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Genetic and transcriptional heterogeneity of Chronic lymphocytic leukaemia (CLL) limits
prevention of disease progression. Longitudinal single-cell transcriptomics represents the
state-of-the-art method to profile the disease heterogeneity at diagnosis and to inform
about disease evolution. Here, we apply single-cell RNA-seq to a CLL case, sampled at
diagnosis and relapse, that was treated with FCR (Fludarabine, Cyclophosphamide,
Rituximab) and underwent a dramatic decrease in CD19 expression during disease
progression. Computational analyses revealed a major switch in clones’ dominance
during treatment. The clone that expanded at relapse showed 17p and 3p
chromosomal deletions, and up-regulation of pathways related to motility, cytokine
signaling and antigen presentation. Single-cell RNA-seq uniquely revealed that this
clone was already present at low frequency at diagnosis, and it displays feature of
plasma cell differentiation, consistent with a more aggressive phenotype. This study
shows the benefit of single-cell profiling of CLL heterogeneity at diagnosis, to identify
clones that might otherwise not be recognized and to determine the best
treatment options.

Keywords: chronic lymphoid leukemia (CLL), single-cell RNA-seq (scRNA-seq), therapy resistance, disease
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INTRODUCTION

Chronic lymphocytic leukaemia (CLL) is themost common form of
adult leukaemia in Western countries and accounts for
approximately 30%–40% of all leukemias (1). It is a disorder of B
cells characterized by the accumulation of small, mature-appearing
lymphocytes in the blood, the bone marrow, and lymphoid tissues.

The clinical presentation of CLL is very heterogeneous. The
progression ranges from an aggressive course requiring
treatment early after diagnosis to cases with indolent behavior
that do not need therapeutic intervention for many years. While
CLL can be classified into two subgroups based on mutational
status of immunoglobulin heavy-chain variable region gene
(IGHV) (2), abnormal changes also include several genetic
mutations and chromosomal aberrations, expression of
microRNAs (3) and epigenetic changes (4). Chromosomal
abnormalities such as del(13q), del(11q), del(17p), or trisomy
12 are present in 80% of the cases (5). Somatic mutations have
been detected in genes with roles in DNA damage (TP53 and
ATM), mRNA processing (SF3B1), Notch signaling (NOTCH1)
and inflammatory pathways (MYD88) (6).

Available treatments include chemotherapy (either alone or
combined with immunotherapy), targeted therapies such as
venetoclax (targeting BCL-2) or ibrutinib (targeting Bruton’s
tyrosine kinase), and CAR-T cells (7). Currently, the standard
therapy combines Fludarabine with anti-CD20 antibody
(Rituximab) and Cyclophosphamide (FCR).

CLL cells typically coexpress the surface antigen CD5 together
with the B-cell antigens CD19, CD20, and CD23. The
immunophenotype of CLL lymphocytes correspond to an
intermediate stage of B-cell maturation. CD19 is exclusively
expressed throughout B-cell development from the proB-cell
stage until the plasma cell stage, which is CD19 negative.

Prognostic factors derived from high-throughput genetic and
phenotypic profiling can potentially identify patients who
require therapy relatively soon after diagnosis and are at higher
risk for disease progression. Whole exome sequencing of
matched pre-treatment and relapse samples detected the
presence of a resistant clone at pre-treatment in 30% of the
cases (8). On the other hand, analysis of an ibrutinib-treated
cohort of patients failed to identify a significantly higher risk of
relapse in individuals with baseline mutations affecting either the
BTK pathway or TP53 (9). These studies suggest that sub-clonal
genetic alterations at diagnosis can be selected by the therapy but
are not sufficient to explain the relapse, pointing to an important
role for non-genetic factors. This advocates for profiling
transcriptional heterogeneity at diagnosis using single-cell
approaches, which can shed light on possible evolutionary
trajectory of each individual tumor. We here report a case of
CLL which underwent FCR and presented with a relapse
enriched for CD19-negative cells. The loss of CD19 was
completely spontaneous (without any selective pressure
induced from pharmacological treatments with anti-CD19
drugs) and it resulted in a more aggressive behavior. By
applying single-cell transcriptomics, we were able to identify
the presence of this CD19-negative clone at diagnosis, albeit at
low frequency. This clone shows unique biological features that
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would be hindered by bulk-RNA-seq, highlighting the strength
of single-cell-RNA-seq in predicting the possible progression
trajectories and therefore inform therapeutic strategies.
CASE REPORT

Case Description
A 58-years-old female without previous oncological or other
serious illness was diagnosed with MALT lymphoma of the
parotic gland in 2013 (extranodal lymphoma of the marginal
zone; WHO classification 2008). PET-CT revealed involvement
of equilateral cervical and supraclavicular lymph nodes (Ann
Arbor stage IIE). The examination of the bone marrow also
showed the presence of a CLL clone. CLL presented as early stage
disease (Rai stage 0-I, nodular and interstitial infiltration of the
bone marrow, ALC 9.0*109/L). Cytogenetic and IgVH mutation
status evaluations were not performed. Considering the
dominant clinical presentation of MALT lymphoma and that
the criteria for initiation of treatment against CLL were not met,
the patient was treated according to the protocol for lymphomas,
consisting of six cycles of R-CHOP (cyclophosphamide,
doxorubicin, vincristine, prednisone, and rituximab). Complete
remission of lymphoma was achieved (CT, Cheson criteria
2014), with the residual CLL population still detectable in the
bone marrow (10-2, assessed by flow cytometry).

Slow haematological progression (estimated by blood count)
of CLL was observed from 2015 to 2017. At that time, CLL
progressed to advanced disease (Rai III) and met the criteria for
initiation of therapy (lymphocyte doubling time of 5 months,
anaemia, disease-related symptoms). FISH highlighted deletions
of chromosome 14 (98% of evaluated cells), and of 13q, 14q, and
17p (harbouring TP53) in about 5% of interphase nuclei. At this
time, the first sample (termed diagnosis) was collected and
examined by flow cytometry (see Supplementary Methods).
This showed that virtually all CLL cells (CD200-, CD5-, and
CD23-positive) were CD19-positive (Figure 1A).

The patient received six cycles of chemoimmunotherapy
(FCR; rituximab: 375mg/m2; cyclophosphamide 250mg/m2;
fludarabine 25mg/m2) which resulted in partial remission
(bone marrow not evaluated). At the end of 2018, the patient
relapsed (clinical stage Rai III). At this time point the second
sample was collected (peripheral blood, termed relapse) and a
CD19-negative sub-clone was detected by flow cytometry
(Figure 1B). The proportion of all CLL cells to CD19-positive
cells was 3:1. The cytogenetic analysis detected an expansion of
the complex karyotype clone including 17p deletion (FISH;
>90% of nuclei). The disease showed an increased ratio of all
CLL cells to CD19-positive cells to 5:1, suggesting further
progression of the CD19-negative clone (Figure 1C). A
timeline highlighting disease progression and sampling is
shown in Fig 1D. At this point, the patient met the iwCLL
criteria for initiating treatment (anaemia, disease-related
symptoms). Considering the TP53 status, targeted therapy with
ibrutinib was initiated. An allogeneic stem cell transplantation
was also considered for future consolidation.
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FIGURE 1 | Development of the CLL in patient. (A–C) FACS of samples at diagnosis (A) relapse (B) and before the second therapeutic intervention (C). CLL
fraction of cells in the sample is defined as fraction of CD5-positive CD23-positive cells which is supported by fraction of CD5-positive CD200-positive cells.
(D) Progression of the numbers of leukocytes in the peripheral blood in time.
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After 3 months of this monotherapy (420 mg/day), the patient
was investigated for neurological symptoms (expressive aphasia).
A meningioma was discovered onMRI scan (left frontal lobe, total
size 29 mm x 30 mm x 28 mm). Ibrutinib treatment was stopped,
and the tumor (meningothelial meningioma, grade I, WHO 2016)
was surgically removed. Unfortunately, 2 months later the patient
died of complications (cryptococcal meningitis, hydrocephalus
and ischemic stroke). At that time, CLL response to the
treatment corresponded to stable disease with significant
peripheral lymphocytosis (80x109/L, ANC > 5x109/L, and IgG
level 4,4 g/L).

Single-Cell Transcriptomics Highlights
a Shift in Clones’ Dominance in
Advanced CLL
After de-multiplexing the diagnosis and relapse samples based on
their specific barcode (Figure 2A), we obtained 1,062 and
2,026 cells, respectively (Table S1). For further analyses we
retained 845 and 1,623 cells from diagnosis and relapse passing
filtering criteria, respectively. We then subject them to
dimensionality reduction (Figure 2B) and graph-based
clustering using Seurat (10) (see Supplementary Methods). This
resulted into 7 clusters (Figure S1A), which were then assigned
to known cell types using signatures from CIBERSORT (11)
(see Supplementary Methods). Three clusters, encompassing
most of the cells, were classified as B cells, two clusters as T
cells, and the two smallest clusters as NK cells and macrophages,
respectively (Figures 2C, S1A, and S1B). We then re-run the
dimensionality reduction and clustering steps considering only
cells from clusters classified as B cells. This resulted in three
clusters (Figure 2D). While one of these clusters was dominated
by cells from diagnosis (termed DIAG or diagnosis-enriched
cluster), two of them were mainly composed by cells from
relapse (REL1 and REL2; hereafter termed relapse-enriched
clusters) (Figures 2E, F).

In order to track the clonal evolution at the genetic level, we
then estimated large chromosomal alterations directly from the
scRNA-seq data. The copy number alterations (CNAs) profile of
each single cell was estimated using InferCNV (12) (see
Supplementary Methods). Visual inspection of the profiles
revealed consistent differences between cells in the diagnosis- vs.
relapse-enriched clusters (Figure S1C). This prompted us to
generate meta-profiles for each of the clusters, separately for the
cells from the diagnosis and relapse samples. Hierarchical
clustering showed that the meta-profiles aggregate based on
their malignancy status (the clusters defined in Figure 2G)
rather than their origin (diagnosis or relapse). Those cells at
diagnosis that are showing both similar CNA and transcriptome
to majority of cells at relapse suggest the pre-existence of at least
one, less represented clone at diagnosis, that underwent expansion
upon treatment. This clone shows specific loss of chromosomes 3p
and 17p (Figures 2G and S1C), confirming previous cytogenetic
analysis at later collection. Loss of one copy of TP53 (which sits on
17p) was previously associated to progression to advanced, drug
resistant CLL (5, 13, 14). The loss of 17p was also linked to altered
pharmacokinetics of rituximab (15).
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Activation of Specific Pathways in the
Relapse-Enriched Clone
We then asked if genes related to specific functions could explain
the resilience of this clone to several cytotoxic and targeted
treatments. To this aim, we derived the differentially expressed
genes (DEGs; FDR <= 0.05) between the relapse-enriched and
the diagnosis-enriched clusters (90 up-regulated and 85 down-
regulated; Table S2). Enrichment analysis highlighted dozens of
Reactome pathways significantly associated with either the up-
or down-regulated genes in the relapse (FDR <= 0.05; Table S3).
To achieve a compact representation of the enriched terms, we
used Enrichment Map (16) (Figure 3A). Both up- and down-
regulated genes in relapse show over-representation of terms
related to different aspects of translation. Several enriched
pathways are linked to an increased motility in the relapse-
enriched clusters (e.g. ROBO signaling; Figure 3B and Table S4).
Those up-regulated show also enrichment for antigen
presentation (MHC class I) and cytokine signaling (Figures
3A, B and Tables S3, S4). The latter has been previously
associated to advanced disease (18). In contrast, down-
regulated genes showed enrichment for signaling pathways
related to cellular stress (Figure 3A). Of note, these analyses
also suggested a metabolic difference between the diagnosis-
enriched and relapse-enriched clones, as hinted by enrichment in
glycolytic pathways in the former (Figure 3B).

Further Investigation of the Heterogeneity
of the Relapse-Enriched Clone
Clustering of B cells data resulted in two main groups, with the
one enriched for cells from the relapse sample divided into two
sub clusters (Figure 2D). We then determined the DEGs
between REL1 and REL2 (n = 55; Table S5). Reactome
enrichment analysis revealed that these DEGs are significantly
enriched in signaling pathways that are related to different
aspects of B cells functionality like CD28, ZAP70, or PD-1
signaling (Figure 3C), and in pathways already identified when
comparing the diagnosis-enriched to the entire relapse-enriched
cluster (Figure 3B, Tables S3 and S4). This suggests further
heterogeneity in the expression of these pathways at relapse.
Interestingly, one of the genes significantly up-regulated in REL2
vs. REL1 is CXCR4. This gene has been shown to confer leukemic
cells a stronger ability to survive, migrate, and interact with the
microenvironment (19). In line with the predicted TP53 loss,
testing for enrichment of TP53 target genes (20, 21) among
either up- or down-regulated genes in the relapse-enriched
clones, revealed a statistically significant overlap only with the
down-regulated genes (FDR <= 0.05, hypergeometric test).

A Signature of Bone Marrow Plasma Cells
Characterizes the Relapse-Enriched Clone
Given these differences between the diagnosis-enriched and
relapse-enriched clones, and this further heterogeneity within
the latter, we asked if these mirrored characteristics of the
physiological differentiation hierarchy of B cells. In other
words, we tested if we could ascribe part of the observed
variation to transcriptional features characterizing different
October 2020 | Volume 10 | Article 584607
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FIGURE 2 | Single-cell transcriptomics highlights a shift in clones’ dominance in advanced CLL. (A) Schematics of the approach. (B) Dimensiona
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a pathway. Size of the node is proportional with the number of genes associated to it. Nodes are connected based on similarity and represented as
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stages ofB cellmaturation.Usingdata fromGenomicScape (22),we
assigned each B cell to known stages of differentiation (see
Supplementary Methods), then summarized the results by
cluster (Figure S1D). This analysis showed a significant over-
representation (p-value < 2.2e-16 for REL1 vs. DIAG and
p-value = 2.4e-12 for REL2 vs. DIAG; Fisher’s exact test) of cells
with bone marrow plasma cells (BMPCs) signature in the relapse-
enriched clone. This suggests that cells in this clone might have a
more quiescent phenotype than the dominant clone before
treatment, which is in line with the functional enrichment of the
DEGs (Figures 3A-C).

The Expression Profile of the Relapse-
Enriched Clone Predicts Survival and
Resistance to Treatment
We then systematically surveyed PRECOG (23) to highlight if
any of the genes found as DEGs between the relapse-enriched
and the diagnosis-enriched clones was highly predictive of
patient survival. Indeed, we identified four genes (PARP14,
STAT1, UCP2, IFT57) showing higher expression in the
relapse-enriched clone that were significantly associated to
poor prognosis in patients showing high expression (FDR <=
0.05). Interestingly, the gene that showed the highest significance
was PARP14 (Figure S1E). This has been previously reported to
play a role in chemoresistance (17). Our analysis also highlighted
one gene (ZNF292) showing lower expression in the relapse-
enriched clone and that was significantly correlated to poorer
prognosis of tumors displaying low expression. ZNF292 has also
been previously reported as inactivated in 2%–3% of CLL cases,
and it has been included in the list of CLL driver genes (24).

Next, we took advantage of a published signature predictive of
time-to-progression in CLL for the same treatment that this
patient underwent (FCR) (25). Those cells in the relapse-
enriched clone (particularly those in REL2) showed indeed
higher levels of expression for the genes in this signature,
compared to the cells in the diagnosis-enriched clone (p-value =
2.1e-12; Wilcoxon rank-sum test; Figures 3D, E).
DISCUSSION

Despite the availability of several treatment options (26), the
heterogeneity of CLL still limits the ability to eradicate the
residual disease and prevent relapse.

In this case report we show how a relatively low-throughput
single-cell transcriptomics profile at diagnosis can be highly
informative. This approach highlighted a major switch in clones’
dominance during treatment, with one of the clones prevailing at
diagnosis and one at relapse. As opposed to scRNA-seq, standard
flow cytometry could not distinguish these two clones at the time
of diagnosis. Data analysis revealed the distinctive activated
pathways and propensity to chemoresistance of these two clones
(Figure 3) and that the clone that persisted upon therapy
presented features of differentiated plasma cells and would
rather match plasma cells disorders.

CLL is a plastic disease that can develop resistance to
treatments by many phenotypic changes like the downregulation
Frontiers in Oncology | www.frontiersin.org 7
of CD20 or CD19 (27). CD19 negativity is often observed in
relapse after immunotherapy using CAR-T (7). It has been
speculated that loss of CD19 could be connected to a lineage
switch caused by mutation of CD19 or its alternative splicing,
which precludes its detection (28, 29). In the presented case, loss of
CD19 was not directly connected to lineage switch but we
observed differences that could be linked to a progression
between stages of B cells differentiation. The fraction of CD5-
positive/CD19-positive cells was initially almost 100% but minor
clones (clusters REL1 and REL2 in our analysis) were already
represented (Figure 2E), although showing detectable CD19 on
their surface. At relapse, the CD5-positive/CD19-positive cells
were reduced to 18%, which is in line with the results from
scRNA-seq (Figure 2E). This suggests that the initially dominant
clone retained CD19 expression while the relapse-enriched
clusters lost it. Such a drop in CD19-positive cells is rarely
observed in CLL (30). In B cell differentiation, CD19 is present
at all stages except for plasma cells. The cells in the relapse-
enriched clone showed a significant over-representation of the
BMPCs signature, thus indicating a plasma cell like phenotype.
The most common plasma cell disorder—multiple myeloma—is
CD19-negative in almost all cases (31). While cases of
concomitant or sequential CLL and multiple myeloma are rare
we could not confirm the presence of multiple myeloma in this
patient. Nonetheless, non-neoplastic CD19-negative, long-lived
memory plasma cells have been previously identified in healthy
donors (32). Although all CLL cells (the diagnosed and the
relapsed) were CD20-positive (immunophenotyping; not shown)
and plasma cells are usually CD20-negative, about 20% of plasma
cells in healthy individuals as well as in myeloma patients can
express it (33). Besides, we identified a mild but statistically
significant reduction of the CD20 gene (MS4A1) at the mRNA
level in the relapse-enriched clone (Table S2). The differentiation
into plasmablasts is also accompanied by a switch to an oxidative
metabolism (34), which we observed in the relapse-enriched clone.

Comparison of the genetic and transcriptional profiles of
single cells in the two clones suggests pre-existent differences
correlated with resistance to treatment (Figure 2). Among these,
and in line with the loss of chromosome 17p (which harbours
TP53) in the relapse-enriched clones, we detected down-
regulation of TP53 targets in the relapse clones. Loss of TP53
leads to increased resistance to apoptosis which could be further
enhanced by other factors like interleukin-12 (IL-12) (35).
Interestingly, we observed upregulation of genes related to IL-
12 activity in the relapse-enriched clone. Moreover, IL-12
expression is correlated with advanced Rai stages (18). Another
factor that might have further protected cells from apoptosis is
the higher expression of PARP14 (36).
CONCLUDING REMARKS

The presented case showed an atypical behavior of CLL with loss
of CD19 and gain of features of plasma cells differentiation with a
much more aggressive phenotype. Importantly, this clone was
undistinguishable by routine flow cytometry at time of diagnosis
but was detected by single-cell transcriptome profiling. This
October 2020 | Volume 10 | Article 584607
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demonstrates the benefit of dissecting phenotypic heterogeneity
by virtue of single-cell approaches. If translated to the clinic, such
strategy can help characterizing the resistance potential of
different clones at diagnosis that might otherwise not be
recognized and in turn guide treatment decisions.
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