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Lung cancer, renowned for its fast progression and metastatic potency, is rising to
become a leading cause of death globally. It has been long observed that lung cancer is
particularly ept in spawning distant metastasis at its early stages, and it can readily
colonize virtually any human organ. In recent years, cancer research has shed light on why
lung cancer is endowed with its exceptional ability to metastasize. In this review, we will
take a comprehensive look at the current research on lung cancer metastasis, including
molecular pathways, anatomical features and genetic traits that make lung cancer
intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the
particular metastasis mechanisms in multiple organs. We highly concerned about the
advanced discovery and development of lung cancer metastasis, indicating
the importance of lung cancer specific gene mutations, heterogeneity or biomarker
discovery, and discussing potential opportunities and challenges. We will also introduce
some current treatments that targets certain metastatic strategies of non-small cell lung
cancer (NSCLC). Advances made in these regards could be critical to our current
knowledge base of lung cancer metastasis.

Keywords: non-small cell lung cancer, metastasis, treatment, mechanism, systematic literature review
INTRODUCTION

Lung cancer is notoriously known for its ability to spread readily in its early stages, as well as its
potency to spread to a wide range of organs of vastly different anatomy and physiology. Since lung
cancer patients are often diagnosed at an advanced stage, multiple metastases would have already
developed, making targeted therapy extremely difficult and systemic therapy less effective. In recent
years, studies conducted to uncover mechanisms behind lung cancer are rapidly increasing
in numbers.

We have learned that lung cancer cells often resist or even thrive under hypoxia, immune cells
may be inactivated and manipulated by tumor cells, tumor cells can migrate through various ways,
and the different mechanisms underlying lung metastasis of nearly every possible site. All the
evidence piece together to reveal how complicated the concept of lung cancer metastasis is due to
the numerous pathways involved in the process. In this review, we will discuss the general
mechanisms of metastasis including hypoxia, immunocompromise, tumor cell migration.
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We shall track non-small-cell lung cancer from its primary
tumor to its metastasis in the brain, the bone and the liver,
which are the three most frequent sites of lung cancer metastasis.
Pathology, molecular pathways and genetic characteristics of
lung cancer metastasis to these organs form the bulk of our
discussion. While current work of lung cancer metastasis will be
reviewed with considerable depth, inferences and connections
will also be frequently made to propose possible patterns of lung
cancer metastasis. This review shall provide updated progress of
lung cancer metastasis research, and give directions about
relevant further studies.
RESULTS

General Metastatic Potential
Once a cancerous cell mass has established itself, it must address
a variety of environmental stress in order to support its rapid
expansion as well as initiating processes that can potentially lead
to metastasis. Such environmental stress includes a hypoxic
stroma, a multitude of immune responses, and antagonistic
local cell types that hinders its invasion. Then, tumor cells
need to intravasate and survive the circulation to spawn
metastasis in various organs. Through manipulation and
cooperation, lung cancer cells are able to attain resistance to its
hostile surroundings, even converting certain negative influences
into signals beneficial to its development, enemy into allies.

Hypoxia Resilience
Cancer cells, being relatively metabolically active, have a certain
oxygen demand. If a tumor tissue is deprived of oxygen for a
prolonged period of time, it could undergo necrosis.
Unfortunately, due to their low level of vascularization, tumors
Abbreviations: AKT, activation of protein kinase; ALI, acute lung injury; APC,
antigen-presenting cell; BBB, blood–brain barrier; BMM, bone marrow
macrophages; CAA, cancer-associated adipocytes; CAM, cellular adhesion
molecules; CLDN5, claudin-5; CTSK, cathepsin k; CYLD, cylindromatosis;
DC, dendritic cells; DDR1, discoidin domain receptor 1; ECM, extracellular
matrix; EGFR, epidermal growth factor receptor; ERG, ETS-related gene; EMT,
epithelial–mesenchymal transition; ETosis, extracellular trap cell death; FASN,
fatty acid synthase; HIF, hypoxia inducible factor; HLA-E, human leukocyte
antigen e; IFN, interferons; IL, interleukins; IMA, invasive mucinous
adenocarcinoma; JAM, junctional adhesion molecules; KP-10, kisspeptin-10;
LPS, lipopolysaccharide; LSEC, liver sinusoidal endothelial cells; MF,
myofibroblasts; miRNA, Micro-RNAs; MAPK, mitogen-activated protein
kinase; MMP, metalloproteinases; MSC, mesenchymal stem cells; MAOA,
monoamine oxidase A; NACOS, N-acetylated COS; NSCLC, non-small cell
lung cancer; NK, natural killer cells; NO, nitric oxide; OBs, osteoblasts; OC,
osteoclasts; PD, polydatin; PDL1, programmed death-ligand 1; PD1,
programmed death receptor 1; p-PTEN, phosphorylation of the PTEN C-
terminus; PGE2, prostaglandin E2; PTHrP, parathyroid hormone-related
protein; RA, reactive astrocytes; ROS, reactive oxygen species; RANKL, RANK
ligand; SCFA, short-chain fatty acids; SDF-1, stromal cell-derived factor 1;
SNX9, nexin 9; Sfrps, secreted frizzled-related proteins; sRNA, small RNA;
TADC, tumor-associated DCs; TAM, tumor-associated macrophages; TGF,
tumor growth factors; TJ, tight junctions; TME, tumor microenvironment;
TNF, tumor necrosis factors; Tregs, regulatory T cells; TSP, thrombospondin;
VCAM-1, vascular cell adhesion molecule-1; VEGF, vascular endothelial growth
factors; YY1, yin yang 1.
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are generally less oxygenated compared to their surrounding
tissues when they first arise, which invariably leads to intratumor
hypoxia. Hypoxia is one of the defining characteristics of lung
cancer and indicates poor survival (1). Although low oxygen
availability in tumors reduces the effect of radiotherapy, it is also
a limiting factor that severely limits tumor growth. It is estimated
that tumor cells can only survive within 100 to 150 mM from a
blood vessel, given that cells beyond this distance often suffer
necrosis (2). To overcome this limitation, lung cancer cells use
several regulation mechanisms to avoid lethal hypoxia, while
reaping the benefits of low-grade hypoxia which boosts
metastasis potential.

An intuitive approach for tumors to obtain adequate oxygen
supply is by improving vascularization within the tumor mass
through the process of angiogenesis. Several factors that facilitate
this process has been identified, some of which are frequently
associated with lung cancer. Vascular endothelial growth factors
(VEGFs), for instance, can be secreted by tumor cells to stimulate
blood vessel formation within the tumor mass. It was observed
that hypoxia inducible factor (HIF) 1a expression is positively
correlated with VEGF expression, and the upregulation of HIF1a
and VEGF often implies poor prognosis in liver cancer (3).
Discovered in 1992, HIF has been put under the spotlight as 2019
Nobel Prize in Physiology or Medicine had recently been
revealed, and emerges as a promising target for cancer therapy.
Among the subtypes of VEGFs, VEGF-A is currently the most
extensively studied and well understood. While it can form
vasculatures in tumors to compensate for the oxygen demand,
newly formed blood vessels are often abnormal in shape and
function. Vessels are not neatly divided into arterioles, venules,
and capillaries, and are shown to be leaky, even hemorrhagic in
all stages of tumor (4). Though the tumor is only getting a
suboptimal supply of oxygen and nutrition, this slightly hypoxic
environment does yield benefits for tumor cells. Furthermore,
since newly formed vasculature is leaky, presumably because of
VEGF1-A’s participation in vascular permeability regulation,
there’s an increased likelihood for tumor cells to enter these
abnormal vessels early on in tumor progression, especially with
increased interstitial pressure accompanied with hemorrhagic
leakage. This helps explain why metastasis through blood
circulation often occurs at an early stage in lung cancer.

As demonstrated above, angiogenesis can only fulfill a portion
of a tumor’s oxygen demand. While tumors display significant
heterogeneity concerning spatial distribution of hypoxic regions,
the vast majority of tumor cells are subsisting under non-lethal
hypoxia (5). This characteristic of the tumor microenvironment
is shown to facilitate an array of processes contributive to
enhanced metastatic potential. It is observed that Epithelial-
Mesenchymal Transition (EMT) is profoundly increased in
hypoxic tumor tissues, and various mechanisms had been
proposed since to explain this phenomenon. Beta-catenin is
found to be accumulating in hypoxic tumor cell nucleus and is
pinpointed as an agent that increases the expression of EMT-
related genes (6). One previous study reveals that beta-catenin
enhances HIF-1 mediated transcriptions, promoting tumor
survival. This study also confirms that beta-catenin signaling is
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aberrant under hypoxia (7). Recent studies have attempted to
explain beta-catenin’s EMT inducing potential, and a link has
been drawn between beta-catenin and Wnt pathway, known
as Wnt/beta-catenin signaling. Through stabilizing beta-catenin
and translocating it into the nucleus, hypoxia in adenocarcinoma
cells in lungs eventually results in enhanced Wnt signaling
activity. Research had shown that a disruption in regulated
Wnt/beta-catenin (8) signaling could induce EMT in tumor
cells, and it is proposed that it is caused by the loss of E-
cadherin, which is detrimental to the maintenance of epithelial
integrity (9). Alternative mechanisms have also been proposed.
A study in 2016 concludes that PTEN phosphatase activity can
be altered under persistent hypoxia. PTEN phosphatase appears
to inhibit EMT in tumor progression, while phosphorylation of
the PTEN C-terminus (p-PTEN) leads to diminishing activity of
PTEN phosphatase. Lung cancer cells exposed to hypoxia
demonstrated sharp decrease in PTEN phosphatase and
increase in p-PTEN, which accompanies a high rate of EMT
(10). TWIST, recently recognized as another crucial mediator of
cancer metastasis, is shown to be influenced by a hypoxic
microenvironment. TWIST negatively correlates with E-
cadherin expression, while positively correlates with HIF1-a
expression. It is considered that HIF-1a derived from hypoxic
environment enhances TWIST expression (11). High-level
expression of HIF-1a and TWIST, therefore, indicate increased
EMT occurrence, metastasis likelihood and a poor prognosis
(12). EMT grants cancer cells higher mobility and stem-cell
properties which both facilitate distant metastasis. Given how
fundamental EMT is to most metastasis, hypoxia evidently
contributes to the metastasis potential of lung cancer, possibly
through multiple signaling pathways.

Immunocompromise
Aside from having to adapt to unfavorable oxygen status, tumor
cells also need to fend off another major threat. Recognizing
tumor cells as foreign, a myriad of immune cells will actively
attack them upon contact, reducing the tumor’s capabilities to
expand. In fact, the immune system is so efficient in performing
its antitumoral functions that, if a detectable tumor does arise, its
cells must have evaded local immunity (13). Tumor cells develop
specialized tactics against each component of the local immune
system. The following paragraphs will explore the mechanisms
tumor cells use to either evade or cooperate with various
immune cells.

Given the fact that cancer cells are still bodily cells in nature,
they are most prone to attacks launched by members of cell-
mediated immunity. One such attack is initiated by cytotoxic T
cells (CD8+). CD8+ tumor-infiltrating lymphocytes (CD8+
TILs) can infiltrate into tumors and induce cytotoxic effects
through secretion of cytokines, which triggers inflammation and
immune responses (14). They can also secrete substances such as
granzymes and perforins for immediate cytotoxic effect. Its
presence is correlated with a better prognosis, but its function
can be suppressed by several factors (15). Programmed death-
ligand 1 (PDL1)-Programmed death receptor 1 (PD1) pathway is
shown to promote dysfunction in tumor-responding T cells in
Frontiers in Oncology | www.frontiersin.org 3
lung cancer patients (16). Tumors cells expressed PDL1 can bind
to PD1 on the surface of CD8 T cells, reducing its antitumoral
effectiveness (17). Immunomodulation therapies targeting this
interaction in non-small cell lung cancer (NSCLC) shows
promise to enhance therapeutic effects (18).

Apart from directly manipulating CD8 T cell functionality,
tumor cells also utilize many indirect mechanisms with the end
goal of suppressing CD8 T cell activity. Dendritic cells (DC), a
potent antigen-presenting cell (APC) is shown to play a role in
immune suppression in lung cancer. DCs isolated from NSCLC
display increased secretion of immunosuppressing molecules
such as the aforementioned PDL1 (19). DCs are heterogeneous
in nature, which can be subdivided into tumor-associated DCs
(TADC), which orchestrates T cell antitumoral processes, and
regulatory DCs, which accelerates tumor growth by
immunosuppression (20). Tumor cells take advantage of DCs’
heterogeneity as well as its plasticity to alter the composition of
DC pool, impairing the overall antigen-presenting ability of DCs
while magnifying its protumorigenic effects (21). Research
also suggests that certain regulatory DCs also inhibit
helper T cells (CD4+) activity, which disable another antigen-
presenting pathway, reducing CD8+ T cell activity further (22).
Regulatory T cells (Tregs), which normally function as an
immunosuppressing agent through expression of FOXP3,
acquire enhanced effectiveness in the tumor microenvironment
(TME). Similar to DCs, Tregs exhibit high heterogeneity and
plasticity, constituting another pool of immune cells tumor can
turn to its favor (23). Tumors seem to possess the ability to
chemically attract a subtype of Tregs known as FOXP3(+)CD25
(+)CD4(+) Treg, which differentiates into a subpopulation that
suppresses effector T cells functions (24). This is exemplified by a
study involving 92 patients with NSCLC, which discovered
increased Treg activity in intratumoral regions, including the
overexpression of FOXP3 mRNA (25). Increased level of FOXP3
is shown to enhance the viability and invasiveness of tumors in
NSCLCs, thus Treg can be yet another link in immunity which
lung cancer might exploit to promote its growth (26). In
conclusion, diminishing effect of CD8+ T cells caused by
various mechanisms corresponds to greater invasiveness of
lung cancer, giving it access to more capillary beds in the
lungs, which increases likelihood of blood mediated metastasis.

CD8+ T cells are not alone in the frontline battle against
cancer. Natural Killer (NK) cells, which constitute a major part of
the innate immune system, also have antitumorigenic
capabilities. Unlike CD8+ T cells, which requires a round of
clonal expansion before unleashing its cytotoxic effects, NK cells
can directly kill tumor cells, such as through the secretion of
TNFa. A study conducted on mice subjects concluded that lung
resident NK cells have a dominant role in suppressing metastatic
tumor growth in the lungs (27). Numerous factors had been
studied to establish pathways leading to NK cell exhaustion.
Prostaglandin E2 (PGE2) secreted by lung cancer cells is
attributed to diminishing effect of NK cells in one study, which
shows that a range of soluble factors including PGE2 can inhibit
the release of perforins and granzymes produced by NK cells
(28). The loss of interleukin 2 (IL2) is also considered as a
November 2020 | Volume 10 | Article 585284
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suppressive factor since IL2 is critical to triggering cytolytic
activities in NK cells (29). Human leukocyte antigen E (HLA-
E), a ligand overexpressed in tumor cells, can bind to inhibitory
receptor NKG2A which dampens NK cell response to malignant
growth (30). In cisplatin-resistant lung cancer cases, a specific
pathway is unmasked. Higher expression of fatty acid synthase
(FASN) in cisplatin-resistant tumor cells signals the downstream
molecule TGFb1, resulting in elevated PD-L1 expression that
suppresses NK cell functions (31). In short, through multiple
signaling pathways, lung cancer cells evade the cytolytic effects of
NK cells, potentially giving it a greater chance to survive at
distant sites surveilled by NK cells.

The last type of immune cells that will be discussed in this
section are macrophages. Macrophages make up the majority of
tumor-infiltrating immune cells, often triggering local
inflammation (32). The dual role of macrophage has been
observed in tumor masses. Early on in tumor emergence,
macrophages either engulf individual tumor cells or act as
APCs to provoke immune response from CD8+ T cells. When
CD8+ T cells eventually fail to mount an immune effect on the
tumor, tumor-associated macrophages (TAMs) promote
tumor growth by secreting growth factors or facilitating
angiogenesis (33).

Although alternative classifications have been proposed, a
binary system is still widely used, which subdivides macrophages
into M1 and M2 types (34). Inhibition of NOTCH-1 is proposed
as a possible pathway that enhances M2 differentiation
in tumors. When notch-1 is inhibited, enhanced M2
differentiation is observed (35). One study clarifies individual
effects M1 and M2 has on lung cancer development. Using lung
cancer cell A549, their experiments showed that M2 subtype
promotes A549 invasion, while the M1 subtype inhibits
angiogenesis in tumors (36). The M2 subtype’s protumorigenic
function is further proven in an experiment that uses b-elemene
to inhibit M2 activity, resulting in suppressed tumor growth (37).
M2 macrophages are shown to have angiogenesis effects that M1
macrophages do not possess. FGF signaling for M2a and PlGF
signaling for M2c are proposed as possible mechanisms behind
the angiogenic effect of M2 macrophages (38). Not only do M2
macrophages stimulate angiogenesis and suppress immune
responses, they also prepare target organs for metastasis, as
well as promoting intravasation of tumor cells (39). Macrophages
are also associated with EMT in tumor cells, since inflammation is
shown to be a key factor in inducing EMT. Given that certain
macrophages, like M1 macrophages, are proinflammatory, they
might increase EMT occurrence in cancerous cells (40). Another
2017 research concludes that M2 macrophages can induce EMT
through the TGF-b/Smad2 signaling pathway. M2 macrophages
secrete large amounts of TGF-b, which can induce EMT in lung
alveolar epithelial cells. Specific changes in genetic expression
include heightened a-SMA and lowered E-cadherin and CK18,
which contributes to cell mobility and the loss of epithelial
adhesion (41). Another Chinese team confirms that E-cadherin
level does correlate with TAMs density, and reveals that TAMs
promote a certain type of EMT in lung adenocarcinoma through
FUT4/LeY-mediated fucosylation (42). With angiogenetic and
Frontiers in Oncology | www.frontiersin.org 4
EMT capabilities combined, macrophages are a major candidate
for facilitating lung cancer growth and metastasis.
Cell Motility and Migration
Rather than remaining stationary, many tumor cells turned to a
nomadic lifestyle. Tumor cell migration often depends on the
crosstalk of different mechanisms. In order to move around in its
extracellular matrix (ECM), tumor cells must make changes to
themselves and cooperate with other cell types present in the
local microenvironment. Better cell motility grants malignant
cells enhanced potency to invade normal tissues, as well as a
heightened chance of entering vasculature (43).

Tumor cells are not endowed with the ability to move on
themselves at an early stage. Therefore, tumor cells must undergo
significant changes to enable movement. Cell membrane
protrusion is one of the first characteristics of migratory tumor
cells acquire. The formation of these protrusions, such as
lamellipodia and invadopodia, is driven by the interaction
between several proteins and cytoplasmic structures, one of
them being the actin cytoskeleton (44). The actin cytoskeleton
requires actin-binding proteins to function, and some of these
actin-binding proteins are shown to be correlated with cancer
progression. A study in 2017 discovered that cortactin, an action-
binding protein, is often overexpressed in tumors. Cortactin
promotes tumor cell invasiveness by forming invadopodia
and degrading surrounding ECM. It is believed that the
overexpression of cortactin is caused by the amplification of a
chromosomal band (45). Another study postulated that since
actin and actin-binding protein are observed to be accumulating
in tumor cell nucleus, they may alter gene expression, which
could potentially explain the genetic amplification observed in
the previous study (46). Actin has been linked to the formation of
multiple membrane protrusions. One research suggests that
cortactin and dynamin-2 stabilize F-actin bundles in filopodia
in lung cancer cell line H1299 (47). Furthermore, cortactin is also
shown to participate in invadopodia formation. Inhibiting
cortactin by miR-182 negatively impacted invadopodia
formation (48). Cortactin is not the only protein that facilitates
the acquisition of cell motility through membrane protrusions.
The range of proteins participating in forming membrane
protrusions is inconceivably large. Tks5, an adapter protein
that contributes to invadopodia formation, is shown to have
increased expression in lung carcinoma. The overexpression of
Tks5 is correlated with increased metastatic potential and
worsened prognosis (49). Another study in 2014 also identifies
Tks5 as a critical factor for invadopodia maturation, while
pointing to cortactin and Tks4 for invadopodia initiation and
function, respectively (50). A study concerning invadopodia
pinpointed b3 integrin as indispensable to invadopodia’s
formation and its ability to degrade the surrounding ECM.
Increased b3 integrin expression often indicate a greater
probability of metastasis in lung cancer (51). A decrease in
nexin 9 (SNX9) in invadopodia in NSCLC is correlated with
tumor invasiveness. SNX9 normally inhibits invadopodia
function by binding to TKS5, therefore the depletion of
November 2020 | Volume 10 | Article 585284
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SNX9 result in increased degradation of ECM (52). As
demonstrated above, lung cancer cells may utilize a range of
protein regulation to enhance its motility through the formation
of membrane protrusions.

Tumor cells can also steer cells in the ECM into their favor.
Myofibroblasts (MF), which normally participate in tissue repair,
may cooperate with cancer and promote tumor cell migration
(53). TGF-b is shown to be involved in the creation of MF. One
study established a positive feedback signaling loop formed by
TGF-b and IL-6/JAK2/STAT3 signaling pathways, which
mediates interactions between MF and tumor cells (54).
Although TGF- b can exist in soluble form, it is also found on
surfaces of exosomes produced by tumor cells, which might
explain why MF presence is heightened in tumor ECM (55).
Exosomal TGF- b also has greater potency in signaling
myofibroblastic differentiation. When exosomes are eliminated
from cancer cell secretome, myofibroblastic differentiation
ceases, leading to failure of stroma-assisted tumor growth (56).
MF express metalloproteinases (MMPs), which can alter matrix
proteins. Studies show that MMPs are highly expressed in lung
tumors and are actively involved in ECM degradation (57). A
study performed on A549 NSCLC cells demonstrates that
upregulation of MMP-9 promotes tumor cell migration and
increases invasiveness (58). Moreover, using ECM degradation
techniques such as MMPs, lung cancer cells can also degrade
basement membrane of capillaries to intravasate. In conclusion,
through cooperating with cells like MF, lung cancer cells can
attain greater efficiency in degrading its surrounding ECM,
allowing it to migrate with increased pace.

Going Organ-Specific
Lung cancer is distinctive from many other types of cancer
regarding the wide range of organs it could metastasize to. The
nervous system, bone, liver, respiratory system, and adrenal
gland, ranked by overall incidence rate, are all colonizable by
Frontiers in Oncology | www.frontiersin.org 5
lung cancer metastasis, and such metastasis all foretell a
worsened prognosis (59). Understanding the mechanisms
behind such a width of potential metastasis of lung cancer can
unlock new therapeutic strategies to prevent the formation of
metastasis. The following sections will concern less about why
lung cancer metastasize frequently in general, but rather focus
more on mechanisms that facilitate metastasis formation in
individual organs favored by lung metastasis. Although the
colonization of tumor cells in these organs follow a similar
pattern, they involve vastly different molecular pathways based
on their immediate surroundings (Figure 1).

Brain
Being one of the most protected organs in the body, the brain
is surprisingly prone to lung cancer metastasis. There
has been some advancement on decrypting the homing
mechanisms used by tumor cells. CD15 is a cell adhesion
molecule found overexpressed in metastatic NSCLC cells. Its
binding counterpart, E-selectin (CD62E), is also found
overexpressed in hCMEC/D3 human brain endothelial cells
through activation by TGF-a. This increases the chance for
metastatic NSCLC cells to bind to the brain endothelium,
which opens the gateway for tumor cell intrusion (60). The
effect of TGF-a can be dampened by EGFR specific tyrosine
kinase inhibitor (61), and is shown to be downregulated by Yin
Yang 1 (YY1), a potential therapeutic target (62). CD15-CD62E
interaction is exclusively found at adhesion sites of tumor cells
and brain endothelium while blocking this interaction
significantly reduces cancer cell’s ability to attach to the brain
endothelium (63). Another study suggests that metastasizing
lung cancer cells might secrete substances that damage
endothelial glycocalyx. The glycocalyx serves as a protective
covering of brain endothelium, which can have various
adhesive interactions with tumor cells (64). its degradation is
correlated with enhanced E-selectin-mediated adhesion (65).
FIGURE 1 | Non-small cell lung cancer (NSCLC) metastasis stages. Tumors cells gain mobility and intravasate into bloodstream, where they will travel to distant organs
and extravasate. Once in the target organ tissues, tumor cells adapt to their surroundings by resisting local immune attacks and cooperating with different cells.
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Many other cellular adhesion molecules (CAMs) have also been
identified as relevant to brain metastasis, such as ALCAM/
ALCAM and VLA-4/VCAM-1 interactions identified in a 2014
study (66).

Regardless of the strategy lung tumor cells use to adhere to
brain endothelium, it now must breach it in order to get access to
brain tissue. The endothelium, being part of the blood-brain-
barrier (BBB), relies on tight junctions (TJs) between endothelial
cells to provide an isolated environment for the brain. Occludin,
claudins, and junctional adhesion molecules (JAMs) are all
proteins present in TJs (67). Among those proteins, claudin–5
(CLDN5) is marked as pivotal in regulating BBB permeability.
Reinforced expression of CLDN5 enhances BBB integrity and
hinders invasion of lung adenocarcinoma A549 cells (68). Some
mechanisms have been proposed to explain the downregulation
of CLDN5 expression frequently found associated with lung
cancer brain metastasis. One study identifies CLDN5 as a
downstream target of ETS-related gene (ERG). ERG normally
reduces endothelial permeability, but its function can be
repressed by inflammatory signals, which could be secreted
into circulation by tumors. ERG repression results in CLDN5
downregulation, increasing BBB permeability (69). One such
inflammatory signal has been identified. Inflammatory cytokine
TNF-a acts through NFkB signaling to downregulate CLDN5
expression (70). A multitude of natural product extracts, such as
terpenes and phenolic compounds, were shown to be TNF-a
inhibitors (71). Asiaticoside, a triterpenoid, enhances endothelial
integrity of blood vessels, reducing their permeability through
inhibiting TNF-a (72) (Figure 2).

After tumor cells breach the BBB, they enter the brain
parenchyma densely packed with astrocytes and patrolled by
microglia. Similar to their tactics used in invading lung tissues,
tumor cells either evade or cooperate with local cell types.
Astrocytes, glial cells specialized in nourishing neurons and
maintaining ECM, secrete plasmin which suppresses brain
metastasis. Tumors cells from metastatic lung cancers are
found to express high levels of neuroserpins and serpin b2,
Frontiers in Oncology | www.frontiersin.org 6
which neutralizes death paracrine signals sent out by astrocytes
(73). Astrocytes aid metastasis formation mainly through two
methods: Substance secretion and gap junction interactions (74).
A range of molecules secreted by reactive astrocytes (RAs) has
been shown to correlate with lung cancer brain metastasis
progression. Hyaluronic acid is found to promote lung cancer
cell growth through the activation of protein kinase B (AKT)/
mitogen-activated protein kinase (MAPK) (75). Endothelin-1
(ET-1) also activates the AKT/MAPK pathway. Its expression is
enhanced in astrocytes by the upregulation of IL-6 and IL-8
expression in tumor cells (76). Polydatin(PD) inhibits MAPK,
PI3K/AKT, and NF-kB pathways, and can also inhibit certain
pro-inflammatory cytokines, such as TNF-a, IL-4, IL-1b, and
IL-8 (77). Benzyl sulforaphane and Macrolactin F show potential
in suppressing AKT/MAPK pathway in the liver and the bone,
respectively (78, 79). Previous research also confirms that RAs
produce IL-6, tumor necrosis factor-a (TNF-a), and IL-1b, all of
which promote lung cancer brain metastasis (80). In another
study, RAs secrete interferon-a (IFN-a) and tumor necrosis
factor (TNF), which activates the STAT1 and NF-kB pathways in
lung cancer cells residing in the brain (81). Astrocytes can also
directly alter its ECM under influence of cancer cells. MMP-2
and MMP-9 secreted by astrocytes are found responsible for
facilitating lung and breast cancer brain metastasis progression,
presumably by making the EMC more favorable for tumor cells
(82). Gap junctions formed between RAs and tumor cells also
facilitates tumor growth. Survival genes such as GSTA5, BCL2L1,
and TWIST1 are found to be upregulated in lung tumor cells that
have formed gap junctions with astrocytes. The upregulation of
these genes increases the chance of tumor cell survival and grants
resistance to chemotherapy (83). The mechanism behind such
regulation via gap junction is revealed in a 2016 study, which
discovered that small RNA (sRNA) is tranferred between cells
through gap junctions, marking sRNA as possible agents released
by astrocytes that upregulates survival genes in tumor cells (84).

Similar to astrocytes, microglia, immune cells found
exclusively in the central nervous system, are also capable of
FIGURE 2 | Blood–brain barrier (BBB) penetration. Lung cancer cells must breach BBB in order to access the brain parenchyma. The three general steps shown in
this figure are glycocalyx degradation, epithelial adhesion, and tight junction downregulation.
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both tumorigenic and cytotoxic effects. Microglia can be broadly
divided into pro-inflammatory and anti-inflammatory subtypes.
Proinflammatory microglia suppress metastasis formation, while
its counterpart increases metastatic tumor burden (85).
Lipopolysaccharide (LPS)-activated microglia are cytotoxic to
lung cancer cells by inducing apoptosis in them (86). Its
activation is also correlated with increased production of
proinflammatory cytokines (87). Cancer cells counteract the
threat posed by microglia by suppressing its pro-inflamotory
properties. Studies show that Wnt pathways are central to the
regulation of microglial functions. Some Wnt pathways were
once considered proinflammatory and thus unfavored for tumor
growth. A 2011 study suggests that Wnt-3A stimulation triggers
IL-6, IL-12, and tumor necrosis factor a production in microglia,
which are all strong proinflammatory factors (88). However,
multiple subsequent studies reach differing conclusions. Wnt-3A
pathway is found to trigger the induction of M2 phenotype in
microglia, which are anti-inflammatory and favor tumorigenesis
(89). It is recognized as an oncogene, and its activation is
correlated with Wnt-catenin pathway. Knocking down Wnt-1
and Wnt-3A suppresses tumor proliferation (90). Other than
Wnt-3A, Wnt-5A has also been shown to correlate with
increased presence of TAMs, though the effect of WNT-5A
seems to be also pro-inflammatory (91). This complication of
Wnt-3A and Wnt-5A effects can be potentially explained by a
2013 study. While Wnt-3A and WNT-5A alone upregulate
proinflammatory responses, the combination of Wnts and LPS
serves anti-inflammatory functions (92). Tumor cells likely
utilize this characteristic to favor their own growth by
upregulating multiple Wnt pathways, amplifying the anti-
inflammatory and tumorigenic effects of microglia.
Furthermore, Wnt/b-catenin signaling pathway, which has
been discussed earlier in section 1, play a pivotal role in
microglia function in brain metastasis. Through Gastrodin
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mediation, Wnt/b-catenin signaling pathway can downregulate
multiple inflammatory factors such as TNF-a (93). Given that
Wnt/b-catenin interaction is highly pronounced in lung cancer
cells, lung cancer cells might gain an advantage by using this
interaction to cooperate with microglia, resulting in higher
metastatic potential in the brain. Secreted frizzled-related
proteins (Sfrps) demonstrate differential inhibition of Wnt-3a
activity (94). A study in 2011 found that SFRP-1 and the SFRP-
like molecule V3Nter can inhibit b-catenin-activated tumor cells
growth in vivo, though another study argues that sFRPs have
dual effects on Wnt/b-catenin signaling depending on various
factors (95, 96). With more research currently underway, much
more will be uncovered about microglia’s role in lung cancer
brain metastasis in the future (Figure 3).

Bone
At 39%, bone metastasis is the most frequent site of metastasis of
adenocarcinoma. The presence of bone metastasis also signals
worse prognosis compared to other metastasis sites (59).
Multiple homing mechanisms have been revealed in lung
cancer that metastasizes to the bone. In breast and prostate
cancers, stromal cell-derived factor 1 (SDF-1) and its receptor
CXCR4 are responsible for attracting tumor cells to the bone
marrow (97). This coincides with a study recently published in
2019, which observed increased expression of CXCR4 in lung
carcinoma (98). It is not impossible that the overexpression of
CXCR4 in lung cancer cells enabled better attachment of tumor
cells to the bone. Kisspeptin-10 (KP-10) can inhibit tumor cell
invasion and EMT induced by SDF-1 through down-regulating
CXCR-4 expression (99). Recent studies also reveal that certain
CXCR4-targeting nanobodies inhibit CXCR4-related functions,
which may yet unravel another treatment option (100). With
striking resemblance to the aforementioned CXCR4/SDF-1
homing mechanism, CXCL10/CXCR3 also emerge as a
FIGURE 3 | Astrocyte and microglia. To survive and colonize the brain, lung cancer cells must interact with surrounding glial cells such as astrocytes and microglia.
Through various mechanisms, cancer cells are able to withstand the threats and cooperate with glial cells.
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potential homing mechanism used by lung adenocarcinoma. A
2012 study demonstrates that CXCL10 attracts CXCR3-
expressing tumor cells to the bone, though omitting its
connection with lung cancer (101). A French team discovered
that a CXCL10/CXCR3-A autocrine loop exists in invasive
mucinous adenocarcinoma (IMA), in which CXCL10
upregulates CXCR3-A (102). It is thus possible that CXCL10
in the bone stroma may upregulate CXCR3 production in lung
cancer cells, which in turn became more attracted to the bone.
One confirmed homing mechani sm used by lung
adenocarcinoma cells is discoidin domain receptor 1 (DDR1).
DDR1 is a cell surface receptor that can bind to several types of
collagens and enhance cell adhesion. It was observed back in
2010 that DDR1 upregulation is a frequent occurrence in
invasive lung adenocarcinoma. Its upregulation is correlated
with increased tumor invasiveness and worse prognosis,
although the precise mechanisms were elusive (103). The
upregulation of DDR1 is found to be inducible by collagen I,
which is a major component of osteons in the bone (104). Lung
cancer cells may express DDR1 when induced by collagen I in the
bone, which completes its homing process. Disrupting DDR1
pathway significantly reduced tumor-bone engagement,
lowering cancer cell’s potential to metastasize to the bones
(105), and multiple means of doing so has been discovered.
Tetrahydroisoquinoline-7-carboxamide based DDR1 inhibitor
7ae developed to treat acute lung injury (ALI) bind tightly to
DDR1, reducing its kinase activity (106). Other studies reveal
that celastrol downregulates E2F1 (107), while E2F1 silencing
downregulates the expression of DDR1 (108). However, these
studies are primarily concerned with osteosarcomas and
hepatocellular carcinoma, therefore their existence in lung
cancer bone metastasis awaits further validation.

Maintenance of bone tissues requires cooperation between
osteoblasts (OBs) and osteoclasts (OCs). Cancer cells often hijack
either OB or OC, forming osteoblastic or osteolytic lesions in
bone tissues. Since osteoblastic lesions are infrequent in NSCLC
bone metastasis, it will not be discussed in this article. In
osteoclastic bone metastasis, which is most common in
NSCLC, a “tumor-OC cooperation” is found. Tumor cells
secrete pro-osteoclastogenic substances, while osteolysis
generates substances that benefit tumor growth (109). One
initiator of such a vicious circle is RANK ligand (RANKL).
RANKL has been demonstrated to be essential to osteolytic
activities induced by NSCLC cells. The inhibition of RANKL
reduced osteoclastogenesis stimulated by NSCLC cells, and
metastasis progression is slowed, possibly due to fewer growth
factors yielded from osteolysis (110). A 2018 study confirms this
discovery using mouse models. RANKL expression is found in
NSCLC in primary lung cancer, and it is correlated with
enhanced tumor growth (111). It is thus possible that NSCLC
tumor cells present in the bones express RANKL, which enables
osteolytic activities. With such a critical role in bone metastasis
formation, RANKL is by far one of the most accurate predictors
of bone response in patients with bone metastasis (112). Multiple
factors that are associated with RANKL expression in lung tumor
cells have also been identified. Thrombospondin (TSP)-2
Frontiers in Oncology | www.frontiersin.org 8
knockdown is correlated with the inhibition of osteolytic
metastasis of lung cancer. It is proposed that TSP-2 enhances
osteoclastogenesis through RANKL dependent pathways (113).
RANKL can also upregulate Basigin-2, which induces MMPs and
VEGF expression, contributing to lung cancer bone metastasis
through osteoclastogenesis (114). Extensive research has yielded
numerous treatments that target RANKL, most of which are
conducted quite recently. Estrogens and androgens are shown to
inhibit OB-driven osteoclastogenesis (115). A myriad of drugs,
such as Baricitinib, Matrine, and Sciadopitysin all suppress
RANKL-mediated osteoclastogenesis (116–118).

With extensive osteolysis underway, a range of tumor trophic
substances will be released, one of which being transforming
growth factor beta (TGFb). TGFb is dysregulated in malignant
cells, including lung cancer, and upregulation of TGFb in the
ECM of lung cancer promotes NSCLC progression and invasion
(119). Not only does TGFb promote tumor cell proliferation, it
also contributes to the vicious cycle by encouraging osteolysis.
TGFb upregulates Gli2, which in turn promotes osteolysis
through increased secretion of osteolytic factors such as
parathyroid hormone-related protein (PTHrP) (120). In
osteoclastic bone metastasis, micro-RNAs (miRNAs) also play
an important role, acting as key regulators in bone metastasis
progression. Most miRNAs discovered are found to be
inhibitory, and very few are shown to be pro-metastasis. One
such miRNA is miR-326, which is found to correlate strongly
with tumor burden in lung cancer bone metastasis (121). Serum
microRNA-139-5p expression in mesenchymal stem cells
(MSCs), progenitors of OBs, is sharply reduced when exposed
to lung cancer cells A549 and L9981. The downregulation of
microRNA-139-5p is correlated to increased osteolysis (122).
miR-33a, which suppresses bone metastasis, is downregulated in
lung cancer cells. Decreased miR-33a expression is correlated
with increased PTHrP expression and RANKL production, both
of which contribute to osteolysis (123). In conclusion, NSCLC
cells manipulate OCs through secretion of pro-osteoclastogenesis
substances and regulation of various miRNAs, allowing it to
form bone metastasis.

Besides osteoclasts, adipocytes and macrophages also
participate in bone metastasis formation. Adipocytes store fat,
which can be used by lung cancer cells as an energy source.
Compared to non-malignant lung cells, lung cancer cell A549 has
twenty times more lipid droplets in its cytoplasm, suggesting that
it is capable of using lipid as an alternative energy source to
glucose (124). When fatty acid production in vivo or in vitro is
inhibited, NSCLC growth is also hindered, suggesting cancer
cell’s reliance on fatty acid synthesized and stored in adipocytes
(125). Cancer-associated adipocytes (CAAs) release fatty acids
through lipolysis, while cancer cells can harvest the energy in
them using b-oxidation (126). Moreover, CAAs can produce
leptin, which has been demonstrated to promote EMT changes
in A549 lung cancer cells, contributing to tumor cell mobility and
consequently their invasiveness in the bone (127). Macrophages
are also correlated with bone metastasis. A reduction in the
number of macrophages is accompanied by the inhibition of
bone metastasis (128). Rac2, a small GTPase, controls M1 to M2
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differentiation in macrophages, which suppresses inflammatory
responses (129). IL-13-induced phosphorylation of STAT6 has
also been identified as a major pathway leading to macrophage
M2 polarization (130). Furthermore, bone marrow macrophages
(BMMs) are the major source of cathepsin K (CTSK), which
promotes tumor progression in bones (131). Although
substantial progress is made regarding the roles of adipocytes
and macrophages in bone metastasis, very few researches have
explored their interactions with lung cancer cells in particular.
That being said, more effort should be invested in clarifying the
connections between adipocytes, macrophages, and invading
lung cancer cells. In essence, lung cancer bone metastasis
involves a unique homing mechanism, a osteoclastic invasion,
and diverse tumor-bone interactions.

Liver
Compared to NSCLC metastasis in the brain and the bone,
metastasis in the liver is less frequent, but still at a high
occurrence. It is estimated that 16.7% of metastasized NSCLC
patients develop liver metastasis (132). With an average median
survival time of 4 months, liver metastasis in NSCLC confers a
worse prognosis than lung, brain, and bone metastasis according
to a recent study (133). NSCLC liver metastasis often predicts
poor progression-free survival with treatments underway,
including Nivolumab (134) and erlotinib targeted therapy (135).

When tumor cells enter the liver through the hepatic artery or
portal vein, they will encounter the sinusoid, which endothelium
is composed of liver sinusoidal endothelial cells (LSECs). LSECs
have dual roles in metastasis formation. When tumor cells
obstruct the sinusoid, inflammatory response will be triggered
by LSECs, leading to production of various substances inhibiting
metastasis (136). Among these substances is TNF-a, capable of
inducing apoptosis in tumor cells. Lung cancer cells, however,
often express phenotypes that resist the effect of TNF-a. A study
dating back to 2000 suggests that NF-kB activation increases
lung cancer cells’ resistance to TNF-a (137). Cylindromatosis
(CYLD) is considered to positively correlate with the apoptotic
effect of TNF-a. Its expression in lung cancer cells is low,
suggesting that lung cancer cells may downregulate CYLD in
order to prevent TNF-a induced apoptosis (138). The effect of
TNF-a can only be realized when it binds to TNF-a receptor
(TNFR1), which contains TNFR1 promoter -223/-29 in lung
cancer cells. The downregulation of TNFR1 is associated with
decreased effectiveness of TNF-a, pointing to a potential
mechanism lung cancer cells may use to evade TNF-a (139).
Tumor cells may even benefit from exposure to TNF-a. One
study concluded that through the upregulation of MMP-13,
TNF-a promotes tumor growth in lung cancer cells (140).
Significant progress is made to inhibit cancer growth through
manipulating TNF-a expression. Highly N-acetylated COS
(NACOS) inhibits TNF-alpha-induced E-selectin expression in
ECs via the JNK/NF-kB pathways, potentially attenuates tumor
cell adhesion with ECs (141). A research conducted in 2013
proposed that Acacetin can also inhibit TNF-a-induced E-
selectin expression, as well as the activation of NF-kB by TNF-
a (142). ZLJ-6 inhibits a range of adhesion molecules including
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E-selectin, ICAM-1, and VCAM-1, and, although it was once
believed that the COX/5-LOX pathway underlies its effect, was
found to be independent of this pathway and is rather mediated
by NF-kB (143).

Other than TNF- a, LSECs also produce IFN-g. IFN-g
induces extracellular trap cell death (ETosis) in A549 lung
cancer cells. Reactive oxygen species (ROS), another
substance LSECs secrete, regulates IFN-g-induced mimic
ETosis in lung cancer cells (144). This mechanism, however,
has been found to be defective in many lung cancer cells.
PC14PE6/AS2 human lung cancer cells were shown to be
unsusceptible to IFN-g-induced autophagy (145). PC14PE6/
AS2 human lung adenocarcinoma cells are presented with
reduced responsiveness in IFN-g signaling, possibly due to
natural PTEN loss. PTEN silenced A549 cells also demonstrate
reduced susceptibility to IFN-g through ROS/SHP2 signaling
(146). It is also suggested that IFN-g alone may not be able to
inhibit lung cancer proliferation, as only PD-L1+ lung
carcinomas are affected by IFN-g. Thus PDL1- lung cancer
cells may be immune to IFN-g induced ETosis (147). Possible
mechanisms have been proposed. IL-10 and IL-10R are found to
be overexpressed in cells surrounding NSCLC cells in the lungs,
and confer resistance to IFN-g through regulation of the PD1/
PD-L1 pathway, although such phenomenon has not been
studied in the liver (148). LSECs contribute to the formation of
liver metastasis by expressing various adhesion molecules. Early
studies have shown that the presence of tumor cells in hepatic
circulation can trigger a rapid induction of E-selectin expression
in LSECs, which could serve as adhesive molecules that facilitate
tumor cell colonization (149). Blocking E-selectin expression
causes a 97% reduction in liver metastasis compared to the
control group (150). Tumor growth is also suppressed when E-
selectin expression in LSECs is inhibited through the prevention
of angiogenesis, suggesting E-selectin’s importance in metastasis
progression in the liver (151). Vascular cell adhesion molecule-1
(VCAM-1) is also found expressed in LSECs, which participates
in tumor-stromal interactions (152). Downregulation of VCAM-
1 is correlated with suppressed lung cancer cell growth (153),
while VCAM-1 knockdown reduces A549 cells’ ability to
migrate (154).

Furthermore, since LSECs are fenestrated, tumor cells can
directly interact with the basement membrane underneath (155).
One type of the receptors present on the surface of basement
membrane matrix is integrin receptors (156). Integrins av, a5,
b1, b3, and b5 are shown to promote survival and metastasis of
lung cancer cells through either providing mechanical
attachment to ECM, or the generation of various cell signals
stimulating metastasis formation (157). Suppressing metastasis-
related integrins such as integrin av and integrin b3 in lung
cancer inhibits motility of tumor cells (158). Interestingly, nitric
oxide (NO), which is released by LSECs, is demonstrated to
increase the expression of integrin av and b1 in three types of
NSCLC cell lines. Focal adhesion kinase, active RhoA, and active
cell division control 42, all of which are migration associated
proteins, are downstream targets of these two integrins (159).
Integrin b4 is also found overexpressed in NSCLC cells, which
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increases venous invasion and correlates with a poor prognosis
(160). Inhibiting integrin expression may serve as a new
therapeutic strategy to suppress liver metastasis. E3 ubiquitin
ligase Smurf1, for example, was demonstrated to be an effective
inhibitor of integrin expression (161).

After tumor cells extravasate from sinusoid, they will
encounter hepatocytes, the main cells of the liver. There has
been evidence pointing to the presence of tumor cell-hepatocytes
interactions. Claudin-2 level is elevated in breast cancer liver
metastasis, and it is responsible for adhering breast cancer cells to
hepatocytes (162). Although such interaction is not yet studied
between lung adenocarcinoma cells and hepatocytes, there are
clues that suggest the existence of this interaction. Claudin-2 is
highly expressed in lung adenocarcinoma and is linked to
increased tumor cell proliferation (163), and another study in
the same year also concluded that decreased claudin-2 hinders
lung carcinoma development (164). Therefore, it is not
impossible that lung cancer cells may employ a similar
technique to better adhere to hepatocytes. Hepatocytes also
alter E-cadherin expression in cancer cells. E-cadherin
expression is critical in EMT and EMrT, which are essential in
metastatic processes. p0071/E-cadherin interaction in lung
cancer cells is shown to increase their metastatic potential
(165). The downregulation of E-cadherin in A549 cells induces
cancer stem cell properties, which are necessary for metastasis.
The upregulation of E-cadherin, in contrast, causes cancer stem
cells to diminish (166). Therefore, when lung cancer stem cells
reach liver tissues, they must upregulate E-cadherin levels to
perform EMrT, which trades their stem cell features with
epithelial features, invasiveness. Hepatocytes have the ability to
upregulate E-cadherin expression in tumor cells in prostate
cancer liver metastasis, which seemed to be regulated by
lowering epidermal growth factor receptor (EGFR) signaling
(167). Since EGFR mutation is relatively common in lung
cancer, this mechanism found between prostate cancer cells
and hepatocyte may also be used by lung cancer cells, although
currently it is not thoroughly studied.

New Treatment Strategy and Molecular
Mechanisms of NSCLC Metastasis
In recent years, many new drugs have been put into clinical trials
for the treatment of metastatic NSCLC to verify their toxicity and
efficacy to enrich the treatment first-line options for patients.
Several carcinogenic drivers including EGFR have been
identified and studied. The development of new therapies,
including targeted therapy and immunotherapy, has shown
encouraging results in prolonging the survival of patients with
NSCLC. For example, inhibitors targeting the PD-1/PD-L1
immune checkpoint have been developed as an effective
immunotherapy for metastatic NSCLC. In NSCLC cells, the
binding of PD-1 and PD-L1 promotes T-cell tolerance and
escape from host immunity. Pembrolizumab, nivolumab, and
cemiplimab are anti-PD-1 inhibitors, and atezolizumab,
durvalumab, and avelumab are anti-PD-L1 inhibitors (168).
PD-1 inhibitors offer enhanced survival benefits and fewer
adverse events than PD-L1 inhibitors (169). As mentioned
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above, any malignant transformation of EGFR may lead to the
spread of lung cancer (170), so EGFR as a target has become the
main research scheme to inhibit the metastasis of NSCLC. For
example, from 2003 to 2019, first-generation drugs (erlotinib,
gefitinib), second-generation drugs (afatinib, dacomitinib),
third-generation drugs (osimertinib, rociletinib), combination
therapy (docetaxel+pemetrexed), and fourth-generation drugs
(EAI001 and EAI045) were successively developed (171).
Although many drugs have been proved to be effective in
clinical trials, some patients will have drug resistance and
complex toxicity after a period of treatment. Therefore, it is
still necessary to further study the molecular mechanism of
NSCLC metastasis and explore potential biomarkers for the
development of new therapeutic strategies

HER2 overexpression has been observed in 3%–38% of
NSCLC, while strong HER2 protein overexpression is found in
2.5% of NSCLC (172). Leeza Shrestha et al., designed a
peptidomimetic(compound 18) that binds to domain IV of the
HER2 receptor, disrupts the homo/heterodimerization of HER2,
and inhibits downstream signaling for cellular proliferation and
growth, hence, can be used as a potential therapeutic agent for
the treatment of NSCLC (173). A study from China suggests that
traditional Chinese herbal medicine may play a role in
antimetastasis of malignant tumors. Chinese herbal medicine
Wenxia Changfu formula reverses cell adhesion-mediated drug
resistance in lung cancer. Xiaoai Jiedu recipe can inactivate p38
MAPK signaling pathway in NSCLC cells to inhibit its
proliferation and metastasis (174). Recent studies have found
that CERS6 has important roles in lung cancer migration and
metastasis, which proves that the miR-101-CERS6 pathway can
be targeted, with potential benefits provided for affected
patients (175). High expression of monoamine oxidase A
(MAOA) in NSCLC is related to EMT and the development of
clinicopathological features of NSCLC (176). The potential
MAOA inhibitor G11 may inhibit paclitaxel‐resistant
NSCLC metastasis and growth by impacting on p‐AKT, VEGF,
HIF1a, and MMP2 or MMP9. These findings have established
MAOA as a promising therapeutic target in drug-resistant
NSCLC and provide a feasible method of MAOA-targeted
combined therapeutics (177). The combination of chemical
and mechanical signals should also be considered in the new
direction of drug development. Baicalein inhibited the formation
of protrusive structures and leader cells by the combined effects
that decreased both ezrin S-nitrosylation (chemical signaling)
and ezrin tension transduction (mechanical signaling), and
hampered NSCLC invasion and metastasis. Future sudy and
improved clinical prospects for patients with NSCLC will depend
on continued focus on combination of basic discovery and
clinical translational research.
DISCUSSION AND PERSPECTIVE

As showcased in this review, a substantial amount of effort has
already been devoted to unraveling mechanisms behind
NSCLC’s high metastasis potency as well as the wide range of
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potential organs for colonization that make NSCLC stand out
from the majority of cancers. The chronological distribution of
the references indicates that discoveries in this field have been
made at an ever-increasing pace. Through studying the
numerous molecular pathways involved in NSCLC metastasis,
we are starting to find patterns that may one day fit into the
puzzle of NSCLC metastasis containment and management.
Many novel pathways identified to be essential to NSCLC
metastasis had yielded new treatment options, and many of
these targeted therapies were shown to be effective in restricting
NSCLC metastasis. Still, for every question clarified, dozens of
confusions arise. As demonstrated by this extensive review, lung
cancer metastasis is an extremely complicated event and is
further complicated by the type of lung cancer, metastatic
organ, and more. Here, we list out some inquiries and topics
that may be worth further investigation, including the limitations
and unsolved enigmas of current research. Advances made in
these regards could be critical to our current knowledge base of
NSCLC metastasis.

• In many organs studied for cancer metastasis, such as the
bone, very few researches studied lung cancer metastasis in
these organs. As a result, extrapolation might be frequently
used in an attempt to apply progress in other cancer types to
NSCLC. These inferences are usually made by finding
similarities between the discussed cancer types and lung
cancer, and then suggest that lung cancer could utilize a
similar mechanism. These inferences, being extrapolations,
have the factor of conjecture. In order to clarify whether these
suggestions are valid in NLCSC, we encourage more studies to
be done to either validate or dismiss the existence of these
mechanisms.

• Cancer progression can be viewed as a failure of the immune
system to identify and eradicate cancer cells. Thus, many
immune cells are associated with cancer, some actively
involved in cancer invasion and metastasis. Each part of the
human body has a unique blend of different immune cells,
such as BMM in the bone and microglia in the brain. Most of
the works currently available explain how cancer cells evade a
certain immune cell’s immune response. Few works, however,
studied whether one mechanism cancer cell used to fend off a
certain type of immune cell might be involved in another
interaction between cancer cells and a different type of
immune cell. Since there are plenty of overlaps between the
molecules secreted by or the signal pathways involved in
Frontiers in Oncology | www.frontiersin.org 11
different immune cells, it may be worth the effort to identify
these overlaps to discover treatment options that can
simultaneously attack multiple tumor cell-immune cell
interactions, yielding a better prognosis.

• When tumor cells arrive at a distant organ, it can
instantaneously spawn a new metastasis, but it can also
enter a period of dormancy and become activated at a later
time. The latter have been first discovered in the bone
marrow, but it is now evident that many organs including
the liver can house dormant tumor cells. These dormant cells
can survive chemotherapy since it is not hyper-proliferating
nor over metabolically active, thus they may spawn new
metastasis even though all visible tumors have been
eradicated. This mechanism has been extensively studied in
the bone, but fewer studies are devoted to other organs such
as the liver, and even few of them use NSCLC as their cancer
type. A better understanding of this mechanism can be
promising to the invention of therapies that prevent cancer
recurrence.

Looking at only the tip of an iceberg of NSCLC metastasis,
there is obviously still a quite formidable amount of knowledge
to be discovered. However, with the progress made with high
pace fueled by new generations of biotechnology, preventing
NSCLC metastasis, or even curing NSCLC, may became reality
in the future not far away.
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