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Cancer remains one of the leading causes of death worldwide, despite significant

advances in cancer research and improvements in anticancer therapies. One of the

major obstacles to curing cancer is the difficulty of achieving the complete annihilation

of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic

factors or factors acquired during the evolution of the tumor but may also be caused

by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular

process in which intracellular components, such as damaged organelles, aggregated

or misfolded proteins and macromolecules, are degraded or recycled to maintain

cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a

key role in tumor initiation and progression. Depending on the cellular context and

microenvironmental conditions, autophagy acts as a double-edged sword, playing a

role in inducing apoptosis or promoting cell survival. In this review, we propose several

scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a

special focus on novel promising targets and therapeutic strategies based on autophagic

resistant cells is presented.
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INTRODUCTION

Autophagy is a conserved catabolic process that sequesters and degrades intracellular components
in double-membraned compartments known as autophagosomes, playing a key role in homeostasis
maintenance (1). The recycling capabilities of this process prevent the accumulation of damaged
proteins and organelles that can generate cell toxicity; therefore, autophagy functions as an internal
quality control system (2). Autophagy is tightly regulated and normally induced in response to
different intrinsic and extrinsic signals, such as starvation, growth factor deficiency, hypoxia,
and many other types of stress (3). In normal conditions, the functions of autophagy comprise
cell survival control to regulate homeostasis. However, in cancer cells, autophagy is frequently
deregulated in and becomes important in tumorigenesis (4). Moreover, autophagy plays a pivotal
role in some cancer hallmarks, including cell survival, cell death, deregulation of metabolism,
modulation of the immune response, epithelial–to-mesenchymal-transition (EMT) process, cancer
stem cell (CSC) promotion, and multidrug resistance (MDR) (Figure 1).

This paradoxical dual role in stimulating cell survival or promoting cell death is still under
investigation in cancer at clinical and molecular levels (5). Deciphering in which genetic
background and under which circumstances autophagy stimulates or eliminates cancer cells may
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FIGURE 1 | Roles of autophagy in cancer. Autophagy mechanisms are involved in several hallmarks in cancer cells. Autophagy can lead to cell survival or death,

depending on the presence, duration, and intensity of the stimulus in which it develops. In addition, autophagy can modulate the EMT phenotype after the adaptation

to hypoxia. Moreover, the metabolic switch of cancer cells into aerobic glycolysis (i.e., the Warburg effect) is sustained by autophagy activation, ensuring energetic

requirements, and metabolic homeostasis. On the other hand, the activation of autophagy process influences the suppression or activation of antitumor immune

response, depending on the stage, genetic, and microenvironmental conditions. For example, in response to chemotherapy, autophagy-competent cancer cells

attracted dendritic cells, and T lymphocytes to the tumor, activating the immune response. Moreover, autophagy activation maintains the CSC phenotype and

functions inside the tumor. Also, an upregulated autophagic activity are involved in cancer progression and metastasis. Furthermore, autophagic machinery triggered

by anticancer drugs may facilitate multiple drug resistance in cancer cells and tumor survival. All these processes depend on the cell type, genetic background, and

the microenvironment stimulus in the tumors.

facilitate the development of specific therapeutic strategies. Also,
many studies associate autophagy with drug resistance (6). In this
review, we discuss how the role of autophagy associated with
cell survival and drug resistance might determine an effective
therapeutic approach against, particularly aggressive tumors.

MECHANISMS OF AUTOPHAGY

While the molecular mechanisms that govern autophagy in
normal and cancer cells have not been thoroughly elucidated,
several pathways are involved in each case. It is known that the
central pathway governing autophagy is led by PI3K/AKT/mTOR
signaling (7). Strikingly, this pathway is one of the most altered
pathways in cancer (8, 9). The mammalian target of rapamycin
(mTOR) is a highly conserved serine/threonine kinase, part of
the mTOR complex 1 (mTORC1), in which different stimuli
converge, including autophagy-stimulating signals (nutrient or
growth factor deprivation, hypoxia, oxidative stress, or protein
aggregation) (10). The activation of mTOR by growth factors
exerts a negative effect on autophagy, inhibiting the autophagy

process (11, 12). The process of autophagy is divided into
five phases: initiation, phagophore nucleation, elongation and
autophagosome formation, autophagosome-lysosome fusion,
and cargo degradation, where autophagy-related genes (ATGs)
play an important role in the entire pathway (13). In the
initiation phase, mTORC1 is inactivated in response to these
autophagy signals, and consequently, the Unc-51-like kinase 1
(ULK1 or ATG1) complex, which consists of ULK1, ULK2,
ATG13, RB1-inducible coiled-coil protein 1 (RB1CC1 or FIP200)
and ATG101, is activated. This complex stimulates phagophore
nucleation, activating, by phosphorylation, the components
of class III phosphatidylinositol 3-kinase (class III PI3K or
PI3KC3) complex, which consists of vacuolar protein sorting
34 (VPS34), ATG14, activating molecule in Beclin-1-regulated
autophagy (AMBRA1), general vesicular transport factor (p115),
UV radiation resistance-associated gene protein (UVRAG or
p63) and Beclin-1, with the last protein acting as the scaffold. This
complex activates local phosphatidylinositol-3-phosphate (PI3P)
production at the endoplasmic reticulum (ER), specifically in an
ER structures named the omegasome (14). Then, PI3P associates
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with different members of the WD-repeat protein interacting
with phosphoinositides (WIPI) protein family (15). Bcl-2 is a
key control protein of autophagy that interacts with Beclin-
1 at the Bcl-2-homology 3 (BH3) domain to inhibit its pro-
autophagic activity. Bcl-2 reduces the interaction of Beclin-1 with
VPS34 and UVRAG (10). However, Beclin-1 has also autophagy-
independent functions; for example, it has been described to act
as a negative regulator in the execution of necroptosis (16).

Elongation of the phagophore is controlled by two ubiquitin-
like protein systems. First, ATG7 and ATG10 regulate the
synthesis of the ATG12-ATG5-ATG16L1 complex. WIPI
proteins, specifically WIPI2, bind ATG16L1 directly, anchoring
the ATG12-ATG5-ATG16L1 complex to the phagophore.
This complex enhances the second system, in which ATG4B,
ATG7, and ATG3 act coordinately to cleave the precursors of
protein light chain 3 (LC3)-like proteins and conjugate them to
phosphatidylethanolamine (PE) present in the membrane. Also,
γ-aminobutyric acid receptor-associated protein (GABARAP)
conjugates with PE and, as a result, is incorporated into
the rising autophagosome. LC3 and GABARAP give the
autophagosome the capability to attach autophagic substrates
targeted by selective autophagy receptors (SARs), such as
sequestosome-1 (p62/SQSTM1), before membrane sealing
and complete autophagosome formation (15, 17). Ultimately,
microtubule proteins facilitate autophagosome transport to the

lysosomes. SNARE proteins, including syntaxin 17 (STX17)
and vesicle-associated membrane protein 8 (VAMP8), facilitate
autophagosome-lysosome fusion. Autolysosomal contents
are degraded due to the acidic lysosomal hydrolases, and the
recovered nutrients are released back and recycled by the cell,
using them in new metabolic processes (10, 13, 18).

Besides, key oncogenes inhibit autophagy, such as AKT or
p21Cip1, while tumor suppressor genes activate it, such as PTEN,
p53, and TSC1/TSC2 (19). AMPK, a protein that maintains
metabolic homeostasis, is crucial for determining the destiny
of autophagy. AMPK induces autophagy by phosphorylation
of mTORC1, part of the mTOR pathway, and the autophagy-
related complexes ULK1 and PI3KC3. Also, AMPK regulates
autophagy indirectly through several transcription factors and
coactivators, such as DAP1, p300, TFE/MITF, and FOXO3 (20).
Proteins involved in the different phases of the autophagic
process are shown in Figure 2. In the following section, the roles
of autophagy in different scenarios will be discussed.

SELECTIVE AUTOPHAGY

Selective autophagy is that type of autophagy that is specifically
aimed at a specific cellular organelle. Selective autophagy is
committed to preserving intracellular homeostasis by eliminating
specific substrates in the autophagosome through recognition of

FIGURE 2 | Schematic representation of the autophagy process. The autophagy mechanism consists of five phases. In the initiation phase, mTORC1 is inactivated

due to autophagy-stimulating signals, liberating the repression of the ULK1 complex. During the nucleation phase, the ULK1 complex phosphorylates the PI3KC3

complex, which induces phagophore formation in the omegasome, through the production of PI3P and association with WIPI protein family members, commonly

WIPI2. In the elongation phase, two ubiquitin-like protein systems, ATG12-ATG5-ATG16L1 and ATG4B-ATG7-ATG3, mediate the activation of LC3 into LC3I, lipidation

with PE to form LC3II, and subsequent anchoring to the phagophore. GABARAP also conjugates with PE and attaches to the membrane. LC3 and GABARAP

mediate the sequestration of autophagic substrates marked with SARs, such as p62/SQSTM1, before phagophore closure and total autophagosome development.

During the fusion phase, STX17 and VAMP8, present in the autophagosome and lysosome, respectively, interact and stimulate autolysosome formation. Finally, in the

degradation phase, acidic lysosomal hydrolases degrade autophagic cargo, generating nutrients that are released to the cytoplasm and reused by the cell. ER,

endoplasmic reticulum.
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specific receptors. Contrary to the bulk degradation process of
unspecific autophagy, the objective of selective autophagy is to
maintain cell homeostasis by maintaining the number of integral
organelles, including mitochondria (mitophagy), ribosomes
(ribophagy), aggregated proteins (aggrephagy), peroxisomes
(pexophagy), lysosomes (lysophagy) or invading pathogens (21,
22). Many research findings related to selective autophagy
receptors (SARs) have demonstrated that autophagy can be
directed against a specific cargo. Examples of SARs, such as
p62/SQSTM1, NBR1, TOLLIP, BNIP3L/NIX, and Cue5, show
the mechanisms behind the formation of autophagosomes for
selective autophagy (23, 24).

The cargo receptor p62/SQSTM1 is one of most extensively
studied receptors and modulates selective autophagy due to its
mediation in the degradation of ubiquitinated material, such
as protein aggregates, mitochondria, peroxisomes, lysosomes,
or intracellular bacteria (22). For example, the binding of the
bacterial type III effector protein HopQ to vimentin provokes
the degradation of vimentin through p62/SQSTM1-dependent
selective autophagy (25).Moreover, it has been demonstrated that
constant p62 levels, due to autophagy defects, were enough to
alter NF-κB regulation and gene expression, thereby stimulating
tumor generation (26). Another selective cargo receptor is the
nuclear receptor coactivator 4 (NCOA4), which is involved in
selective autophagy of ferritin, called ferritinophagy, which is
activated during low levels of intracellular iron (27).

AUTOPHAGY-MEDIATED CELL DEATH

Although it was identified as an initial function of autophagy,
currently, autophagic cell death is a process that occurs less
frequently in cancer cells than protective autophagy. Autophagic
cell death is characterized by cytoplasmic vacuolization,
accumulation, and assembling of autophagosomes labeled by
LC3, and elimination of cell organelles via autolysosomes.
However, the criteria to differentiate autophagic cell death from
other types of cell death accompanied by autophagy are still
controversial (28, 29). Although several studies suggest that
an uncontrolled and nonspecific overactivation of autophagy
induces cell death, other studies emphasize that the selective
removal of autophagy substrates is a key factor in cell death
promotion (30, 31).

Autophagic cell death—described in mammalian
development, other less complex organisms, and cancer
cells—can be suppressed by pharmacological or genetic
inhibition or induced by specific cancer drugs (30, 32). As an
example, kaempferol, a flavonoid with anticancer properties,
was shown to induce autophagic cell death in gastric cancer
through IRE1/JNK/CHOP signaling pathway activation, and the
suppression of kaempferol-induced autophagy restores cancer
cell survival (33). RY10-4, an analog version of proto-apigenone,
promotes ACD by inactivation of the AKT/mTOR pathway
in the breast cancer cell line MCF-7, and the inhibition of
autophagy through genetic and chemical approaches extends
cancer cell viability (34). Another novel anticancer drug,
designated ABTL0812, which is already in preclinical trials,

induces ER stress-mediated cytotoxic autophagy by increasing
dihydroceramide levels in cancer cells of several models,
including lung and pancreatic cancer (35). In ovarian cancer
cells, activation of oncogenic H-Ras activates autophagy
mechanisms, upregulating BH3-only protein Noxa and Beclin-1
and triggering cell death. Silencing of ATG5, ATG7, Beclin-1, or
Noxa expression reduces autophagy and increases survival (36).

Autosis, considered a form of autophagic cell death, is
regulated by Na+, K+-ATPase in the presence of Tat-Beclin-
1 and Tat-vFLIP α2, Beclin-1-derived peptides, or starvation
(37). Recently, treatment with Tat-Beclin-1 and Tat-vFLIP-α2
peptides showed to induce autosis as a strategy to selectively
kill HIV-infected macrophage and resting memory CD4+

T cells, avoiding reactivation of virus (38, 39). Autosis is
characterized by a dependence of Na+, K+-ATPase pump, an
enhanced cell-substrate adherence, a dilated, fragmented, and
finally disappeared endoplasmic reticulum, and an initial nuclear
membrane convolution with a subsequent focal ballooning of
the perinuclear space (37). Autosis is not entirely regulated
by autophagy markers nor controlled by apoptotic and
necrotic markers, although autosis is induced with a high
level of autophagic activity (40). However, a recent study
demonstrated the interaction of Beclin-1 and Na+, K+-ATPase,
whose interaction and autotic death process increase during
pathological and physiological stress conditions, and decrease
by cardiac glycosides, inhibitors of Na+, K+-ATPase (41). Also,
autosis can be interrupted by knockout of the autophagy-
related genes ATG13 and ATG14 or by blocking treatments of
autophagosomal assembly (42).

AUTOPHAGY AND OTHER TYPES OF CELL
DEATH

Autophagy and Apoptosis
Apoptosis, a programmed cell death widely studied in cell
biology, is a highly controlled process that mediates the efficient
and orderly elimination of damaged cells. In the body, the
balance between apoptosis and proliferation is crucial to ensure
homeostasis (43). Apoptosis inducesmorphological changes such
as cell membrane asymmetry and blebbing, protein cleavage,
cell shrinkage, nuclear fragmentation, chromatin condensation,
chromosomal DNA fragmentation, and phagocytic recognition
(44, 45). At the molecular level, the adequate regulation
of apoptosis involves several signaling pathways that control
biological responses such as embryonic development, cell
renewal, and external factors (e.g., radiation, chemicals), which
produce DNA damage. As a result, a complete process of
apoptosis implicates the interactions of many proteins, signal
transducers, and signaling pathways (44). The balance between
anti- and pro-apoptotic proteins is essential to decide if the
apoptosis ultimately occurs. Evasion of apoptosis encourages
cancer initiation and tumor progression and facilitates the
emergence of resistant variants with great metastatic potential
(43, 45).

Many studies indicate that autophagy and apoptosis are
closely interconnected because of their regulation by effector
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proteins, pathways, and intracellular locations. For example,
autophagy boosts apoptosis by degrading a negative regulator
of the Fas (CD95/Apo-1) ligand, but it can also protect it
by modifying levels of the Bcl-2 family members. Besides,
autophagy is activated by several apoptotic stimuli, and both
occur after cellular stress (46). Thus, it is expected that
autophagy and apoptosis in certain circumstances cooperate in
cancer progression. However, the interplay of both processes is
complex due to the double-edged sword function of autophagy,
stimulating apoptosis, or cell survival (47). In most cases,
autophagy precedes apoptosis under stress conditions. For
example, low-stress conditions stimulate autophagy as a way
to cope and adapt to this scenario. However, if the stress
event crosses a threshold of time and/or intensity, apoptosis
is activated (48). Some proteins have a dual role in apoptosis
and autophagy. For example, Beclin-1 binds to Bcl-2, forming

a complex at normal conditions, resulting in the inhibition
of autophagy, without losing anti-apoptotic capacities of Bcl-2
(49) (Figure 3A). Bcl-2 is a mitochondrial membrane protein
belonging to the Bcl-2 family, which consists of∼25 proapoptotic
(e.g., Bax, Bak, and PUMA) and antiapoptotic (e.g., Bcl-2, Bcl-
XL, and MCL-1) protein family members (50). Bcl-2 promotes
anti-apoptotic functions through the interaction with Bax, which
repress the Mitochondrial Outer Membrane Permeabilization
(MOMP) (51), and the subsequent release of proteins, such
as cytochrome c (cyt-c), high-temperature requirement protein
A (HtrA2/Omi), and second mitochondria-derived activator of
caspase/direct inhibitor of apoptosis (IAP)-binding protein with
low pI (Smac/DIABLO) to the cytosol (52). In cancer cells
under starvation, C-Jun N-terminal protein kinase 1 (JNK1)
becomes activated and phosphorylates Bcl-2, disrupting the
Bcl-2/Beclin-1 complex and promoting autophagy due to the

FIGURE 3 | Mechanism of crosstalk between autophagy and apoptosis. (A) Under normal cellular conditions, Beclin-1 binds to Bcl-2, keeping autophagy and

apoptosis inactivated. (B) However, if the cell experiences low-level stress conditions (e.g., nutrient deprivation), JNK1 phosphorylates Bcl-2, disturbing Bcl-2/Beclin-1

union. As a result, isolated Beclin-1 activates the autophagic pathway. (C) However, if the stressful stimulus crosses a threshold of time, JNK1 promotes Bcl-2

hyperphosphorylation, inducing its dissociation with Bax and the subsequent activation of the intrinsic apoptotic pathway. In addition, c-FLIP, a suppressor of extrinsic

apoptosis, also inhibits autophagy through interaction with ATG3, reducing LC3 lipidation. Moreover, caspase activation mediates autophagy-related proteins, such as

Beclin-1 and ATG5. Additionally, the C-terminal fragment generated by caspase-mediated cleavage of Beclin-1 translocates to the mitochondrial membrane and

stimulates intrinsic apoptosis. Furthermore, ATG5, after cleavage by calpains, suppresses autophagy activity and induces apoptosis.
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activation of core autophagic components by isolated Beclin-1 as
a response for cell protection (47, 53) (Figure 3B). However, if
the starvation is prolonged, JNK1 induces hyperphosphorylation
of Bcl-2 that generates its dissociation with Bax and apoptosis
stimulation (54) (Figure 3C). Therefore, Bcl-2 and Beclin-1
interaction represent a significant mechanism for regulating the
switch between autophagy and apoptosis. As an example of other
members of Bcl-2 family, BNIP3 and NIX are also implicated
in the stimulation of autophagy, and specifically mitophagy, due
to a BH3 domain in their structure, apart from their role as
pro-apoptotic proteins (55, 56). The augmentation of reactive
oxygen species (ROS) production and the competition for Bcl-2
binding with Beclin-1, with consequent Beclin-1 liberation, are
strategies that BNIP3 and NIX can apply to induce autophagy
(56). Moreover, BNIP3 and NIX regulates mitophagy through
HIF-1α/BNIP3 signaling pathway, which promotes a decrease of
ROS production and plays a protective role during hypoxia (57–
59).

Beyond their autophagic functions, many autophagy-related
proteins have a pivotal role in apoptosis. For example, non-
conjugated forms of ATG5 and ATG12 induce apoptosis
under stress conditions. ATG12 directly binds to Bcl-2 family
members, including the antiapoptotic proteins Bcl-2 and
MCL-1, independent of its interaction with ATG5 or ATG3
(60). ATG5 is cleaved by calpains, suppressing its autophagy
activity (Figure 3C). Also, the N-terminal fragment of ATG5
translocates to mitochondria and induces the release of cyt-
c, leading to the activation of effector caspases and apoptosis
(61). Some studies indicate that overexpression of ATG5
sensitizes tumor cells to chemotherapy, and knockout of this
protein increases tumor cell resistance to chemotherapeutic
drugs (62, 63).

Additionally, some key apoptotic proteins also participate
in the regulation of autophagy. For example, FADD-like IL-
1β-converting enzyme-inhibitory protein (c-FLIP) is an anti-
apoptotic protein that suppresses extrinsic apoptosis (62).
Ligation of dead receptors, such as type 1 TNF receptor
(TNFR1), Fas, and TRAIL, at their extracellular domain generates
recruitment of specific procaspases (−8 and sometimes −10)
and adaptor proteins to the cytosolic domain, such as Fas-
associated death domain (FADD) and TNFR-associated death
domain (TRADD), forming amultiproteic structure called death-
inducing signaling complex (DISC) (64). Due to the death
effector domain (DED) present in its structure, c-FLIP interferes
with the interaction of dead receptors, and adaptor proteins
(50). Besides, FLIP suppress autophagy through blockage of LC3
lipidation by competitive interaction with ATG3 (Figure 3C). In
contrast, if the autophagic process is initiated, the FLIP andATG3
interaction is substantially reduced (65).

Autophagy usually becomes regulated due to cleavage of
essential proteins in the autophagic process by caspases (48).
Caspases (cysteinyl, aspartate-specific proteases) comprise a
family of cysteine proteases that mediate the molecular process of
apoptosis and participate actively in the initiation and execution
pathways (66). Caspases are crucial proteins in the apoptosis
process and are involved as apoptotic initiators (caspase-
2,−8,−9, and−10) and executors (caspase-3,−6, and−7) of

cell death (67). Essential autophagy proteins, such as Beclin-
1, ATG3, ATG5, and ATG7, are cleaved by caspase-3,−7,
and−8, destroying their autophagic function (68). Also, caspase-
mediated cleavage of Beclin-1 produces a C-terminal fragment
that translocates to mitochondria and boosts intrinsic apoptosis
(69, 70) (Figure 3C). However, although caspase cleavage of
ATG4, principally ATG4D by caspase-3 (71), induces cytotoxicity
through its movement to the mitochondria, this autophagy-
related protein also induces the autophagy pathway (29),
demonstrating a complex interaction with very fine regulation
determined by the levels of apoptotic and anti-apoptotic proteins
present in the cells.

Autophagy and Necroptosis
Necroptosis was discovered as a new form of strictly regulated
programmed cell death with characteristics of necrosis (72).
Escape from necroptosis via loss of RIPK3 expression is a feature
of some cancers. Moreover, downregulation of necroptosis
mediators such as RIPK3 and MLKL in tumors suggests an
escape mechanism from necroptosis in cancer (73). Necroptosis
is principally controlled by receptor-interacting protein kinase
1 (RIP1 or RIPK1), RIPK3, and mixed lineage kinase domain-
like pseudokinase (MLKL), and its activation is mediated by
death receptors, mainly TNFR1 (74). Death receptor binding
with its ligand, tumor necrosis factor α (TNFα), promotes
the recruitment of RIPK1, TRADD, a cellular inhibitor of
apoptosis protein 1 (cIAP1), cIAP2, TNFR-associated factor 2
(TRAF2), and TRAF5, forming pro-survival complex I. RIPK1,
which is polyubiquitinated in complex I, assembles complex
IIa after deubiquitination, formed by RIPK1, RIPK3, TRADD,
FADD, and caspase-8. Complex IIa mediates caspase-8 activation
and subsequent apoptosis. However, if caspase-8 is inhibited,
RIPK1 recruits RIPK3, forming complex IIb that, after their
phosphorylation, activates the necroptosis pathway through the
establishment of a necrosome (75). Then, RIPK3 phosphorylates
MLKL, promoting its oligomerization and translocation to the
plasma membrane, which boosts membrane permeabilization
due to phospholipid disturbance. This stimulation of membrane
permeability, resulting in cytokine and chemokine release, causes
an immune response that provokes inflammation and determines
the outcome of apoptosis or necroptosis (76).

Necroptosis and autophagy maintain a close and complex
interplay, considering that both processes can be activated
sequentially or at the same time, activating or suppressing one
with the other, and with the same or contrary purposes of
cell survival or death (77). Regularly, autophagy is activated
to restore levels of energy, saving cells that would otherwise
undergo necroptosis due to ATP deficiency (78). Besides,
autophagy is induced by necroptosis as a reaction to high
levels of reactive oxygen species (ROS) produced, eliminating
critically damaged cell structures, ensuring homeostasis, and
ultimately avoiding necroptotic cell death (79). Phosphorylation
of VSP34 and Beclin-1 by protein kinase D1 (PKD) and death-
associated protein kinase (DAPK), respectively, to stimulate
autophagosomal formation are two examples of autophagy
activation mechanisms against oxidative stress, with subsequent
necroptosis suppression (77). Another example is the induction
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of necroptosis signaling by poly(ADP-ribose) polymerase-1
(PARP-1) overactivation, which provokes ATP depletion and
consequent autophagy pathway activation through the LKB1-
AMPK-mTOR pathway to ensure cell survival (80). Therefore,
autophagy inhibition during low cell energy availability
could generate a metabolic crisis that promotes necroptosis
activation (78).

Several studies highlight the caspase-8/RIPK1 interaction
as crucial in the regulation of the autophagy pathway and
the interplay between autophagy, necrosis, and apoptosis (74).
For example, caspase-8 is triggered inside autophagosomal
membranes in some cases and acts as a platform and eliminates
inhibitors of apoptosis, promoting apoptosis (81). Also, activated
caspase-8 cleaves RIPK1, reinforcing apoptotic vs. necroptosis
signaling. However, in a MAP3K7 deletion context, autophagy
changes the death cell mode toward necroptosis, recruiting and
scaffolding RIPK1 via p62/SQSTM1 to the autophagosome. As
a result, the necrosome becomes more selectively and quickly
activated (82).

Moreover, necroptosis and autophagy can be activated in
parallel to boost cell death (78). For example, some investigations
with zVAD, a general caspase and apoptosis inhibitor, evidenced
a stimulation of necroptosis and autophagy by this peptide
after TNFα stimulation, characterized by the formation of
autophagosomal vacuoles (77). However, the cell death response
can be suppressed by downregulation of RIPK1, ATG7, or Beclin-
1 expression (83). Thus, these autophagic genes participate
actively in the control of necroptosis-mediated cell death.

Autophagy and Pyroptosis
Pyroptosis is a regulated cell death accompanied by a
proinflammatory response. Various microbial infections
and internal damage-associated signals, such as dysfunctional
mitochondria, induce the assembly of inflammasome, a
multiprotein complex that promotes the activation of
inflammatory caspases (-1,−4,−5, and−11), which mediate
the pyroptotic signaling pathway (84). These non-apoptotic
caspases play two important roles in pyroptosis activation. First,
inflammatory caspases activate the inflammatory cytokines
interleukin 1β (IL-1β) and IL-18 (75). Second, caspases activate
Gasdermin D (GSDMD), a pyroptotic protein that, after caspase-
mediated cleavage of its N-terminal fragment (GSDMD-N),
moves toward the inner plasmatic membrane by generating
porosity and permeabilization (85). It results in an uncontrolled
flow of ions and water, causing cell lysis, cell death, and
subsequent release of additional cytokines in the extracellular
microenvironment (86). Pyroptosis, contrary to apoptosis and
other types of cell death, is characterized by maintaining nuclear
integrity, without DNA fragmentation, but showing signs of
nuclear condensation and cell swelling (75, 85).

The autophagy mechanism plays an important role in the
suppression of pyroptosis by inactivation of the inflammasome
(87). To avoid the pyroptotic pathway, autophagy applies two
strategies. First, autophagy sequestrates inflammasome inducers
such as ROS, bacteria, and critical damaged mitochondria
that, after ubiquitination for recognition, are delivered to
autophagosomes for degradation (24). Second, autophagic

machinery recognizes overactivated components of the
inflammasome, especially NLR family pyrin domain-containing
protein 3 (NLRP3) and Absent InMelanoma 2 (AIM2), which are
specifically recognized by the autophagy receptor p62/SQSTM1,
transported and destroyed via the autophagosome (88, 89). Both
strategies limit the activation and release of the proinflammatory
cytokines IL1β and IL-18, reducing inflammation and pyroptosis
signaling (87, 89).

Autophagy and Ferroptosis
Ferroptosis is a novel type of programmed cell death
characterized by iron and lipidic ROS/peroxides accumulation
(29). It has been proposed that cancer cells from different
tissues show different degrees of ferroptosis sensitivity. Even so,
some authors have shown that ferroptotic reagents can induce
cancer cell death that could be rescued by ferroptosis inhibitors
(90). This iron- and oxidative-mediated cell death is activated
through excessive levels of iron production by Fenton reaction
and through the loss of balance in ROS production and cell
glutathione (GSH)-dependent antioxidants, which protect cells
from lipid peroxidation (85). Glutathione peroxidase 4 (GPX4)
is a crucial enzyme for the elimination of lipid ROS continuously
generated by the cell. Its inhibition can induce ferroptosis even
with normal levels of the cofactor GSH (91). Besides, depletion
of GSH or its precursor, cysteine (Cys), constitutes an indirect
way to activate ferroptosis (92). Ferroptosis is characterized,
contrary to other regulated cell death mechanisms, by cell
membrane integrity, normal nucleus size, and dense small
mitochondria (76).

Recent studies have described a direct contribution of
autophagy in ferroptosis initiation, arguing the presence of a
specific autophagic cell death called ferritinophagy (91). After
Cys suppression, autophagy is activated to sequester and degrade
ferritin, a cell iron storage protein, by the selective autophagy
cargo receptor NCOA4, inducing ROS accumulation and the
consequent ferroptotic cell death. Inhibition of the expression
of autophagic proteins such as ATG5, ATG7, and NCOA4
reduces ferritin elimination, iron levels, lipid peroxidation,
and ferroptosis activation (93). Furthermore, autophagy
pathway activation by Tat-Beclin-1, a direct autophagic-
mechanism inducer, selectively promotes ferroptotic cell
death in tumor cells (94). Other studies demonstrate that
ferroptosis stimulation also induces autophagy, evidenced
by an intensification in the conversion of mature LC3 and
autolysosome assembly (95), demonstrating a close interplay
between both signaling mechanisms.

AUTOPHAGY AND EMT

The epithelial-to-mesenchymal transition (EMT) is a key process
involved in the genetic, biochemical, and phenotypic changes
that epithelial cells experience to convert them to mesenchymal
cells, a cellular type with greater versatility and plasticity (96).
Further, has been discovered that the reverse process, designated
mesenchymal-to-epithelial transition (MET), is also crucial in
the metastatic process. When a cell undergoes EMT, it loses
its basal polarity to acquire a fibroblast-like morphology (97).
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EMT is important to allow migratory properties to the cancer
cells, facilitating their entry into the bloodstream. Further, to
find a niche in any tissue, the cancer cells need to exit from
the circulation by experiencing the MET process to acquire
epithelial properties to nest in the tissues and establish metastatic
niches. The most important signals to stimulate EMT occur in
the microenvironment. For example, hypoxia, which appears in
certain parts of the tumor that are oxygen-deprived, generates
EMT through by the activation of HIF-1α, which in turn
stimulates inflammatory cytokines (e.g., TNFα or IL-6), which
contribute to EMT induction (98, 99).Moreover, hypoxia induces
high levels of ROS in cancer cells, which leads autophagy
stimulation (100, 101). Conversely, autophagy also increases the
EMT phenotype after the adaptation to hypoxia (102).

The effect of autophagy on EMT appears controversial and
depends on the type of stimulus, the cell genetic background,
and the cell type. Different cytokines or microenvironmental
conditions that stimulate EMT can provoke opposite reactions
in autophagy (97). For example, salvianolic acid B, an active
component of a Chinese natural product, suppresses EMT in a
renal fibrosis animal model by induction of autophagy, mediated
by silent information regulator 1 (Sirt1) (103). Imprinted
gene pleckstrin homology-like domain family A member 2
(PHLDA2) is upregulated in colorectal cancer, and its knockout
stimulates autophagy via the PI3K/AKT pathway, reducing cell
proliferation, invasion, migration, and EMT process (104). In
gastric cancer, forkhead box K1 (FOXK1) is a transcription factor
involved in cancer development. The inhibition of FOXK1 in
an acidic microenvironment triggers autophagy and reverses
EMT in gastric cancer cells (105). However, in bladder cancer
cells, it has been demonstrated that starvation conditions
promote autophagy, which boosts the EMT process through
TGF-β1/Smad3 signaling, enhancing cell invasion and migration
(106). Moreover, knockdown of the autophagy-related protein
DNA damage-regulated autophagy modulator 1 (DRAM1)
reduces the migrative and invasive capabilities of hepatoblastoma
cells, inactivating autophagy, and EMT (107).

AUTOPHAGY AND METABOLISM

It has been assumed that malignant cells have a hyperactivation
of metabolic activities that increase ROS levels. However, the
known Warburg effect described one century ago in cancer cells,
is based upon the use of glycolysis, even in the presence of oxygen,
to avoid the OXPHOS respiration through the mitochondria
and, consequently, high ROS accumulation (108, 109). The high
use of glycolysis generates huge concentrations of lactic acid
released in the microenvironment. It has been suggested that not
only the avoidance of ROS accumulation gives an extra survival
capacity to cancer cells but also the lactic acid acidifying the
microenvironment (110). For example, it has been described that
in melanoma cells, glucose-deprivation stress induces autophagic
cell death, but this is inhibited by the large concentrations of lactic
acid in the microenvironment (111).

Autophagy can be activated by ROS through diverse signaling
pathways, such as ROS-FOXO3-LC3/BNIP3, ROS-NRF2-P62,

ROS-HIF1-BNIP3/NIX, and ROS-TIGAR; as a result, autophagy
suppresses ROS-promoted damage by eliminating oxidized
substance, keeping cellular homeostasis (112, 113). In cancer,
autophagy also regulates tumor homeostasis, preventing the
accumulation of ROS generated by the hyperactivation of
metabolism (114). On the other hand, in principle, autophagy
counteracts the metabolic switch followed by malignant
transformation by eliminating deteriorated mitochondria to
sustain the maximum bioenergetic needs and preserve the
physiological, metabolic homeostasis. ROS has been described
to oxidize ATG4, resulting in the formation of autophagosomes
and autophagy (115). This process occurs in cadmium-mediated
cell proliferation, migration, and invasion in pulmonary
adenocarcinoma cells (116).

Moreover, ATG12 has been shown to control mitochondrial
biogenesis and metabolic pathways such as glycolysis,
tricarboxylic acid cycle, and β-oxidation in cancer cells (117).
Additionally, tyrosine kinase signaling by hepatocyte growth
factor (HGF) and its receptor tyrosine kinase (MET/HGFR)
is hyperactivated in numerous cancers, inducing proliferation,
invasion, and metastasis. In liver cancer, HGF/MET pathway
activation provokes the Warburg effect and glutaminolysis,
mediating cancer cell development. However, targeting MET
to suppress kinase activation triggers the autophagy pathway
to ensure cell growth and survival (118). In nasopharyngeal
carcinoma, the Epstein-Barr virus latent membrane protein 1
(LMP1) can promote tumor development by its transference
inside extracellular vesicles released by fibroblasts, boosting their
transformation into cancer-associated fibroblasts (CAFs) via the
NF-κB pathway. As a result, CAFs activate autophagy machinery
and mediate a metabolic switch from OXPHOS to glycolysis to
generate energy-rich nutrients for cancer cells, which enhance
their OXPHOS metabolic activity, in a process called the Reverse
Warburg Effect (RWE) (119).

AUTOPHAGY AND THE IMMUNE SYSTEM

Autophagy participates actively in the regulation of the immune
system, playing significant roles in the activation, differentiation,
and survival of immune cells such as T and B cells, monocytes,
macrophages, natural killer (NK)-cells, and dendritic cells.
Thereby, the autophagic process modulates innate and adaptative
immunity (120, 121). Also, autophagy controls the production
and release of cytokines, such as IL-1, IL-18, Type I IFN, and
TNF-α. Apart from immune cells, immune components, such
as cytokines and immunoglobulins, influence the activation and
suppression of autophagic processes. It has been described that
IL-1, IL-2, IL-6, IFN-γ, TNF-α, and TGF-β1 are stimulators
and IL-4, IL-10, and IL-13 are inhibitors of the autophagy
process (122). For example, natural secretion of IL-17 and IL-
22 by γδ T cells can be regulated by IL-1-dependent autophagy
activation (123). Moreover, in antigen donor cells, upon severe
stress exposure (which might be prolonged in time), cell death
will take place, causing autophagy-mediated antigen release and
stimulation of immune and inflammatory responses (124).
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Several studies indicate that a piece of active autophagic
machinery produces tumor-specific antigens in tumor cells
which, after their release due to antigen donor cells, boost
antitumor effects by enhancing antigen presentation and
subsequent T cell activation (120). Autophagy induces liberation
of more ATPs as a required signal to stimulate recruitment
of antigen-presenting cells (APCs) and tumor sensitivity to
cytotoxic T lymphocytes (124). Also, inhibition of autophagy
by targeted drugs or genetic deficiencies in autophagy-
related genes such as ATG5, ATG7, ATG12, Beclin-1, and
VPS34 reduces ATP release and hinders the recruitment
of required immune cells from boosting antitumor immune
responses (125). Furthermore, radiotherapy- or chemotherapy-
induced autophagy mediates the release of the mannose-6-
phosphate receptor (MPR) without its natural ligand from the
autophagosome and its movement back to the cell surface,
promoting T cell activation after granzyme B binding (126).
Autophagy has also been involved in antigen processing
for major histocompatibility complex class I (MHC-I) and
II (MHC-II) presentation, including cross-presentation. To
give an example, alpha-tocopheryloxyacetic acid (α-TEA),
derived from vitamin E, promotes autophagy-controlled cross-
presentation of tumor antigens in lung cancer cells to
the immune system, mainly antigen-specific cytotoxic T
lymphocytes (127).

Moreover, autophagy can suppress immune effector
mechanisms against tumors. For example, the hypoxia
condition triggers autophagy machinery in lung cancer
cells, which suppresses T cell antitumoral activity through
phosphorylation of STAT3 and subsequent HIF-1α signaling
pathway activation (128). Tumor susceptibility to the cytotoxic
effect and tumor cell lysis of T lymphocytes are restored through
hydroxychloroquine (HCQ)-mediated autophagy inhibition or
knockdown of ATG and Beclin-1 genes (125, 129). Moreover,
hypoxia-induced autophagy also interrupts the anticancer
killing activity of NK-cells by selective degradation of NK-
derived granzyme B, which can be reversed after autophagy
inhibition by targeting Beclin-1 (130, 131). On the other hand,
tumor-associated macrophages (TAMs) are key components
of the immune system and the main drivers of inflammatory
microenvironment inside tumor and cancer progression (132).
According to a recent study in metastatic ovarian cancer,
TAMs that specifically express T-cell immunoglobulin and
mucin domain-containing 4 (TIM4) showed high oxidative
phosphorylation and adapted mitophagy to mitigate oxidative
stress (133). Besides, genetic deficiency of autophagy protein
FIP200 ensued in Tim-4+ TAM loss via ROS-mediated
apoptosis increasing T cell-immunity and tumor inhibition in
vivo (133).

Therefore, autophagy activation can induce antitumor
immune responses but can also mediate inhibition of immune
cell activity against tumors to allow cancer cells to escape
from the immune system. Overall, autophagy has a context-
dependent function as an activator and inhibitor of the
immune response in cancer cells, which might be crucial in
current immunotherapies.

AUTOPHAGY AND NON-CODING RNAs

Non-coding RNAs (ncRNAs) comprise 98% of the human
genome, and their biological functions consist of chromatin
and epigenetic modifications, regulation of gene expression,
transcription, mRNA splicing, regulation of protein localization
and activity, and apoptosis, among others (134). These regulatory
RNAs are classified into two groups: long ncRNAs (lncRNAs),
larger than 200 nucleotides, and small ncRNAs, which mainly
comprise microRNAs (miRNAs), small interfering RNAs
(siRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), circular RNA (circRNAs), and piwi-interacting
RNAs (piRNAs) (135). The role of ncRNAs in cancer cells
has been associated with many physiological and pathological
processes, such as proliferation, differentiation, migration,
invasion, metastasis, and drug resistance (136).

Recent studies have described the mechanisms of several
ncRNAs in the regulation of the autophagy process in
tumor cells (137). For instance, circNRIP1 was proven to
modulate the autophagy and cancer cell metabolism switch
into the Warburg effect by alteration of AKT1 expression
and, consequently, the AKT/mTOR pathway, which induces
tumor development and metastasis in gastric cancer (138).
Moreover, miRNA-133a-3p suppresses tumor growth, and the
development of metastatic lesions in gastric cancer, inhibiting
autophagy-mediated glutaminolysis by targeting GABARAPL1
(a GABARAP subfamily) and ATG13 (139). Additionally, miR-
142-3p was demonstrated to target ATG5 and ATG16L1, causing
the inhibition of autophagy, producing an increased sensitization
of hepatocellular carcinoma cells to sorafenib (140). Also,
miR-519a sensitizes glioblastoma cells to temozolomide by the
activation of autophagy via the STAT3 pathway, which generates
Bcl-2/Beclin-1 complex dissociation and resultant autophagy-
mediated apoptosis (141). There are many other miRNAs, such
as miR-124, miR-144, miR-224-3p miR-301a/b, and miR-21,
involved in the alteration of autophagy in many cancer cell
types, either activating or inhibiting, which influence tumor
resistance to conventional therapy (142–145). Additionally,
lncRNAs control autophagy mainly by directly or indirectly
regulating ATG expression (146). As an example, knockdown
in colorectal cancer cells of homeobox transcript antisense
intergenic RNA (HOTAIR), a lncRNA that has been widely
studied, induces upregulation of miR-93 and a downregulation of
ATG12, resulting in a blockage of autophagy and the induction
of apoptotic cell death (147). In hepatocellular carcinoma,
the lncRNAs phosphatase and tensin homolog pseudogene 1
(PTENP1) activate autophagy, interacting with miR-17, miR-
19b, and miR-20a, denying their targeting of the autophagy
genes ULK1, ATG7 and p62/SQSTM1, and the tumor suppressor
PTEN. As a result, the overexpression of PTENP1 reduces tumor
size, restrains proliferation, suppresses angiogenesis, and induces
cancer cell apoptosis (148). Also, highly upregulated lncRNA
in hepatocellular carcinoma cells diminishes their sensitivity
to chemotherapeutic drugs by autophagy triggering, mediated
by suppressing silent information regulator 1 (Sirt1) (149).
Other lncRNAs, such as XIST, BLACAT1, and MEG3, also
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play a pivotal role in the regulation of autophagy processes in
different types of tumors, which modulate cancer progression
and chemotherapeutic resistance (150–152).

AUTOPHAGY AND CSCs (CANCER STEM
CELLS)

The cancer stem cell hypothesis proposes that many cancer types
originate from cancer cells with stemness-like characteristics,
known as cancer stem cells (CSCs) (153). CSCs are a
subpopulation of cancer cells that possess the abilities of
differentiation, tumor initiation, pluripotency, and self-renewal
capabilities, being able to reconstruct the original tumor
by themselves. CSCs are the cell type most representative
of resistance to conventional anticancer therapies (including
radiation and chemotherapy) in comparison to other cells
that constitute the tumor (154). These features confer CSCs
the abilities of tumor relapse and metastasis dissemination.
Besides, CSCs show the capacity to grow under serum
starvation, forming spheres in 3D conditions, maintaining high
aldehyde dehydrogenase (ALDH) activity while showing cell
cycle dysregulation (155). Moreover, under the term CSCs, there
is a large heterogeneous population of different CSCs with
different degrees of malignancy (156).

Many studies underline the crucial role of the autophagy
mechanism in the maintenance of CSC homeostasis, features,
and functions inside tumor and cancer progression (157).
CSCs use autophagy to reinforce their resilience against
microenvironmental stress conditions, such as starvation and
hypoxia, promoting their survival to preserve their stemness
phenotype (155). It has been proposed that through TGF-
β1 inducing EMT in CSCs; it is autophagy activation that
enables them to invade the circulation. In breast cancer, the
inhibition of the autophagy-related proteins Beclin-1, ATG12,
and LC3 reduces the stemness-like phenotype, reinforcing that
the activation of protective autophagy supports the maintenance
of the breast CSC population (158, 159). In the same line of
evidence, autophagy inhibition by knockdown of ATG5 and
ATG7 drastically decreases the stemness features of colorectal
CSCs, evidenced by a reduction in the expression levels of
stemness markers (OCT4, SOX2, and NANOG), increased
cellular senescence, and the decline of cell proliferative capacities
in CSCs in tumors (160). As would be expected, enhancement
of the autophagy pathway in colon cancer induces resistance
to anticancer therapies and an increase in the stemness-like
phenotype (161). In glioblastoma, the autophagy regulator
p62/SQSTM1 and DNA damage-regulated autophagy modulator
1 (DRAM1) is highly expressed in CSCs and control their
migrative and invasive capacities (162, 163).

Additionally, some studies associate pluripotency-related
factors with autophagy activation (55). For example, in non–
small lung carcinoma, melanoma, and breast cancer, NANOG
induces autophagy under hypoxia conditions in CSCs by direct
regulation of BNIP3, a protein that interacts with Bcl-2 and
mediates the disruption of the Bcl-2/Beclin-1 interaction (164),
promoting tumor cell immune resistance (165). Furthermore,

SOX2 induces autophagy through enhancement of ATG10 gene
expression in colon cancer cells (165). These results corroborate
that autophagy is an essential process involved in stem-like
phenotype maintenance and tumor resistance to treatment
in CSCs.

AUTOPHAGY IN STRESS RESPONSES,
CANCER PROGRESSION, AND
METASTASIS

It is broadly known that a basal level of autophagy is present
in all cell types that naturally occurs. In contrast, an increase
of the autophagy pathway or the autophagy flux accounts
when cells are exposed to certain levels of stress (166). The
autophagic stress response consists of two parts: a very rapid
increment (minutes or hours after exposure to the stressor) in
the autophagic flux through post-translationalmodifications, and
a long term autophagic response consisting in the activation
of stress-responsive transcription programs, being transcription
factors such as p53, NF-κB, and STAT3 relevant in regulation of
the autophagy facing stressful conditions (167).

As we analyze before, autophagy activity can be tumor
suppressive or promoting depending on the scenario, such
as nutrient availability, microenvironment influence, immune
response, and among others (168). Genomic analysis of human
cancers has identified that oncogenic events involving classical
oncogenes and tumor suppressor genes have a key role in
autophagy including PI3K, AKT1, PTEN, proteins of the Bcl-
2 family, among others (169). However, functional evaluation
of autophagy at the clinical level is demanding because the
autophagic flux is not possible to measure in tumor samples
of patients (168, 170). Even so, different studies corroborate
that autophagy is upregulated in different types of cancer since
progression to metastasis, and expression of several autophagy
markers has been correlated with poor outcomes (171). As an
example, the identification of a novel autophagy associated-
gene signature can predict the prognosis of cancer patients with
hepatocellular carcinoma. Such five genes are HDAC1, RHEB,
ATIC, SPNS1, and SQSTM1, that were associated with overall
survival in hepatocellular carcinoma patients (172). Of interest,
the expression of autophagy-related genes was correlated with
drug sensitivity in hepatocellular carcinoma cell lines (172).

Autophagic activity plays the primary role in the regulation of
the different metastatic phases, including invasion, intravasation,
survival inside the circulation, extravasation, survival, and
growth in the second site; and also in the diverse mechanisms
involved in metastasis, such as focal adhesion, integrin
trafficking, cytoskeleton remodeling, anoikis resistance,
detachment from the extracellular matrix, EMT, and tumor-
stromal interaction (170, 173). Although it is challenging to
determine autophagy flux in tumor patients, surrogate markers,
such as LC3, have found a correlation between increased levels
of autophagy and metastasis generation in varied types of cancer
(112, 174, 175). Moreover, novel proteins related to metastasis
have been shown to have a role in autophagy. For example,
Nuclear protein 1 (NUPR1) is a molecule regulated in response
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to stress, that has been implied in the progression of many
cancers including of breast, pancreas, brain, and thyroid, in
the development of metastasis (176, 177). NUPR1, initially
associated with the rescue of cells to doxorubicin-induced
genotoxic stress, has been shown to have a multifaceted role,
including involvement in autophagy (178). Chaperones represent
other examples. BAG3, a multifunctional HSP70 co-chaperone,
exerts various physiological functions, including stress response
and apoptosis, and oncopathological roles such as cell adhesion,
metastasis, angiogenesis, stimulation of autophagy flux, and
others. Also, BAG3 interacts with HSP70 and LC3 delivering
polyubiquitinated proteins to the autophagy pathway. (179).

AUTOPHAGY AND CANCER CELL
RESISTANCE

Intriguingly, different chemotherapeutic drugs may exert
opposite effects on autophagy, resulting in cell death or cell
survival. Autophagy in cancer cells during stress might emerge
spontaneously due to gene mutations/epigenetic modifications
or due to an imbalance of the cellular capacity to control
its growth during adverse conditions. Moreover, ribosomal
stress, ER stress, or the unfolded protein response (UPR)
can trigger autophagy (180). In the last decade, the role of
autophagy has been reinforced as a protective mechanism to
mediate cell survival during chemotherapy, conferring MDR

(181). For example, ATP-binding cassette (ABC) transporters,
specifically ABCB1, also known as multidrug resistance protein
1 (MDR1), have been associated with MDR against a wide
variety of chemotherapeutic agents (6). The expression in
ABCB1 is positively correlated with autophagic-related genes
Beclin-1, LC3, Rictor, and poor outcome survival of colorectal
cancer patients (182), highlighting an association between
autophagy triggering and MDR. It has been demonstrated that
resistance to FGFR1-targeted therapy promotes autophagy via
the TAK1/AMPK pathway (183).

Furthermore, several studies proved that autophagy
stimulated by anti-cancer drugs probably enable the development
of multiple resistance feature against epirubicin, paclitaxel,
tamoxifen or herceptin, through inhibition of apoptosis in breast
cancer cells (184). Besides, miR-495-3p was found to regulate
autophagy and, consequently, MDR by its interaction with the
GRP78/mTOR axis in gastric cancer (185). Another study showed
that autophagy develops a protective function in multi-drug
resistant ovarian cancer cells mediated by vincristine, and the
inhibition of autophagy resensitizes tumors cells to vincristine
and restore its killing effects (186). Our group demonstrated
that the overexpression of PTOV1, induced resistance in cells
through autophagy activation, a fact appreciated in head and
neck squamous carcinoma cell lines. Also, we observed that
both in cell lines and head and neck cancer patients resistant to
cisplatin, they overexpressed markers of autophagy and PTOV1.
Of interest is that some of these markers had prognostic value

FIGURE 4 | Autophagy vesicles in cancer cells sensitive and resistant to chemotherapy. TEM images showing the presence of autophagy vesicles in JHU029 cell lines

derived from laryngeal cancer, sensitive, and resistant (R) to cisplatin (see arrows). As was demonstrated by our group (187), cancer cells resistant to chemotherapy

generate more autophagy vesicles than sensitive ones, which is correlated with the resistant phenotype developed.
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when correlated with clinical variables (Figure 4). Besides, we
suggested that the acquisition of resistance to cisplatin is related
to the development of 5-fluorouracil resistance, supporting the
presence of a common regulatory resistance pathway (187).

Moreover, it has been described that cisplatin or 5-
fluorouracil promotes cytoprotective autophagy through
upregulation of Beclin-1 in bladder cancer cells (188), an
effect that has also been reported in other tumor cells, such
as laryngeal, ovarian, esophageal, and colon cancer models
(189–191). Upregulation of another autophagy-related gene,
ATG7, also induces autophagy after treatment with cisplatin
or 5-fluorouracil in esophageal cancer cells (192, 193). Of

interest, the chemotherapeutic agents’ cisplatin, temozolomide,
and daunorubicin have been seen to stimulate protective
autophagy by upregulation of the extracellular signal-regulated
kinase (ERK) pathway, a mechanism observed in non-
small cell lung cancer, ovarian cancer, glioma, and myeloid
leukemia (194–198). Also, autophagy stimulation via AMPK,
promoted by the chemotherapeutic agents’ temozolomide,
5-fluorouracil, and docetaxel, confers resistance in different
tumor types, such as prostate cancer, gastric cancer, and glioma
(199–201). Besides, JNK upregulation induces autophagy-
mediated chemoresistance to 5-fluorouracil in colorectal cancer
cells (202).

FIGURE 5 | Anti-autophagic therapy can be efficient in the initial stages of tumors in the presence of resistance or CSCs. In the figure are depicted several scenarios

where acquired or intrinsic resistance is already present in malignant tumors. (A) Acquired resistance appears consequently to the conventional treatment therapy, but

it cannot progress due to the anti-autophagic therapy (e.g., hydroxychloroquine). (B) If resistant cells are present in the tumors, they cannot grow expansively because

of the anti-autophagic therapy. (C) Acquired resistance appears consequently to the conventional chemotherapeutic treatment. Resistant cells survive largely

supported by the activation of autophagy, either from surrounding cancer cells or from CAFs. (D) While conventional chemotherapeutic treatment annihilates the bulk

of cancer cells, it favors the spread of resistant cells, including the CSCs. At a certain time of tumor development, the hypoxic conditions enable EMT process,

allowing cancer cell plasticity to enter into the circulation. CAF, cancer-associated fibroblast; TIL, tumor-infiltrating lymphocyte; CC, cancer cell.
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Furthermore, chemotherapeutic inhibition of the mTOR
pathway induces an autophagy process that, in sensitive
cells and after long-exposure treatment, provokes cell death.
However, if cancer cells have already reached some degree
of resistance, the inhibition of mTOR can also generate
JNK activation, P-ERK upregulation, and Bcl-2/Bcl-xL
phosphorylation in the breast, gastric and esophageal
cancer, with subsequent activation of protective autophagy
(203–205). Overall, while conventional chemotherapy
treatment is used extensively against malignant tumors and
is efficient against the bulk of cancer cells, a certain small
population of cancer cells (resistant cells and CSCs) activates
autophagy to survives therapy. Figure 5 illustrates that a small
quantity of resistant cells or CSCs present in tumors can be
annihilated if a combination of conventional therapy and
anti-autophagic therapy is applied from the beginning of the
treatment (Figure 5).

AUTOPHAGY AS A TARGET FOR
THERAPEUTIC PURPOSES: INHIBITION
OR STIMULATION?

The protective function of autophagy in healthy cells in response
to soft or severe stimuli, such as starvation or hypoxia,
acts as a protective mechanism to ensure cell survival, and
if healthy cells cannot restore the damage, they will die
by apoptosis (48). Thereby, autophagy activation acts as a
tumor suppressor mechanism, preventing tumor initiation by
maintaining metabolic homeostasis and suppressing genomic
instability (Figures 6A,B). We propose a model where, if a
severe stimulus occurs in cancer cells, such as chemotherapy
or radiotherapy, protective autophagy emerges in most cases
when apoptosis is defective (a common feature of cancer cells)
(Figure 6C). Nevertheless, if the stress exceeds a threshold
incompatible with cellular life, autophagy activation can mediate

FIGURE 6 | Distinctive responses of normal and cancer cells to different stimuli. The autophagy response depends on the intensity and duration of the stimuli (external

or internal), highlighting a threshold in the autophagy mechanism that would determine cellular outcome. (A) Normal cells under soft stimuli, such as starvation, will

ensure their survival through protective autophagy. (B) Severe stimuli on normal cells can induce cytotoxic autophagy or apoptosis. (C) In contrast, soft or severe

stimuli over cancer cells (for example, anti-EGFR treatments) will provoke protective autophagy, which will confer survival properties, drug resistance, and metastasis.

In this case, the use of autophagy inhibitors would provoke cell death by autophagy or occasionally by apoptosis. (D) Last, severe stimuli able to reach a threshold

can increase cytotoxic autophagy.
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cell death depending on the genetic background, tumor
evolution, and microenvironment (181). However, as mentioned
above, the lack of consensus of whether there is a cytotoxic form
of autophagy or stimulating autophagy in several tumor models
under some circumstances just promotes or facilitates another
type of cell death is a complex field (40, 206).

By one side, some anticancer treatments trigger autophagy
as a death executioner, causing a cytotoxic effect that ends in
autophagic cell death (30). This therapeutic strategy can be
suitable in tumors with deficiencies in the activation of the
apoptotic programmed cell death pathway, such as tumor cells
lacking functional p53 (207). According to our model, a long-
term autophagy activation strategy, generated by chemotherapy,
radiotherapy, or targeted drugs, can be used to generate cytotoxic
autophagy and cancer cell death (Figure 6D). For example,
long-term treatment of PtAcacDMS, a novel platinum-based

drug, triggers both apoptosis and autophagy, resulting in cell
death in neuroblastoma cells (208). However, stimulation of
autophagic cell death by different targeted drugs has been
considered by researchers as an attractive alternative to treat
some tumors that show some signs of apoptosis. The most
representative example is the inhibition of the mTOR pathway
as the main method to trigger autophagy in preclinical and
clinical studies. For example, rapamycin is a selective inhibitor
of mTORC1 and causes activation of autophagy (209). In several
studies, rapamycin has been demonstrated to suppress cancer
proliferation and induce autophagic cell death in different cancer
models, such as neuroblastoma, osteosarcoma, and sarcoma
(210–212). Rapamycin analogs (rapalogs), such as temsirolimus
and everolimus, also inhibit the mTOR pathway in renal
cancer and breast cancer, among others (213, 214). Other
types of autophagy activators include the BH3 mimetics (e.g.,

FIGURE 7 | Autophagy stimulation and inhibition in cancer cells. During tumor development, autophagy inhibition, by targeting autophagy-related proteins, such as

ATG7, Beclin-1, p62/SQSTM1, and DRAM1, promotes the sensitization of cancer cells to conventional anticancer treatments, such as chemotherapeutic agents,

including CDDP and 5-FU. In contrast, autophagy stimulation, evidenced by overexpression of LC3II and p62/SQSTM1, and by high levels of TGF-β1, provokes

cancer cell resistance to therapies (e.g., chemotherapy and radiation), development of an aggressive phenotype, and increment of migratory and invasive capacities.

In this case, several autophagy inhibitors, such as CQ, HCQ, or 3-MA, can re-sensitize resistant tumors and promote tumor regression and cancer cell death. CQ,

chloroquine; HCQ, hydroxychloroquine; 3-MA, 3-methyladenine; CDDP, cisplatin; 5-FU, 5- fluorouracil.
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TABLE 1 | Anticancer drugs that inhibit autophagy used in combination with chemotherapy.

Autophagy inhibitor Function Tumor type Chemotherapeutic (Pre-)

clinical

phase

NCT number Ref

Chloroquine Inhibits acidification of lysosome

and autophagosome-lysosome

formation

Glioblastoma,

Gliosarcoma

Temozolomide I NCT04397679 –

Glioma, Gliomatosis

Cerebri

Temozolomide III NCT03243461 –

Glioblastoma,

Astrocytoma

Temozolomide II NCT02432417 –

Glioblastoma Temozolomide I NCT02378532 –

Solid Tumors Carboplatin, Gemcitabine I NCT02071537 –

Pancreatic Cancer Gemcitabine I NCT01777477 (227)

Multiple Myeloma Cyclophosphamide II NCT01438177 –

Glioblastoma Not specified III NCT00224978 (228)

Hydroxy Chloroquine Inhibits acidification of lysosome

and autophagosome-lysosome

formation

Osteosarcoma Docetaxel, Gemcitabine I/II NCT03598595 –

Pancreatic Cancer Gemcitabine, Nab-Paclitaxel II NCT03344172 –

Small Cell Lung Cancer Gemcitabine, Carboplatin II NCT02722369 –

Acute Myeloid

Leukemia

Mitoxantrone, Etoposide I NCT02631252 –

Pancreatic Cancer Gemcitabine, Abraxane II NCT01978184 –

Multiple Myeloma Cyclophosphamide I NCT01689987 –

Non-Small Cell Lung

Cancer

Paclitaxel, Carboplatin II NCT01649947 –

Pancreatic Cancer Gemcitabine, Nab-Paclitaxel I/II NCT01506973 (229)

Pancreatic Cancer Capecitabine and Radiation II NCT01494155 –

Colorectal Cancer Oxaliplatin, 5-fluorouracil I/II NCT01206530 –

Pancreatic Cancer Gemcitabine I/II NCT01128296 (230)

Colorectal Cancer Capecitabine, Oxaliplatin II NCT01006369 –

Prostate Cancer Docetaxel II NCT00786682 –

Breast Cancer Ixabepilone I/II NCT00765765 –

Non-Small Cell Lung

Cancer

Carboplatin, Paclitaxel I/II NCT00728845 –

Solid Tumors Temozolomide I NCT00714181 –

Glioblastoma Temozolomide I/II NCT00486603 (231)

Wortmannin Inhibits PI3KC3 complex and

autophagosome formation.

Lung cancer, Prostate

cancer

Docetaxel Pre-clinical NA (232)

Ovarian cancer Cisplatin Pre-clinical NA (233)

3-Methyl Adenine

(3-MA)

Inhibits PI3KC3 complex and

autophagosome formation.

Non-Small Cell Lung

Cancer

Camptothecin Pre-clinical NA (234)

Colon cancer Oxaliplatin Pre-clinical NA (235)

Spautin-1 Enhances Beclin1 ubiquitination

and prevent PI3KC3 complex

formation

Melanoma Cisplatin Pre-clinical NA (236)

Osteosarcoma cells Doxorubicin Pre-clinical NA (237)

LY294002 Inhibits PI3KC3 complex and

autophagosome formation.

Oesophageal

squamous cell

carcinoma

5-fluorouracil Pre-clinical NA (238)

Resveratrol Regulates S6K1, inhibit

ROS/ERK pathway

Glioma Temozolomide Pre-clinical NA (197)
Ehrlich ascitic

carcinoma

Doxorubicin Pre-clinical NA (239)

4-Acetylantroquinonol B Downregulation of ATG-7 and

ATG-5

Ovarian cancer Cisplatin Pre-clinical NA (240)

(–) information available at www.clinicaltrials.gov, NA: Not Apply.
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gossypol, obatoclax), which provoke Bcl-2/Beclin-1 complex
dissociation through interaction with Bcl-2 (215, 216). Histone
deacetylase inhibitors, such as suberoylanilide hydroxamic acid
(e.g., SAHA or Vorinostat), have also been implied in the
activation of apoptosis and autophagy by inactivation of the
PI3K/AKT/mTOR pathway (217, 218). Also, natural compounds
have demonstrated antitumor properties through autophagy
stimulation. For example, curcumin promotes autophagy-
mediated cell death at high doses by the oxidative stress pathway.
However, at low concentrations of curcumin, autophagymediates
cell protection through AMPK and ER stress pathways,
evidencing a dual effect of curcumin, depending on the duration
and concentration administered (219).

It is frequently observed that tumor cells activate autophagy
to protect themselves from the stress caused by anticancer
treatments, such as chemotherapy, radiotherapy, targeted
therapy, or immunotherapy (220, 221). This activation occurs
under prolonged treatments, due to the waiting time for
patients to recover between different chemotherapy sessions;
this process can also be considerably accelerated if the therapies
are not effective. Therefore, upregulation of autophagy due
to chemotherapeutic treatment in some cancer types (e.g.,
pancreatic cancer) or due to specific genetic conditions (e.g., Ras
gene family mutations) promote drug resistance, which permits
tumor recurrence, invasion, andmetastatic development (3, 222).
Our group has suggested that for particularly aggressive tumors,
which might contain many mutations at the genetic and non-
genetic levels, the activation of autophagy is a mechanism used
by cancer cells to acquire an MDR phenotype (223). In this
scenario, the inhibition of the autophagic process concomitantly
to conventional therapy may be the appropriate strategy. The
lysosomal inhibitors chloroquine (CQ) and its analog, HCQ, are
the most extensive autophagy inhibitors in research and clinical
studies (224). CQ and HCQ suppress autophagy via alteration
of lysosomal pH and inactivation of acidic hydrolases, resulting
in blocking of autophagolysosomal formation, accumulation of
autophagosomes, and inactivation of autophagic degradation
(157, 224, 225).

Moreover, the inhibition of the PI3KC3 complex is another
strategy to inhibit autophagy in cancer cells (207). Wortmannin,
3-Methyl Adenine (3-MA), Spautin-1, and LY294002 have shown
promising results in preclinical studies in coadministration with
chemotherapeutics such as docetaxel, cisplatin, doxorubicin,
or 5-fluorouracil (Figure 7). Resveratrol, which controls S6K1
and inhibits the ROS/ERK pathway, and 4-Acetylantroquinonol
B, which reduces ATG-7 and ATG-5 expression, are two
compounds used to reduce the autophagic process with
promising preclinical outcomes. Moreover, HCQ treatment has
been used to treat resistant cells to radiotherapy through in
silico-designed nanoparticles for autophagy inhibition (226).
Many studies in preclinical models (tumor cell lines and animal
models) have demonstrated that CQ and HCQ induces cancer
cell killing through treatment alone or in combination with
targeted agents, radiotherapy, or chemotherapy (1). Besides, CQ
and HCQ have been part, and are currently part, of several
clinical trials in cotreatment with chemotherapeutics of different
types of cancer, including glioblastoma, multiple myeloma, small

and non-small cell lung, colorectal, pancreatic, prostate, and
breast cancers (Table 1). Although clinical results to autophagy
inhibition by CQ or HCQ has not been as consistent as seen
in preclinical studies until now, the overall results published
in clinical trials have proved their safe use as cancer therapy
and their commitment to the biological target. Therefore, these
autophagy inhibitors continue being used in active clinical trials
in cotreatment with target therapy and chemotherapeutic drugs,
including the International Cooperative Phase III Trial (HIT-
HGG-2013) in Glioma and Gliomatosis Cerebri of temozolomide
in cotreatment with valproic acid or CQ (NCT03243461).

Overall, our model proposes that if acquired or intrinsic
resistance is present at the initial stages of a tumor, it is
possible to eradicate aggressive resistant cells by applying
an autophagy inhibitory therapy from the beginning of the
treatment concomitantly to conventional therapy. Personalized
medicine to predict the status of autophagy (activated or
defective) in cancer cells and the presence of specific markers
able to predict the resistance or sensitization of cancer cells
are key factors for predicting and choosing the best treatment
for cancer patients. The incorporation of molecular (e.g., next-
generation sequencing) and pathological (assessment of the
overexpression of autophagy-related proteins or determination
of the lymphocyte infiltration of tumors) techniques would
improve the focus toward the most appropriate therapy.

CONCLUSIONS

- The need to use, in general terms, high doses of conventional
therapy to achieve therapeutic effects is the cause of the severe
side effects of chemotherapies. As a result, chemotherapy
sessions must be spaced to let patients recover from the side
effects. This time-lapse is exploited by tumor cells to recover,
proliferate, develop drug resistance, and create metastases
responsible for most cancer deaths.

- How to tackle the acquisition of therapy resistance by tumors
represents one of the most important challenges in cancer.

- Autophagy seems to favor cancer cells to acquire resistance;
however, autophagy has a context-reliant function in cancer.

- Anti-autophagic treatments (e.g., HCQ) are very tolerable for
patients and rarely cause severe side effects.

- It is of crucial importance that an effective treatment should
be given to each cancer patient as the first therapeutic
choice. Personalized medicine includes (a) the culturing
of patient biopsies using spheroids, organoids, or mouse
models to advance the benefits of a particular treatment
and (b) the identification of genetic alterations by next-
generation sequencing, which would point out specific drugs
for particular mutations.
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