years, there
is a lack of a comprehensive summary for their roles in the
overall procedure from system identification to application, so
that many biological researchers are likely lost in the selection of
suitable tools for their given intention. Therefore, it is necessary
and urgent to make an explicit review of the existing tools.

In this review, we aim to summarize the released in
silico methods from three major aspects (CRISPR/Cas system
identification, gRNA design, and post-experimental assistance),
discuss the relative merits, expound their applicability for
various purposes, and put forward the possible assumptions for
further improvements. We believe that our review is capable of
elaborating on the roles of in silico toolkits in CRISPR/Cas system
to formulate meaningful guidance for biological researchers and
even provide significant clues for future tools development.

CRISPR/Cas SYSTEM IDENTIFICATION

At the phase of adaptation, bacteria copy a DNA segment
(protospacer) from the invasive phages or plasmids and paste it to
the start of the CRISPR array downstream of the leader sequence
as a new spacer (Figure 1A) (3, 16, 17). CRISPR arrays are
then transcribed and processed into crRNAs that possess partial
genetic information of the invasive DNA and thus are able to
form gRNA or directly guide Cas protein to the planned position
(6). Since crRNAs and Cas protein, respectively, take full control
of the specificity and editing efficiency of CRISPR/Cas systems,
identification and classification of CRISPR/Cas system composed
of different types of crRNAs and Cas proteins must be the most
fundamental prerequisite for the downstream application.

Recognition of CRISPR Arrays That
Generate crRNAs
The most important component of CRISPR/Cas system, crRNA,
is generated from CRISPR arrays (Figure 1A). Therefore,
recognition of efficient CRISPR arrays largely determines the
engineering specificity in the application. Until now, a variety

of computational methods have been proposed to recognize
CRISPR arrays using sequence information. One of the earliest
tools, PatScan (18), was developed long before CRISPR/Cas
system was applied in gene editing, which searches for the
fragments homologous to the predefined pattern. However,
PatScan was designed to detect general repeat not specific for
CRISPRs, causing the inability of distinguishing the spacers and
repeats in the whole CRISPR array. Later, several specific CRISPR
identifiers came along, such as CRISPRFinder (19), PILER-CR
(20), and CRT (21). The principle of CRISPRFinder (19) is using
the suffix tree-based algorithm to find the maximal repeats that
are clamped by the non-repeating sequences with similar length.
Besides, PILER-CR (20) based on the alignment matrix identifies
putative CRISPR arrays through searching local hits of the query
genome to itself and uses sequence similarity, conservation, and
length distribution to refine them. Different from CRISPRFinder
and PILER-CR, CRT (21) does not rely on any central data
structure but adopts the strategy of simple sequential scanning,
which enables a high execution speed independent of the number
of repeats in the given genome. Afterward, CRISPRDetect (22)
based on k-mer and extension strategy was proposed and labeled
itself with the improvement of utilizing the features of CRISPR
loci especially mutations. CRISPRDetect (22) is more sensitive
to short and degenerated repeats by scanning for the variant
repeats under a low identity threshold in long spacers, but it
incidentally brings the possibility of wrong segmentation of the
large integral CRISPRs. The comparison of the advantages and
disadvantages of the abovementioned basic CRISPRs identifiers
was demonstrated in Table 1.

Along with the diversity of research demand, there are
some tools derived from the basic identifiers and tailored
for different purposes (Table 2). One of the most popular
purposes now is to explore the CRISPR diversity from
metagenomic data and classify the CRISPR/Cas system. Due
to the repetitive nature and population heterogeneity, it is
hard to assemble CRISPRs from metagenomes using basic
tools. Therefore, MinCED (23), MetaCRAST (24), Crass (25),
and metaCRT (26) were developed. MinCED, Crass, and
MetaCRT are all based on CRT (21) tool and implement
the de novo detection. Moreover, MinCED and Crass have
no need for prior knowledge of CRISPR arrays of which
MinCED only detects spacers in reads without assembly and
Crass assembles the reads into arrays. In contrast, metaCRT
(26) integrates the reference-based and de novo detection.
Besides, MetaCRAST (24), another reference-based method,
searches for repeats pairing with the user-defined templates that
could be identified by either other tools like CRISPRFinder,
PILER-CR, and CRF or taxonomy, whereas its performance
is inferior to Crass and MinCED for the poor taxonomic
diversity. In addition, there are also some tools tailored for other
purposes. For instance, if users want to compare the CRISPR
arrays from different species, CRISPRcompar (27) comprising
CRISPRcomparison and CRISPRtionary and basically derived
from CRISPRFinder must be the best choice. Besides, CRF
(28) based on CRT added random forest algorithm to make
an extra filtration for invalid CRISPR arrays, but this learning-
based tool may partially lose the ability to discover new
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FIGURE 1 | Schematic diagram shows the mechanism and workflow of CRISPR/Cas adaptive immune system. (A) The mechanism of CRISPR/Cas system. S1:

Adaptation stage. The invasive DNA sequence produced by phage is cleaved and incorporated into the start of a CRISPR array comprised of a string of spacers

flanked by repeats, forming a new spacer downstream leader. S2: CRISPR RNA (crRNA) biogenesis stage. The precursor of crRNA transcribed from CRISPR array is

further processed into mature crRNA, which carries the genetic information from spacer. S3: Interference stage across six main types of systems. In type I system

(signature protein: Cas3), the multimeric effector, Cascade, binds to target DNA complementary to crRNA and then recruits Cas3 to generate the single-strand nick.

Type II system (signature protein: Cas9) encodes tracRNA to hybridize with crRNA and form a dual tracRNA:crRNA complex, which guides Cas9 enzyme to the target

and thus generates blunt double-strand breaks (DSBs). In type III system (signature protein: Cas10), Cas10-Cmr/Csm complex recognizes the nascent target RNA

following by the new enzymatic activity for complementary DNA cleavage. Type IV system (signature protein: Csf1) remains mostly unknown, although current

research had demonstrated the crRNA maturation and proved its evolutionary connection with type I system (15). Type V system (signature protein: Cas12) solely

relies on the formation of a binary complex between crRNA and Cas12 enzyme to identify target sequence and triggers staggered DSBs. In type VI system (signature

protein: Cas13), crRNA binds to single-strand RNA through the protospacer flanking sequence (PFS) reorganization and guides Cas13 to realize the cleavage. (B) The

workflow of CRISPR/Cas-mediated gene editing includes CRISPR/Cas system selection, guide RNA (gRNA) biogenesis and transfection, single-cell cloning and

isolation, and downstream analysis. The subheadings under the main title represent the processes where in silico methods are involved. The flow linking the left and

right panels represents the correspondence. For example, red flow shows that the implement of downstream analysis corresponds to the stage after CRISPR

inference.

CRISPRs. Beyond that, three representative tools are designed for
CRISPR strand prediction using the characteristics of leader and
repeat that include CRISPRstrand (29), CRISPRleader (31), and
CRISPRDirection (37).

Incorporation With Cas Protein Detector
Other than the abovementioned tools only focusing on CRISPR
arrays, recent tools integrate Cas protein detector to improve
the classification capacity and enable the automated CRISPR/Cas
system discovery. These tools determine the putative Cas
protein by using the homologous sequence searcher such as
BLAST (38) and HMMER (39), which compare the query
Cas protein with the sequences in a known protein database.
For example, CRISPRmap (34) is composed of CRT and
CRISPRFinder for CRISPR array identification and HMMER
for Cas protein annotation. CRISPRdisco (32) incorporates
MinCED and BLAST to realize similar functions. Besides,
CRISPRCasFinder based on CRISPRFinder for CRISPR array
identification integrates the function of Cas protein detection

by using a dedicated tool MacSyFinder (40), which is in
essence HMMER. Except for the predictors, there are some
databases collecting the predicted CRISPRs and Cas proteins
such as CRISPRBank (30), CRISPRone (35), and CRISPRCasdb
(CRISPRdb) (36).

Although much effort had been invested in the CRISPR/Cas
system identification and classification, there are still some
unsolved limitations. On one hand, identifying CRISPR arrays
especially short arrays based only on pattern alignment or along
with limited sequence information is not enough to accurately
eliminate noises. It is an imperative trend, as the progression
from basic tools to tailored tools, to excavate and incorporate
more significant architectural and functional features such as
the transcriptional polarity within CRISPRs (41) and regulatory
relationships with endogenous genes in a bacterial host (42)
to improve the prediction performance. On the other hand,
current tools for Cas protein detection are majorly based on the
annotation propagation by searching for homologous sequences,
which narrows the possibility of discovering novel Cas proteins.

Frontiers in Oncology | www.frontiersin.org 3 October 2020 | Volume 10 | Article 584404

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Z
h
a
n
g
e
t
a
l.

C
o
m
p
u
ta
tio

n
a
lM

e
th
o
d
s
B
o
o
st

C
R
IS
P
R
/C

a
s
S
yste

m

TABLE 1 | The details of 5 basic tools for identifying CRISPR arrays.

Tools Language Advantage Disadvantage Input Output Platform Address References

PatScan C++ 1. Provide web server

2. Can be used to predict

various genomic patterns

1. Cannot distinguish

CRISPRs from other types

of repeats

2. Require

complex post-processing

3. Not fast when dealing

with the large query set

4. The number of repeats

requires predefined

DNA/protein

sequences

Repeat sequences Web server https://patscan.

seconDarymetabolites.

org/

(18)

CRISPRFinder Perl 1. Provide both reliable and

questionable CRISPRs

2. Some predicted results

can be directly retrieved

from database CRISPRdb

1. Do not take repeat

mutations into account

2. Behave poor in the

detection of short or

degenerate CRISPRs

3. Not fast when dealing

with the large query set

DNA sequences Repeat and spacer

sequences

Web server https://crispr.i2bc.

paris-saclay.fr/

Server/

(19)

PILER-CR C++ 1. Provide classification for

CRISPRs

2. Can handle deletions and

insertions in the repeats

3. Execute rapidly

1. Do not use the features

to discriminate

genuine CRISPRs

2. Cannot filter out tandem

repeat sequences

3. Not user-friendly

DNA sequences 1. Repeat and

spacer sequences

2. Cluster by similarity

and position

Standalone

program

http://www.drive5.

com/pilercr/

(20)

CRT Java 1. Speed is independent of

the number of repeats

2. Relatively high reliability

3.Using simple data

structure

1. Do not use the features

to discriminate

genuine CRISPRs

2. Behave poor in the

detection of short or

degenerate CRISPRs

3. Not user-friendly

DNA sequences Repeat and spacer

sequences

Standalone

program

http://www.

room220.com/crt/

(21)

CRISPRDetect Perl 1. Provide additional

information such as array

direction and variations

2. Some predicted results

can be directly retrieved

from database CRISPRBank

3. Sensitive to short and

degenerate arrays

1. Possibly mis-split larger

integral CRISPRs into

small arrays

2. Not fast when dealing

with the large query set

DNA sequences

or species name

1. Repeat and

spacer sequences

2. Mutations

3. Potential Cas genes

Web server

and

Standalone

program

http://crispr.otago.

ac.nz/

CRISPRDetect/

(22)

Some tools derived from basic tools and tailored for specific purposes are introduced in main text and Table 2.
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TABLE 2 | The list of the tools and databases tailored for different purposes.

Tool/Database Purpose Basic tool Platform Address References

MinCED Explore CRISPR

diversity from

metagenome

CRT Standalone program https://github.com/

ctSkennerton/minced

(23)

MetaCRAST Explore CRISPR

diversity from

metagenome

CRT, PILER-CR, and

CRISPRFinder

Standalone program https://github.com/molleraj/

MetaCRAST

(24)

Crass Explore CRISPR

diversity from

metagenome

CRT Standalone program https://ctskennerton.github.io/

crass/

(25)

metaCRT Explore CRISPR

diversity from

metagenome

CRT Standalone program https://omics.informatics.

indiana.edu/CRISPR/

(26)

CRISPRcompar Compare CRISPRs

from different species

CRISPRFinder Web server https://crispr.i2bc.paris-saclay.

fr/CRISPRcompar/

(27)

CRF Filter the invalid

CRISPRs

CRT Standalone program

and web server

http://bioinfolab.miamioh.edu/

crf/home.php

(28)

CRISPRstrand Predict CRISPR

orientation

CRT and

CRISPRFinder

Web server http://rna.informatik.uni-

freiburg.de/CRISPRmap

(29)

CRISPRDirection Predict CRISPR

orientation

CRISPRDetect Standalone program http://bioanalysis.otago.ac.nz/

CRISPRDirection/

(30)

CRISPRleader Predict leader and

CRISPR orientation

CRT Standalone program http://www.bioinf.uni-freiburg.

de/Software/CRISPRleader/

(31)

CRISPRdisco Classify CRISPR/Cas

systems

MinCED (CRISPR

identifier)

BLAST (Cas detector)

Standalone program https://github.com/

CRISPRlab/CRISPRdisco

(32)

CRISPRCasFinder Classify CRISPR/Cas

systems

CRISPRFinder

(CRISPR identifier)

MacSyFinder (Cas

detector)

Standalone program

and web server

https://crisprcas.i2bc.paris-

saclay.fr

(33)

CRISPRmap Classify CRISPR/Cas

systems

CRT, CRISPRFinder

and CRISPRstrand

(CRISPR identifier)

HMMER (Cas detector)

Web server http://rna.informatik.uni-

freiburg.de/CRISPRmap

(34)

CRISPRone Collect predicted

CRISPRs, cas genes

and false-CRISPRs

metaCRT (CRISPR

identifier) HMMER (Cas

detector)

Web server

(database)

https://omics.informatics.

indiana.edu/CRISPRone/

(35)

CRISPRCasdb Collect predicted

CRISPRs and cas

genes

CRISPRCasFinder

(CRISPR identifier)

BLAST (Cas detector)

Web server

(database)

https://crisprcas.i2bc.paris-

saclay.fr/

(36)

GUIDE RNA DESIGN AND ASSESSMENT

As a key component of CRISPR/Cas system, gRNA specifies
the target of Cas enzymes through PAM recognition. The
quality of gRNA largely determines the efficacy and specificity
of CRISPR/Cas-mediated editing. To date, there have been
several types of RNAs found to play guiding roles via various
mechanisms in different CRISPR/Cas systems (Figure 1), such
as the mature crRNA in CRISPR/Cas12a (formerly Cpf1) system
(43) and the hybrid of crRNA and tracRNA in CRISPR/Cas9
system (44). In this section, these RNAs with guiding functions
have a joint name, gRNA.

With the wider applications of the CRISPR/Cas system, an
increasing number of studies expressed their apprehensions
over the incidental off-target effects, which may trigger the
mis-editing at other loci and lead to unforeseeable phenotypic

alterations (45, 46). Thereupon, designing an efficient and
functional gRNA with both high on-target efficacy and low off-
target mutations becomes the focus of much attention. Recent
computational efforts have taken a massive step toward high-
quality gRNA design. In what follows, we will set forth the usages
and contributions of gRNA designers from two subsections,
Overview of the gRNA Designers and Special View Into
Off-Target Activity.

Overview of the gRNA Designers
Owing to the simple architecture and superior operability, class
2 CRISPR/Cas systems (Figure 1) gain much wider applications.
Consequently, almost all current in silico gRNA designers are
developed for class 2 systems. The following description is also
confined to the class 2 CRISPR systems.
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By different inner principles, we divided the gRNA designers
into three major genres (Figure 2). The characteristics
of the representative tools in each genre were shown in
Table 3.

1) Pattern recognition genre (Figure 2A) relying on base-
pairing principle. In this category, tools search for a piece
of sequence comprising a short PAM and around 20-bp
candidate gRNA complementary to the query sequence in
a specified genome. The fewer mismatches the candidate
gRNA has, the greater on-target possibility it likely produces.
Besides, the specific PAM should be predefined for its diversity
in different CRISPR/Cas systems. Another factor influencing
gRNA pattern is the transcription methods, in which U6
and T7 promoters, respectively, require G and GG at 5’end
of gRNA (87, 88). Some tools such as CRISPRseek (49)
and flyCRISPR (50) take it into account while others such
as SSFinder (48) and GT-Scan (51) do not. Besides, for
individual studies, Crisflash (54) is able to improve the accuracy

by incorporating user-supplied somatic mutation data into
pattern matching.

2) Feature rule genre (Figure 2B). The subsequent finding
that editing activities vary across different target sites indicates
the inherent disparity of some targets in the sensitivity to cleavage
(89–92) and thus ushers a series of explorations to seek out the
key features that influence the targeting efficacy (93, 94). These
features include G/C content of gRNAs (high or low G/C content
indicates less activity) (95), frequency of frameshift mutations
(negative with CRISPR efficacy) (96), poly-T sequences (a typical
terminator for gRNA transcription) (97, 98), compositions of
nucleobases involved in Cas binding preference (the presence of
PAM-preceding G and the absence of pyrimidines in the last 4nt
of gRNA spacers are preferred) (63), exon position (lower efficacy
when gRNAs targeting the terminal coding exon rather than the
earlier exons) (99), the status of the motif- and feature-enriched
∼10–12 nt proximal to PAM in spacer sequences dubbed seed
region (associated with pairing process) (100, 101), and so on.

FIGURE 2 | Three genres of guide RNA (gRNA) designers. (A) Pattern recognition genre. The tools in this genre depend on the base-pairing rule to determine the

gRNAs. (B) Feature rule genre. A set of features such as G/C content, mismatch, and gRNA transcription method is used to filter out the unreliable or unconcerned

gRNAs obtained by pattern recognition. (C) Machine learning genre. In this genre, machine learning algorithms are applied to integrate the effects of the features and

thus more precisely identify the gRNAs.
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TABLE 3 | The details of 40 representative and commonly used gRNA designer.

Tools Cas effector Target species gRNA type$ On-target

method*

Off-target

prediction

PAM# Scoring

efficiency

CRISPRa/i Platform References

Cas-OFFinder Custom Any species S PR Yes User-defined No No Web server and

Standalone program

(47)

SSFinder Cas9 Any species S PR No NGG No No Standalone program (48)

CRISPRseek Custom Any species S PR Yes User-defined No No Standalone program (49)

flyCRISRP Cas9 37 kinds of fly S PR Yes NGG/NRG No No Web server (50)

GT-Scan Custom 105 kinds of

vertebrate,

invertebrate and

plant

S PR Yes User-defined No No Web server (51)

CasFinder Cas9 Any species S PR Yes User-defined No No Standalone program (52)

Breaking-Cas Custom All eukaryotic

genomes available in

ENSEMBL

S PR Yes User-defined Yes No Web server (53)

Crisflash Custom Any species S PR Yes User-defined Yes No Standalone program (54)

sgRNACas9 Cas9 Any species S FR Yes NGG No No Standalone program (55)

CRISPRdirect Custom 671 kinds of

vertebrate,

invertebrate and

plant

S FR Yes User-defined No No Web server (30)

Cas-Designer Custom Any species S FR Yes User-defined No No Web server and

Standalone program

(56)

CT-Finder Cas9 17 kinds of

vertebrate,

invertebrate and

plant

S FR Yes User-defined No No Web server (57)

CGAT Cas9 6 kinds of plants S FR Yes NGG No No Web server (58)

CROP-IT Cas9 Human and mouse S FR Yes NGG/NNG Yes No Web server (59)

CRISPR-ERA Cas9 9 kinds of vertebrate

and invertebrate

S FR Yes NGG/NAG/NRG Yes Yes Web server (60)

CRISPR-RT Cas13a Any species S FR Yes User-defined No No Web server and

Standalone program

(61)

CRISPR

multitargeter

Custom 12 kinds of

vertebrate,

invertebrate and

plant

S FR Yes User-defined Yes No Web server (62)

SSC Cas9 Human and mouse S ML Yes NGG No Yes Web server and

Standalone program

(63)

EuPaGDT Custom Any species S ML Yes User-defined Yes No Web server (64)

E-CRISP Custom 55 kinds of

vertebrate,

invertebrate and

plant

P ML Yes User-defined Yes Yes Web server (65)

Crispr-P 2.0 Cas9, Cas12a 49 kinds of plants S ML Yes NGG/NRG/NNAGAAW/

NNNNGMTT/NNGRRT

/TTTV/TTN/YCN

/CCW/YYC/AWG

/CC/MMA/NG

Yes No Web server (66)

(Continued)
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TABLE 3 | Continued

Tools Cas effector Target species gRNA type$ On-target

method*

Off-target

prediction

PAM# Scoring

efficiency

CRISPRa/i Platform References

CCTop

(CRISPRater)

Cas9, Cas12a Any species S ML Yes NGG/NRG/NGA

/NGCG/TTTN/

YTN/NNGRRT/

NNNRRT/NNNNGATT

/NNAGAAW/NAAAAC/

NNNNRYAC

Yes No Web server and

Standalone program

(67, 68)

CRISPR-

offinder

Custom Any species S ML Yes User-defined Yes No Standalone program (69)

CRISPETa Cas9 Any species P ML Yes NGG Yes No Web server and

Standalone program

(70)

CHOPCHOP

v3

Cas9, Cas12a,

Cas13

Any species S ML Yes User-defined Yes Yes Web server and

Standalone program

(71)

CRISPR-DT Cas9, Cas12a 15 kinds of

vertebrate,

invertebrate and

plant

S ML Yes User-defined Yes No Web server (72)

pgRNAFinder Custom 10 kinds of

vertebrate and

invertebrate

P ML Yes User-defined Yes No Web server and

Standalone program

(73)

WU-CRISPR Cas9 Any species but

better in human and

mouse

S ML Yes NGG Yes No Web server and

Standalone program

(74)

CRISPRscan Cas9, Cas12a 24 kinds of

vertebrate and

invertebrate

S ML Yes NGG/TTTN/TTTV Yes No Web server (75)

sgRNA Scorer

v2.0

Custom Any species S ML Yes User-defined Yes No Web server and

Standalone program

(76)

TUSCAN Cas9 105 kinds of

vertebrate,

invertebrate and

plant

S ML Yes User-defined Yes No Web server (77)

GPP (Azimuth) Cas9 Human, mouse and

rat

S ML Yes NGG/NNGRR Yes Yes Web server (78)

CRISPOR Custom Any species S ML Yes User-defined Yes No Web server and

Standalone program

(79)

DeepCpf1 Cas12a Human S ML No TTTG Yes No Web server and

Standalone program

(80)

DeepCas9 Cas9 Human S ML No NGG Yes No Standalone program (81)

GuideScan Cas9, Cas12a 6 kinds of vertebrate

and invertebrate

P ML Yes NGG/TTTN Yes No Web server (82)

CLD Custom Any species S ML Yes User-defined Yes No Standalone program (83)

CRISPR-Local Custom Any species S ML Yes User-defined Yes No Web server and

Standalone program

(84)

PAVOOC Cas9 Human and mouse S ML Yes NGG/NAG/ Yes No Web server (85)

DeepCRISPR Cas9 Human S ML Yes NGG Yes No Web server (86)

1. Some tools have both web and standalone versions, and some parameters like species and PAM in web version are limited but in standalone version are not. Here we only show the less strict setting.

2. The information of each tool in this table refers to the newest version rather than the old version in publication.
$gRNA type: S, single gRNA; P, paired gRNA.
*On-target method: PR, pattern reorganization; FR, feature rule; ML, machine learning.
#PAM: W = A/T; R = A/G; M = A/C; V = C/G/A; Y = C/T.
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Tools in this genre always integrate several measurable features
with the basic pattern recognition approach to provide more
information about candidate gRNAs and target sites. According
to feature indexes and the corresponding thresholds, users can
lay down their own rules to filter out the gRNAs with poor
reliability or of no interest. For instance, Cas-Designer (56) lists
putative gRNAs along with G/C proportions and out-of-frame
scores that indicate the frequency of in-framemutations. Besides,
CRISPR-ERA (60) constructs a simple scoring rule by arbitrarily
quantifying and weighting the information of G/C content, poly-
T motifs and target locations.

Tools affiliated to this genre provide separate assessment or
arbitrary combinations for multiple features rather than perform
an integrative analysis on their interactive contributions, which
may perplex users about how to balance the probably discordant
results of multiple features. Machine learning algorithms found
an exit for this dilemma.

3) Machine learning genre (Figure 2C). Given that the
weights of multiple features remain uncertain, researchers resort
to mathematical algorithms that systematically integrate features
for refining optimal gRNA. These models always differ in
algorithms and information in training data. For example,
Doench et al. (95) (Rule set 1) observed the depletion rates of
gRNAs targeting cell surface markers in mouse and human cells
and attributed them to the intrinsic nucleotide composition of
target sequences, which then acted as training data to construct
the logistic regression classifier for gRNA activity prediction.
Moreover, combining the changes in expression of cell surface
markers (Rule set 1) (95) and drug resistance pathways (Rule
set 2), Azimuth (102) trained by the information of not only
nucleotide composition but also secondary structure of gRNAs
and the relative location of target sites to the transcription start
site (TSS) shows improved performance. Unlike above methods
using phenotypic changes to measure activity, some others
relying on mutations detected by sequencing were proposed.
CRISPRscan (75), a linear regression model, investigated the
effect of nucleotide composition on CRISPR/Cas9 efficacy by
taking the gRNA-induced mutation rates of target sequences in
zebrafish embryos as the signal of activity. In addition, sgRNA
Scorers v2.0 (76) based on the support vector machine used
similar training data from sequencing (mutation rates of the
targets in human HEK293T cells). Likewise, TUSCAN (77)
reanalyzed the published data and improved the prediction
performance by adding the features of flanking target regions
and replacing the algorithm with random forest. For fear of
the potential biases caused by the manual selection of features
in abovementioned tools based on the conventional machine
learning algorithm, up-to-date tools (80, 81, 86) based on deep
learning algorithm minimize the biases by automating feature
extraction of which DeepCRISPR (86) is particularly noteworthy
for unifying both on-target and off-target predictions into one
framework and additionally allowing for epigenetic features
despite using phenotype-driven data.

Phenotype-driven models are largely influenced by the target
positions, some of which far from TSS less likely trigger
phenotypic change and would be misclassified into the negative.
In contrast, sequencing-based models implement more direct

measurement of genetic mutations and have consequently
superior generalizability (77). In a word, phenotype-driven
models get the upper hand when users are more interested
in the functional outcome of gRNA-induced mutations, while
sequencing-based models occupy wider application fields if only
genotype alterations are focused.

Even though in silico gRNA designers experience a positive
evolution, the performances of machine learning-based tools
remain difficult to maintain due to the varying features across
different species and Cas enzymes requiring an exclusive loading
process. Therefore, users were recommended to use the tools
based on feature rules if their data are not eligible for the machine
learning algorithm. Except for the abovementioned categorical
characteristic, gRNA designers also have other distinguishable
specialties such as the one-step customization of paired gRNA
(pgRNA) for large fragment deletion [e.g., CRISPETa (70),
pgRNAFinder (73), and GuideScan (82)], special consideration
for CRISPR activation or interference (CRISPRa/i) (103) [e.g.,
SSC (63), CRISPR-ERA (60), and CHOPCHOP v3.0 (71)],
application platform, off-target prediction, and so on. These
specialties endow the tools with distinctive ability in particular
fields and thus give users more choices for their specific
purpose. Moreover, some commercial tools should also be
helpful for their visual interface, online consultation, and one-
stop ordering service, such as Synthego (https://www.synthego.
com/products/bioinformatics/crispr-design-tool) based on the
Azimuth algorithm (102) and IDT (https://www.idtdna.com/
site/order/designtool/index/CRISPR_CUSTOM) based on their
own evaluation algorithm, but most of the commercial
tools were designed for the most popular CRISPR/Cas9
system and provided less support for other types of CRISPR
systems. Table 3 recording the detailed comparison of some
commonly used gRNA designers provides a more brief reference.
Since no tool can be omnipotent, the pre-conditions and
anticipated purpose should be fully thought before the gRNA
designer selection.

Special View Into Off-Target Activity
Off-target activity leading to mis-editing on the unintended
regions had been widely reported, which can trigger
unpredictably adverse outcomes (104, 105). Undoubtedly,
experimental methods including whole-genome sequencing
[e.g., CIRCLE-seq (106), GUIDE-seq (107), DISCOVER-seq
(108), Digenome-seq (109), BLESS (110), and HTGTS (111)]
and the improved VIVO strategy (112) are relatively robust and
accurate for off-target identification. Nonetheless, the labor- and
cost-intensive sequencing methods are not affordable for every
researcher and sometimes unnecessary, thus urging the coming
and progress of in silicomethods.

Themost typical and convenient in silico strategy for off-target
risk evaluation is to align the short gRNA sequences sometimes
with PAMs to reference genome to detect mismatch number and
position by repurposing the alignment tools [e.g., Bowtie (113),
PatMaN (114), and BWA (115)], which is exemplified by GT-
Scan (51), CRISPR-RT (61), E-CRISP (65), and so on. However,
short read aligners likely induce a large proportion of false-
negative errors due to their maximum allowable mismatches.
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When mismatch number exceeds 2 in a certain read, the
accuracy of aligners gets a drastic decline (116). The comparison
between the gold standard GUIDE-seq (107) and the alignment
strategy revealed that numerous high-mismatch off-targets and

even one-mismatch off-targets cannot be detected by only
alignment (107). On the other hand, the limited mismatches
are hard to represent the authentic off-targets and may cause
false-positives. This is supported by an experiment based on

FIGURE 3 | The design concepts of the gene essentiality evaluators. (A) The typical genre is from the guide RNA (gRNA) distribution comparison to essential gene

identification. (B) Two methods in untypical ways: The left panel illustrates the workflow of CERES, which corrects the copy number effect based on the alternating

least-squares regression. The right panel illustrates the workflow of PBNPA based on the permutation test.
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SITE-seq, which found that the alignment-based off-targets
largely outnumbered the validated off-targets by up to 10-
fold (117).

Aiming to narrow both types of errors and realize the
quantitative evaluation on off-target possibility, some features
and scoring systems are incorporated into the prediction
programs (Figure 3). For example, CCTop (67) and CROP-IT
(59), respectively, incorporate seed region and DNase-sensitive
region with mismatch number to grade the potential off-target
sites using handcraft rules. Furthermore, mismatches with a few
extra bases (DNA bulge) or missing bases (RNA bulge) in target
sequences were once reported to be tolerable (118). COSMID
(119) lists the number of bulges rather than incorporates it into
the scoring rule for the lack of experimentally validated data.
Despite the additional features in the above tools, the off-target
searching method they used still relies on alignment strategy,
which is not as reliable as the sequencing-based off-target source
used in following tools. By introducing the mutated gRNAs into
cells and measuring the gRNA abundance to quantify the off-
target activities, CFD (102) exhibited more dominant power and
has been widely repurposed in other tools such as CRISPR-
Local (84), GuideScan (82), and GPP sgRNA designer (78).
In contrast with the discontinued MIT-Broad algorithm (120)
whose scans area confines to 20-bp sequences, CFD (102) covers
PAM as it found non-canonical PAMs tend to induce potential
off-target events (102). Subsequently, researchers proved CFD’s
superior performance by comparison with experimental data
(121). However, it should be noted that CFD only aggregates the
off-targets within a certain gene rather than a genome-wide scale.

To overcome the drawbacks of handcraft rules and extend the
aggregation scale, recent developers aremore inclined tomachine
learning algorithm (Figure 3). CRISTA (122) constructed a
random forest model based on the enlarged feature set covering
mismatch types (wobble and bulge), chromatin accessibility,
DNA enthalpy, and DNA geometry. Regrettably, the complex
feature set creates a double-edge sword, which indeed enhances
the prediction performance but also restricts the application
scope. Using simpler features, Elevation (123), a genome-wide
aggregation model based on Naive Bayes, provides a more
systematic assessment for multi-loci off-target detection. Besides,
the state-of-the-art deep learning algorithm was also applied
using only sequencing data and achieved a relatively better result
(124). Deep learning takes more full advantage of experimental
datasets, whereas the lack of aggregation function and the narrow
feature set remain an intractable limitation. The evolution of the
original off-target scoring systems is illustrated in Figure 3.

In conclusion, an optimal gRNA should possess not only
maximum on-target efficacy but also minimum off-target
activity, which requires in silico designers equipped with both
high accuracy and robustness. Moreover, the incorporation
of more functional features is a key to improve prediction
performance. As genetic researches are stepping forward, some
additional factors such as histone modification (93, 125) and
Cas protein variants (126) were found to exert significant
influences on editing efficacy and specificity. Besides, what wins
the most attention recently must be individual variance that
was reported to be discriminately associated with the genesis

or destruction of the potential off-target activity (127–129).
Therefore, the applications of CRISPR/Cas system especially for
clinical purposes would better be specified into the individual
scale to control the risk of deleterious side effects.

POST-EXPERIMENTAL ASSISTANCE

CRISPR/Cas-mediated high-throughput screening has become a
main force to impute phenotypic changes to large-scale genetic
or epigenetic alterations. In screening, the pooled gRNA library
is amplified, packaged, and transfected into the host cells (130,
131). The transfected cells are screened for a phenotype of
interest, of which the survived would be sequenced to measure
gRNA abundance. After that, the major challenges turn to be
how to precisely transform the differential gRNA abundances
after selection to the gene essentiality evaluation and how to
systematically enumerate and visualize the CRISPR/Cas-induced
mutations. Bioinformaticians have provided innovative solutions
using computational methods to boost the experimental
procedure as shown in Figure 1B. Hereinafter, in silico methods
are introduced in three parts: Essential Gene Identification,
Decipherment of the CRISPR-Induced Mutations, and Database
for Experimental Data Collection.

Essential Gene Identification
Since CRISPR/Cas-mediated screening strategy was proposed,
several sorts of approaches have been put forward to estimate
gene essentiality. At the early stage, some off-the-shelf tools for
RNA-seq expression analysis [e.g., edgeR (132), baySeq (133),
and DEseq2 (134)] served as makeshifts for CRISPR studies. The
algorithms designed for RNA interference (RNAi) screens [e.g.,
RIGER (135) and RSA (136)] were also regarded as substitutes.
However, these algorithms cannot exactly achieve satisfying
suitability for CRISPR screens due to various deficiencies
including the lack of quality control, unrobustness to variable
gRNA coverage per gene, and the weak power in controlling the
bias toward small sample size or gRNAs with small read count.
To fill the gaps, some dedicated methods have been emerging
constantly (Figure 4, Table 4). The typical strategy (Figure 4) is
to compare the read count distribution of gRNAwith control and
then aggregate the variances of multiple gRNAs with the same
target into an estimate of gene-level effect.

MAGeCK-RRA (147) based on the negative binomial model
and robust rank aggregation (RRA) is the first tool customized
for prioritizing gRNAs, performing gene-level ranking and
identifying the enriched pathways. To extend the functions,
MAGeCK-RRA (147) was further updated to scMAGeCK
(148) for single-cell CRISPR screening (a novel technique
combining pooled CRISPR screening with single-cell RNA-
seq, which enables the identification of gRNAs at single-cell
resolution from sequencing by modifying the lentiviral vector)
and MAGeCKFlute (137) with optional ranking algorithm
(maximum likelihood estimation) (149), gRNA outlier removal
by network essentiality scoring tool (150), and various accessory
functions including upstream quality control and downstream
visualization. For some novices without programming expertise,
command-line programs are hard to tame and the graphical
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TABLE 4 | The details of the gene essentiality evaluators for CRISPR screens.

Tools gRNA-level Gene-level Functions* Interface References

model model QC HI VI FI

MAGeCKFlute Negative binomial

distribution

RRA/MLE Yes Yes Yes Yes Command line (137)

HiTSelect Poisson distribution Stochastic

multi-objective

ranking method

No Yes Yes Yes Command line

and Graphic

interface

(standalone)

(138)

ScreenBEAM Gaussian

distribution

Bayesian

hierarchical model

No Yes No No Command line (139)

BAGEL Training distribution Bayesian classifier No Yes No No Command line (140)

ENCoRE Gaussian

distribution

Student’s t-test Yes Yes Yes No Graphic interface

(standalone)

(141)

PBNPA – Non-parametric

permutation

No Yes No No Command line (142)

JACKS Gaussian

distribution

Empirical Bayesian

model

No Yes No No Command line (143)

CERES - Alternating least

squares

No Yes No No Command line (144)

CRISPhieRmix Hierarchical mixture

distribution

Expectation

maximization

algorithm

No Yes No No Command line (145)

CRISPRBetaBinomial Beta-binomial

distribution

Fisher’s method No Yes Yes No Command line

and Graphic

interface (web)

(146)

*Functions: QC, quality control; HI, hit identification; VI, visualization; FI, functional inference.

FIGURE 4 | Time line shows the development progress of the original off-target scoring system. The dashed and sealed boxes represent the handcraft and machine

learning-based scoring systems, respectively.

workflow, ENCoRE (141), seems more user-friendly, whereas
the rough processing of gene ranking may induce unreliable
results. Likewise, a universal analyzer, HiTSelect (138), is
designed for both RNAi and CRISPR screens, whereas Poisson
distribution used to fit the active gRNA abundance is not
applicable because the mean and variance of gRNA count are
always not equal. Considering that the variance of gRNA count
can be either smaller or greater than the mean, Jeong et al.

(146) developed CRISPRBetaBinomial based on beta-binomial
distribution model and gained the superior sensitivity as well
as lower false-negative rate as expected. Totally different in
gene-level statistic, BAGEL (140) and JACKs (143) used the
reference sets composed of the identified essential and non-
essential genes to analyze the query data. Even though these
prior knowledge-based methods reward excellent performance,
the required compatibility between reference and query sets and
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the prohibitive update of the pre-set data remain the critical
handicaps for popularization. Allowing for the varying effects
of gRNAs targeting the same gene especially in CRISPRa/i
screens, CRISPhieRmix (145) took a hierarchical mixture model
to deconvolute the gRNA distribution and calculate a posterior
probability for genes, in which sufficient gRNAs per gene are
required to ensure the full discovery of essential genes.

Other than the above methods affiliated to typical strategy,
the methods in other ways provide more options for particular
problems. For example, CERES (144) incorporated copy number
effect and thus realized improved specificity in the realm of
cancer cells (the left panel of Figure 4). Furthermore, PBNPA
(142) (the right panel of Figure 4) permuted gRNA labels
to compute gene-level p-values, which may outperform the
competitors when encountering the small amounts of gRNAs
per gene or low sequencing depth. Similarly, ScreenBEAM (139)
is another skillful solution for low-quality data owing to the
direct estimation on the gene level. The characteristics of existing
essentiality evaluators are listed in Table 4.

In general, despite leaving copy number effect out of
consideration, MAGeCK (137) remains the most widely used
tool in various biological fields such as identifying cancer drivers
(151), drug targets (152), and pathway components (153). Its
prominent advantages over other tools are the all-around service
covering both upstream and downstream analyses, relative ease
of use, and the excellent ranking criteria that deal well with
variable gRNA efficacies. Meanwhile, there are still positions for
other tools when facing the cases they are adept at. ScreenBEAM
(139) for low-quality data and ENCoRE (141) for novice users are
two representative examples.

Decipherment of the CRISPR-Induced
Mutations
Owing to the outstanding feasibility and versatility, type II
CRISPR/Cas9 and type V CRISPR/Cas12a occupy the most

dominant position in practical use. Double-strand breaks (DSBs)
created by Cas9 or Cas12a cleavage can be repaired via several
kinds of pathways, which induce the mixed mutations. The
repair pathways mainly include (1) non-homologous end joining
(NHEJ) (154), which is an error-prone repair pathway and
may induce random insertions and deletions (INDELs); (2)
homology-directed repair (HDR) (155), which relies on a donor
template homologous to the sequence around DSB site to
realize the precise editing or correction; and (3) microhomology-
mediated end-joining (MMEJ) (156), where the single-stranded
overhangs generated by the nuclease are annealed at the
microhomologies (typically 5–25 bp) existing both upstream and
downstream of DSB. Then, two major methods were used to
dissect the mutational outcome. First, some machine learning-
based tools, such as in Delphi (157), FORECasT (158), and Lindel
(159), used the characteristic of sequence context to achieve a
great prediction on the distribution of mutations. However, as
similar as other learning-based tools, the application of these
tools was largely subject to the training set and cannot be spread
across different CRISPR systems and species. Secondly, next-
generation sequencing (NGS) can not only detect the mutations
but also classify the mutation types and mutagenesis efficiency.
Nonetheless, transforming millions of sequencing signals to
quantitative and comparable data remains challenging and needs
mathematical aids from in silico tools. The fundamental workflow

of these tools is similar to the standard high-throughput

sequencing analysis including quality control, trimming adaptor,

alignment, and quantification. Themain difference in the existing
tools will be demonstrated as follows.

1) Alignment strategy. The existing tools adopt either local
alignment to the reference amplicons [e.g., CRIS.py (160),
CRISPR-DAV (161), and CRISPR-GA (162)] or global alignment
to an entire reference genome [e.g., CrispRVariants (163) and
AmpliconDIVider (164)]. The local strategy is apt to miscount
the candidate off-target reads, while global strategy makes it

TABLE 5 | The details of the existing CRISPR NGS data analyzers.

Tools Alignment Mutation quantification* Visualization Platform References

Strategy Mapper MD FQ BE

CRISPR-GA Local BLAT Yes No No No Web server and

Standalone

(162)

CRISPR-DAV Global and

Local

BWA and ABRA Yes No No Yes Standalone (161)

BATCH-GE Global and

Local

BWA MEM Yes No No Yes Standalone (166)

CrispRVariants Global BWA MEM No Yes No Yes Standalone (163)

Cas-analyzer Local EMBOSS

Needle

Yes No No No Web server (169)

CRISPRmatch Local BWA No No No Yes Standalone (170)

AmpliconDIVider Global NovoAlign No Yes No No Standalone (164)

CRIS.py Local Text based

alignment#
Yes Yes Yes No Standalone (160)

CRISPResso2 Global and

Local

EMBOSS

Needle

Yes Yes Yes Yes Web server and

Standalone

(165)

*Mutation quantification: MD, mutation deconvolution; FQ, frameshift quantification; BE, base editor.
#Text-based alignment is an author-defined method.
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difficult to quantitatively deconvolute the mixed outcomes of
gene editing. Besides, some tools [e.g., CRISPResso2 (165) and
BATCH-GE (166)] combine both strategies by predefining cut
sites. Collectively, choosing an alignment strategy depends on
what kind of information users prefer.

2) Deconvolution of the mixed mutations. As mentioned
above, three major pathways (NHEJ, MMEJ, and HDR) jointly
participate in DSB repair. In contrast to the unpredictable
mutations generated by NHEJ, precise modifications generated
by HDR and MMEJ are preferred for purposive gene editing.
Therefore, classifying the modified alleles is essential for
determining the mutant sites and mutagenesis efficiency.
The tools adopting local strategy [e.g., CRISPResso2 (165),
CRIS.py (160), CRISPR-DAV (161), and CRISPR-GA (162)]
align reads to the expected HDR amplicon and the reference
amplicon and then identify the modification status by the
comparisons of alignment rates and sequence identities.
Moreover, some tools [e.g., ampliconDIVider (164), CRIS.py
(160), and CRISPResso2 (165)] enable the quantification of
in-frame occurrences and potential splice sites according to
mutation location and sequence length. The mutations located
in the coding region with relatively conserved length are always
regarded as in-frame, while the others are frame-shift. Yet
regrettably, the tool for distinguishing MMEJ-induced mutations
remains unavailable.

3) Applicability for base editors. For fear of the random
introduction of INDELs in canonical CRISPR/Cas experiments,
base editors, the fusions composed of a catalytically impaired
Cas enzyme to a base deaminase that operates on single
strand, can directly install point mutations by mediating base
conversion without DSB generation (167, 168). Conventional
tools only for INDEL quantification cannot detect the varying
combinations of base conversion induced by the base editor.
Interestingly, CRIS.py (160) and CRISPResso2 (165) compensate
for this vacancy through searching the pre-set nucleotide
substitution rule.

Additionally, whether the tools are equipped with
visualization and the execution platform is worth considering.
The detailed information of existing CRISPR NGS data analyzers
is listed in Table 5.

Database for Experimental Data Collection
The applications of CRISPR/Cas screening massively expand
in gene function exploration, so does the need for the open
databases for validated data collection where researchers can
easily get access to raw or processed data. To satisfy the
urgent need, several repositories had been built (Table 6). Of
note, compared with the databases only recording results but
without any comparisons of screening results among different
researches [e.g., CRISPRz (171), CrisprGE (172), CRISPRlnc

TABLE 6 | The list of 7 existing databases collecting the CRISPR screening data.

Database Species CRISPR type Gene type* Gene count# Last update Address References

CRISPRz Zebrafish CRISPRko PCG 610 March 2016 https://

research.nhgri.

nih.gov/

CRISPRz/

(171)

CrisprGE 32 kinds of

vertebrate,

invertebrate

and plant

CRISPRko/ki PCG, miRNA 223 June 2015 http://crdd.

osdd.net/

servers/

crisprge/

(172)

CRISPRlnc 8 kinds of

vertebrate,

invertebrate

and plant

CRISPRko,

CRISPRa/i,

LncRNA 304 September

2019

http://www.

crisprlnc.org/

(151)

base editor

GenomeCRISPR Human CRISPRko,

CRISPRa/i

PCG, lncRNA,

miRNA

28,655 November

2017

http://

genomecrispr.

dkfz.de/

(173)

PICKLES Human CRISPRko/ki,

CRISPRa/i

PCG 20,953 2019 https://hartlab.

shinyapps.io/

pickles/

(174)

Sanger

DepMap

Human CRISPRko PCG 18,009 April 2019 https://score.

depmap.

sanger.ac.uk/

(175)

Broad

DepMap

Human CRISPRko PCG 18,333 December

2019

https://

depmap.org/

portal/

(144)

BioGRID

ORCS

Drosophila,

human and

mouse

CRISPRko,

CRISPRa/i

PCG, lncRNA,

miRNA

58,161 July 2019 https://orcs.

thebiogrid.org/

(176)

*Gene type: PCG, protein-coding gene; lncRNA, long noncoding RNA; miRNA, micro RNA.
#Gene count is across all species the database involved in rather than for a single one.
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(151), and BioGRID ORCS (176)], GenomeCRISPR (173)
based on 84 high-throughput screens additionally provides
the intuitive comparisons of gRNA efficacies as well as
perturbation phenotypes under specific conditions. Instead of
collecting the gRNA information, PICKLES (174) reanalyzed
the raw screening data and compared the essentiality of a
certain gene across multiple experiments, tissues, or cells.
Another two independent databases tailored for human cancer
research are Sanger DepMap (175) and Broad DepMap
(144), which record the information of gene dependencies
in cancer cell lines through analyzing the CRISPR/Cas9
screening data.

Furthermore, there are some databases [e.g., Anti-CRISPRdb
(177) and CRISPRminer (178)] recording the anti-CRISPR
proteins in phage that had been experimentally validated to
inhibit the activity of CRISPR/Cas system and reduce off-target
events (179).

CONCLUSION AND PERSPECTIVE

CRISPR/Cas systems have navigated researchers to traverse
through the dark where they are left flat-footed by the complex
functional annotation. However, the advances in experimental
techniques still cannot promise CRISPR/Cas system an effortless
and expedite manner, which, therefore, needs essential assistance
from in silico methods. Our study makes a comprehensive
summary and comparisons on the released tools from two
perspectives: pre-experimental guidance (CRISPR/Cas system
identification and gRNA design) and post-experimental analysis
(gene essentiality evaluation, decipherment of the experimental
outcome, and data collection). The characteristics of tools
based on different design principles and frameworks had
been elucidated hereinbefore, which hopefully guide users
to make more reasonable choices for their specific data
and purposes.

Unfortunately, CRISPR/Cas system cannot yet reach a
satisfying achievement in practical use. Current strategies for
technical improvement mainly probe into two aspects. On
one hand, the most reliable and effective approach is to
optimize the experimental technique, which is well-exemplified
by the fusion of catalytically impaired Cas enzymes to other
engineered proteins for constructing the riskless systems such
as CRISPRa/i (103), base editor (167), and prime editor (180)
and enhancing the efficiency of precise repair (181). Yet
experimental improvement cannot cover all facets, let alone
guarantee affordable cost. At that time, in silico tools, the second
aspect, are of importance even if there is still a long way ahead
such as how chromatin environment affects the on-target and off-
target activities, whether the effects are fixed or varying across
tissue and organisms, how to solve the disparity of training
set in machine learning-based tools that may cause the poor
versatility, and how to combine the individual information into
the personalized gRNA design. To the best of our knowledge,
the hypotheses of tool optimization are: (1) For CRISPR/Cas
system identification, precisely distinguishing CRISPR arrays
from other similar repeats requires the incorporation of more

distinct features such as the interactions with other genes
in the host (42) and the intra-genus conservation (41); (2)
For gRNA design, except feature expansion and algorithm
optimization, the individual variance associated with on-target
and off-target activities (127–129) should be taken into account.
Current tools such as Crisflash (54) and CRISPR-Local (84)
considering only somatic mutation are far from satisfactory.
It is envisioned that in silico tools covering more individual
characteristics such as chromatin environment, accessibility, and
exon expression promise more reliable prediction, especially
for the clinical purpose; (3) For gene essentiality evaluation,
existing tools are not as all-powerful as we expected, which
misinterpret the uncertain relationships between the mean and
variance of gRNA count, neglect the copy number effect, or
lack accessory functions; (4) For the deconvolution of mutations,
combination of microhomology predictor and local alignment
to reference may pave a new way for quantifying the MMEJ-
induced mutations.

The urgent demand for optimizing in silico methods cannot
mask the truth that they have made tremendous contributions to
biological researches. It is increasingly expected that the progress
in computational methods will push CRISPR/Cas system into
a higher stage and even assist in an earlier realization of
clinical popularization.
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