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Many studies failed to demonstrate benefit from the addition of targeted agents to current
standard adjuvant FOLFOX chemotherapy in stage Ill colorectal cancer (CRC) patients.
Intratumor heterogeneity may foster the resistant subclones and leads to cancer
recurrence. Here, we built a cancer evolution model and applied machine learning
analysis to identify potential therapeutic targets. Among 78 CRC cases, whole-genome
(WGS) and deep targeted sequencing data generated from paired blood and primary
tumor were used for phylogenetic tree reconstruction. Genetic alterations in the PI3K/
AKT, and RTK oncogenic signaling pathways were commonly detected in founding
clones. The dominant subclones frequently exhibited dysregulations in the TP53, FBXW7/
NOTCH1 tumor suppression, and DNA repair pathways. Fourteen genetic mutations were
simultaneously selected by random forest and LASSO methods. The logistic regression
model had better accuracy (79%), precision (70%), and recall (65%) and area under the
curve (AUC) (82%) for cancer recurrence prediction. Three genes, including MYO18A in
the founding clone, FBXW?7, and ATM in the dominant subclone, affected the prognosis
were selected simultaneously by different feature sets. The in vitro studies, HCT-116 cells
transfected with MYO18A siRNA demonstrated a significant reduction in cell migration
activity by 20-40%. These results indicate that MYO18A plays a crucial role in the
migration of human CRC cells. The cancer evolution model revealed the critical mutations
in the founding and dominant subclones. They can be used to predict clinical outcomes
and the development of novel therapeutic targets for stage Il CRC.

Keywords: colorectal cancer, whole-genome sequencing, targeted gene sequencing, tumor evolution,
intratumor heterogeneity
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INTRODUCTION

Colorectal cancer (CRC) is the most commonly diagnosed
gastrointestinal cancer and is also one of the leading causes of
cancer-related death worldwide (1). Although adjuvant FOLFOX
(5-fluorouracil, leucovorin, and oxaliplatin) chemotherapy
benefits stage III CRC patients, recurrence develops in 30-35%
of patients (2). Many studies have tried to assess the addition of
targeted therapy, including bevacizumab and cetuximab, to
FOLFOX in the adjuvant treatment of stage III CRC. However,
no significant improvement in survival was noted. A
considerable challenge of recurrent stage III CRC is identifying
the critical genetic mutations responsible for tumor metastasis
and delivering effective therapeutic strategies (3, 4). CRC is a
highly heterogeneous disease that differs in clinical presentations,
molecular characteristics, and responses to treatment and
survival. Intratumor heterogeneity is defined as the distinct
morphological and phenotypic differences within a tumor (5).
Hence, building the genome evolution model underlying the
mechanism of tumor carcinogenesis and biological pathways and
identifying genetic markers to predict cancer recurrence is
crucial to accelerate and facilitate the development of CRC
treatment targets.

Cancer cells accumulate somatic alterations over time. Most
cancers arise from a single clone with acquired genetic
variability, and tumor progression and metastasis result from
the sequential selection of more aggressive subclones (6). Cancer
evolves dynamically as clonal expansions. Recent genomic
studies have demonstrated that cancer relapse or metastasis is
associated with the addition of new mutations and clonal
evolution (7). Intratumor heterogeneity may foster tumor
evolution and adaptation and hinder the biomarker
development of personalized-medicine strategies that depend
on results from single tumor-biopsy samples (7). The most
common technology used for the molecular characterization
of tumor heterogeneity is the high-throughput DNA
sequencing of bulk samples. There is a significant acceleration
in the use of next-generating sequencing (NGS) to approach
tumor heterogeneity and evolution for precision medicine (8, 9).
By using advances in bioinformatics and artificial intelligence,
determining the essence of key genetic mutations in cancer
evolution has recently become possible. From the evolutionary
models, we can identify the “oncogenic addiction or driver”
mutations that provide a fitness advantage to cancer targets
against neutral “passenger” mutations.

In this study, we aimed to develop a genome evolution model
by analyzing tumor heterogeneity and discovering actionable
mutational targets. We first developed a cancer evolution model
for the development of new agents in tumor heterogeneity and
the generation of novel and more effective therapies by analyzing
somatic mutations and tumor heterogeneity. Second, we
established a model predicting cancer recurrence and survival
and identified therapeutic driver mutation targets via robust
optimization in machine learning. Finally, we used the causal
inference model and biological methods to validate the potential
cancer evolution targets. The results further described early

mutation changes that predict tumors progress to stage III
carcinomas and showed that statistical inference predicts that
the subclone-related pathogenic mutations are acquired when
the cancer is progressing. Here, we defined a broad time window
of opportunity for early detection to prevent recurrence and
death in advanced colorectal cancer patients. A fine-resolution
view of this clonal architecture provides insight into tumor
heterogeneity, evolution, and treatment response, all of which
may have clinical implications.

MATERIALS AND METHODS
Study Population

A total of 78 CRC cancer patients were recruited for the study
from National Cheng Kung University Hospital (NCKUH)
between January 2014 and January 2019. All CRC patients
were pathological stage III and received standard surgical
resection followed by adjuvant chemotherapy with the regimen
of mFOLFOX6 (5-fluorouracil, leucovorin, and oxaliplatin).
Clinical information was obtained from medical records.
Tumor tissues and blood samples were collected at the time of
enrollment. This study was approved by the Institutional Review
Board of NCKUH (A-ER-103-395 and A-ER-104-153) and
conducted under the Declaration of Helsinki. All participants
provided written informed consent.

Germline Whole-Genome Sequencing

Whole blood was collected for genomic DNA extraction.
Genomic DNA was quantified with a Qubit fluorescence
assay (Thermo Fisher Scientific) and sheared with an S2
instrument (Covaris). Library preparation was carried out
using the TruSeq DNA PCR-Free HT Kit (Illumina).
Individual DNA libraries were measured by 2100 Bioanalyzer
(Agilent) qPCR and Qubit (Thermo Fisher Scientific).
Normalized DNA libraries were combined into five-sample
pools per flow cell in all eight lanes and clustered on a cBot
instrument (Illumina) with Paired-End Cluster Kit V4
(Illumina). All flow cells were sequenced on the HiSeq2500
sequencer (Illumina) using the SBS Kit V4 chemistry
(Illumina). FastQC was used to check read quality, and the
resulting reads were aligned to the hg19 reference genome with
the BWA-MEM algorithm (10). Single nucleotide variants
(SNVs) and indel identification and genotyping were
performed across all samples simultaneously using standard
hard filtering parameters or variant quality score recalibration
according to GATK Best Practices recommendations. WGS was
presented with a minimum, median coverage of 30X.

Targeted Tumor Sequencing by

Cancer Panel

A total of 78 formalin-fixed paraffin-embedded primary tumor
samples were collected for histologic assessment followed by the
extraction of nucleic acids. The histologic evaluation was
performed by pathologists, who determined the percentage of
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tumors and adequacy for sequencing. Tumor deep targeted
sequencing was performed by Oncomine Comprehensive
Assays (OCA) version 1 (Thermo Fisher Scientific) (11). OCA
v1 was designed to detect 143 drug targets, including 73 hotspot
genes, 49 focal copy number variation (CNV) gains, 26 genes for
full coding region sequencing (CDS), and 22 fusion driver genes.
(druggable) The Ion PGM Sequencing 200 Kit v.2 was used with
the Ion PGM sequencer (Thermo Fisher Scientific) according to
the manufacturer’s instructions. All samples were analyzed using
the Torrent Suite Software 5.0.4, aligning all reads to the hgl9
reference genome, and variant calling was performed running
the Torrent Variant Caller plugin version 5.0.4.0. We used the
ANNOVAR tool to annotate variants and filter out indels not
reported in the 1000 Genomes Project, the Single Nucleotide
Polymorphism Database (dbSNP), and the Exome Aggregation
Consortium (ExAc) (12).

Cancer Evolution Model Construction

The somatic mutation calling was performed by comparing the
sequencing data generated by OCA vl and germline genetic
variants by WGS. Somatic SNVs were obtained by DeepSNV
(13). DeepSNV (a beta-binomial model and a likelihood ratio
test) is a tool that can detect subclonal SNVs with frequencies
higher than 10™* with higher sensitivity and specificity. The
tumor subclones were identified, and clusters were identified
using SciClone (14), a Bayesian clustering method. ClonEvol was
used to establish the evolution tree in cancer (15).

Statistical Analysis

Chi-square tests, Fisher’s exact tests, and unpaired t-tests were
used to assess the differences between groups. Kaplan-Meier
curves were used to evaluate disease-free survival, and the log-
rank test was used to compare the differences between groups.
Disease-free survival was defined as the time between surgery
and recurrence of cancer. A P value < 0.05 was considered
statistically significant.

Pathway Analysis

Signaling pathways for frequently mutated genes detected in
founding clones and dominant subclones were enriched by using
Reactome (http://www.reactome.org) (16). Significance was
derived from over-representation analysis built in Reactome.

Machine Learning Analysis

Feature Selection

The machine learning model includes logistic regression (LR),
least absolute shrinkage and selection operator (LASSO) method,
and random forest. The LASSO method is a regression model
that penalizes the absolute size of the coefficients, causing some
regression coefficients to shrink to zero. The penalization, or
constraint, allows the LASSO method to estimate a model while
simultaneously performing automatic variable selection (17).
The random forest (RF) model consists of an ensemble of
classification trees, where each classifier was built from
different independent and identically distributed bootstrap
samples from a training set. Each classifier casts a vote for the

most popular class. Odds ratio (OD) measures the strength of the
association between two types, and hazard ratio (HR) is the ratio
of the hazard rates corresponding to the conditions described by
two levels of an explanatory variable in survival analysis. LASSO
method was done by R package glmnet, Random forest was done
by R package randomForest, the odds ratio was done by R
package fmsb, and the hazard ratio was done by R package
survival and survminer.

Classifier Model

The support vector machine (SVM) (18) is a state-of-the-art
classification method referred to as black-box processes. Random
forest (RF) (19) is an “off-the-shelf” widely used machine
learning method that shows competitive prediction performance.
XGBoost (20) is an optimized implementation of gradient boosting
(GBM). The advantages of the classifier include less prone to
overfitting due to the strong inner regularization scheme, easy to
implement parallelization and scalability. C5.0 is a machine
learning method based on decision trees, which is also referred
to as white box processes and is known for interpretability (21).
Logistic regression is used to describe data and to explain the
relationship between one dependent binary variable and one or
more nominal, ordinal, interval, or ratio-level independent
variables (22, 23). Finally, we performed ten-fold cross-validation
on our dataset to evaluate the efficiency of the models using the
caret packages in R with default parameters (24). SVM, XGBoost,
and C5.0 were done by R package €1071, xgboost, and C50.

Migration Assay

For the migration assay, placed on a cell culture surface, the ibidi
Culture-Insert 2 Well (ibidi GmbH, Planegg, Germany) provides
two cell cultureservoirs, each separated by a 500 pm wall. Cells
were plated at 80,000 cells per well and allowed to attach
overnight. On the following day, culture inserts were removed,
and light microscopy images were acquired. Cells were
maintained under standard culture conditions while migrating
toward the cell-free gap area. For HCT-116, HT-29, and DLD-1
cells, images were acquired every 24 hours later. Images were
analyzed using Image] software.

RESULTS

Identification of Cancer Driver Mutations
by Conventional Approaches

The discovery of somatic mutations that drive cancer
progression is essential for therapeutic strategies. Following the
protocol shown in Supplementary Figure 1A, we used
conventional statistical methods such as odds ratio (OD) and
hazard ratio (HR) to evaluate the clinical impact of somatic
mutations in a cohort of 78 stage III CRC patients. The median
follow-up duration of this cohort was 31.2 months. Among these
patients, 33% (26/78) had recurrent disease, and 67% (52/78)
remained disease-free. Of all patients, the distribution of gender
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was the same. The median age of these patients was 58 years old.
The prevalent primary tumor site was left colon (80.8%). There
was no significant difference between recurrence and tumor
characteristics, such as tumor site, tumor invasion stage (T),
and nodal stage (N) (Supplementary Table 1). A total of 30
mutated genes were identified. There was no genetic variant
significantly associated with recurrence in these CRC patients by
odds ratio. The hazard ratio (Supplementary Figure 1B) of four
mutated genes, including MTOR, BAP1, TSCI, and NOTCH],
showed a correlation with worse progression-free survival [p <
0.05 and hazard ratio (HR) =10.5-76.5]. However, these four
genetic variants were rare and were found only in 1.3% (1/78) of
these CRC patients (Supplementary Figure 1C). Targeting these

rare mutations does not seem to provide significant
improvements in the clinical outcome of stage III CRC. These
data imply the limitation of the conventional approach of the
analytic sequencing method.

Targeting Intratumor Heterogeneity by
Cancer Evolution Model

Evolutionary dynamic models have been studied to elucidate the
process of tumorigenesis and discover the driver somatic
mutations for the development of potential therapeutic
strategies (25). Accordingly, we built clonal evolution models
and applied statistics and machine learning algorithms
to identify disease-related driver mutations. As shown in
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FIGURE 1 | The concept of cancer evolution and study design. (A) The cancer evolution model depicts the accumulation of cancer-specific mutations and clonal

expansion during tumor formation. The data of VAF generated from deep sequencing of tumor tissues could be used to predict the cellularity and construct the
phylogenetic tree. The blue cross indicates the background variation. Stars with different colors represent mutations that develop during cancer evolution. (B) Based
on the concept of cancer evolution, the research design is proposed to identify driver mutations with crucial clinical impact.
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Figure 1A, normal cells accumulate background variations (blue
cross) and many cancer-specific mutations (stars) over a
prolonged clinically latent period to become cancers. Multiple
subclones could be found within single cancer tissue.
Theoretically, the background variation and driver mutation
(red star) are present in the ancestor cell and all the subclones.
During cancer evolution, additional mutations occur
subsequently in different subclones, which give rise to
intratumoral heterogeneity. Deep targeted-gene sequencing of
bulky tumor tissue provides useful information on variant allele
frequency (VAF), which could be used to predict cellularity and
construct phylogenetic trees. Therefore, we used the targeted-
gene sequencing data of 78 stage III CRCs to reconstruct the
tumor evolution. The WGS data from paired normal blood
samples were used to filter germline variants (Figure 1B).
After the somatic variant calling by DeepSNV (13), SciClone
(14) was applied for analyzing the distribution of purity-scaled
variant allele fractions, and ClonEvol (15) was used to
reconstruct the phylogenetic tree. We determined the
dominant clone according to the predicted cellularity. After
that, the potential candidate driver mutations in ancestor and
dominant clones could be identified. We applied machine
learning models to predict the risk of cancer recurrence by
using different genetic variant feature selection strategies
and classifiers. By this pipeline, we could identify the critical
driver genetic variants that could be potential drug targeting

clonal variants and involved in cancer survival stratification
(Figure 1B).

Phylogenetic Tree Reconstruction From
the Clonal Evolution Model

A clinical example is shown in Figure 2. This case was a 40-year-
old man with stage III CRC at initial diagnosis. He received
standard surgical resection followed by adjuvant chemotherapy
with mFOLFOX6. Recurrence was detected by computed
tomography (CT) scan 15.4 months after surgery. WGS and
deep targeted-gene sequencing were performed on paired
normal and tumor samples, respectively. Figure 2A displays
the allele frequency of the detected variants in tumor and
germline tissues and indicates the levels of significance of the
deepSNV test. Using the VHL gene as an example, the dots above
the diagonal line represented the variants that were called as true
variants rather than sequencing errors by the deepSNV
algorithm. A total of 307 somatic SNVs were detected in this
case. When SciClone was used to perform the clustering, 307
SNVs clustered into four groups (Figure 2C). The mean VAF
values of clusters 1 to 4 are 36.5, 22.1, 11.2, and 4.2%. Besides, the
mean posterior probabilities of clusters 1 to 4 are 93.5, 83, 95, and
99%. Figure 2D shows the kernel density plots of VAF under two
copy number estimations. The model did not perfectly fit the
original distribution because the mean probability of cluster 2
was 83%. Figure 2E shows the scatter plot of each cluster’s SNV
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FIGURE 2 | Representation of analyzing clonal evolution in a CRC patient as an example. (A) Scatter plot showing the variant allele frequencies (VAFs) of the
example VHL gene in tumor and normal tissues and the levels of significance of the deepSNV test. (B) The flow chart showing the utility of various algorithms for
calling of SNV, clustering of VAFs, and analysis of clonal relationships from the sequencing data of paired normal-tumor samples. (C) Inferring subclones according
to the clustering of VAFs by SciClone. (D) Kernel density estimation (KDE) of VAFs. The distribution of mutations occurring in colon cancer patients. The gray line
represents the mutations detected in the founding clone, and the green line represents driver mutations in the dominant subclone. (E) The read depth versus VAF
plot showing the read depth of 4 clusters of genes under the assumption of neutral copy number (copy number = 2). (F) Sphere of cells demonstrating the founding
clone and clonal subpopulations of the CRC tumor sample by CloneEvol. (G) Bell plot showing clonal dynamics during tumor formation.
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coverage and VAF. The SNVs with coverage less than 50x were
filtered out in this study because the low coverage would lead to
biased estimation. Figures 2F, G demonstrate the cancer
cellularity prediction and the most likely evolutionary tree of the
primary tumor via ClonEvol. In this case, the gray color was the
founding clone with cellularity ranging from 18.6-33.3%, the
green color was the dominant subclone ranging from 28.5-
35.3%, the blue color was subclone two ranging from 25.8-
35.4%, and the purple color was subclone four ranging from
3.6-14.9%. Finally, the phylogenetic tree was constructed
(Figure 2B).

Sequential Oncogenic and Tumor
Suppression Genetic Alterations in

Cancer Evolution

By using the study protocol shown in Figure 1B, we identified
possible driver mutations in the founding clone and dominant
subclone for each cancer patient. Among 78 CRC patients, 66
and 49 genetic variants with high or moderate protein impact
were detected in founding and dominant subclones, respectively.
Several variants were frequently detected in the founding clones
of these 78 CRCs, including the ABLI, MYOI8A, and ATM
mutations (Figure 3A). Approximately 78.2, 73.1, and 64.1% of
patients harbored the ABLI, MYOI8A, and ATM mutations,
respectively, in their founding clone. In contrast, the most
commonly detected mutations in the dominant subclones of
these CRCs were BRCA1, BRCA2, TET2, APC, VHL, MSH2,
TP53, PIK3CA, and FBXW?7 mutations, accounting for 79.5, 93.6,
64.1,55.1, 53.8, 41, 30.8, 32, and 21.8%, respectively. Driver genes
can be classified into distinct signaling pathways that control cell
survival, cell fate, and genome maintenance (26). Accordingly,

we analyzed the dysregulated signaling pathways in founding
clones and dominant subclones. As shown in Figure 3B, the
signaling pathways involved were significantly different between
the founding clones and dominant subclones. Alterations in the
PI3K/AKT, RAF/IMAP, and RTK signaling pathways were
commonly detected in founding clones. By contrast, the
dominant subclones frequently exhibited dysregulations in the
TP53, FBXW7/NOTCHI, and DNA repair pathways. These
results implied that cancer cells accumulated different somatic
mutations during cancer evolution. Oncogenic alterations in
signaling pathways controlling cell proliferation and survival,
such as the PI3K/AKT and MAPK pathways, occurred at the
early stage of cancer formation (27, 28). Mutations involving the
tumor suppressors and DNA repair pathways became more
important during evolution.

Optimizing the Selection of Clonal
Mutations by Recurrence Status

To investigate the clinical significance of mutations detected in
the founding clone and dominant subclones, we used different
feature selection techniques to identify the important mutations
associated with the recurrence of CRC patients. Top 30
mutations were selected by Gini importance using the random
forest (RF). The FBXW7 and MYOI8A mutations were the
variables with the highest importance among these CRC
patients. LASSO was performed to select mutated genes with
nonzero coefficients, and 23 mutations (LASSO23) were selected.
By calculating the odds ratio (OD) and hazard ratio (HR), we
identified 8 (OD8) and 25 (HR25) genes, respectively, that were
significantly associated with recurrence in this CRC cohort (p <
0.05). The above results were shown in Supplementary Table 2.
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Fourteen genes were simultaneously selected by random forest
and LASSO, including GATA3, ACVRLI, MYOI8A, IDHI,
ABLI, NFE2L2, MCL1, RET, PDCDILG2, TSC2, CSFIR, ATM,
FBXW?7, and TP53. RF_LASSO14 was named for this 14-gene set
(Figure 4A). We analyzed the correlation between disease-free
survival (DFS) and the mutation status of 14 genes selected by
both the random forest and lasso. Among these 14 genes,
mutations of CSFIR, PDCDILG2, FBXW7, TSC2, and NFE2L2
gene were significantly associated with shorter DES. In contrast,
MYOI18A mutation was associated with better DFS. No
association between the DFS and the mutation status of the
other eight genes was observed (Supplementary Table 3). The
heatmap of these 14 mutated genes is shown in Supplementary
Figure 2. For robust optimization, we input the gene groups
identified by four different feature sets into five classifier models,
including support vector machine (SVM), C5.0, random forest,
logistic regression, and XGBoost (gradient boosting), to predict
and classify the cancer recurrence. The recall value of 10-fold
cross-validation for SVM, C5.0, RF, LR, and XGBoost were
0.615, 0.346, 0.384, 0.654, and 0.461, respectively. The accuracy
for SVM, C5.0, RF, LR, and XGBoost were 0.756, 0.615, 0.756,
0.795, and 0.744, respectively. The logistic regression model had
the best performance with the highest recall value and better
accuracy. The results were shown in Supplementary Figure 3.
The receiver operating characteristic (ROC) curve analysis
confirmed that the RF_LASSO14 gene set had better accuracy
(79%), precision (70%), and recall (65%) and area under the
curve (AUC) (82%) in the logistic regression model (Figure 4B).
To emphasize the importance of cancer evolution, we compared
the performance between the models with or without intratumor

B

1.0—|
[O]
©
© o5
()
2
S 06
[72]
g

0.4 — |
() A
-] K
= p = HR25 (AUC=0.56)
F 02 g s LASSO (AUCH

. - (AUC=0.80)
j% sl OD8 (AUC=0.71)
[ RF_LASSO 14
0.0 — AL (AUC=0.82)
T T T I I T
00 02 04 06 08 10

False positive rate

FIGURE 4 | Feature selection of founding clone and dominant subclone genes and prediction model for CRC recurrence. (A) Venn diagram showing overlapping
genes selected by the random forest (RF) and LASSO models. RF_LASSO14 indicates a group of 14 overlapping genes. F represents the founding clone gene
mutation, and S represents the dominant subclone gene mutation. (B) Receiver operating characteristic (ROC) curves of gene sets selected by different statistical
and machine learning models for prediction of recurrence in stage Il CRCs. The area under the curve of ROC corresponding to each gene set was shown.
RF_LASSO14, 14 genes simultaneously selected by random forest and LASSO; OD8, eight genes selected by odds ratio; HR25, 25 genes selected by hazard ratio.

heterogeneity. We operated the bootstrapping process 5000
times and selected background genetic mutations as features by
lasso methods and built the same logistic regression classifier to
calculate the probability of accuracy over 0.795. Consequently,
the probability of a conventional model with better accuracy than
the evolution model was only 4.54%, which proved that our
model was quite meaningful.

Survival Stratification by Three Genetic
Variants via the Decision Tree Model
Currently, the “one size fits all” approach is still used for adjuvant
treatment of stage III CRC patients. FOLFOX6 chemotherapy is
the gold standard regimen without considering genomic alterations.
In this CRC cohort, all patients were pathological stage III and
received standard surgical resection followed by adjuvant
FOLFOX6 chemotherapy. The 5-year DFS was approximately
70% (Figure 5A). The decision tree, a nonparametric supervised
learning method, was used to analyze the predictive value of the
mutations identified in the founding clone and dominant to further
subclassify these stage III CRC patients and identify potential
treatment strategies subclone. As shown in Figure 5B, three
mutations, including the MYOI8A mutation in the founding
clone and FBXW7 and the ATM mutation in the dominant
subclone, could be used to stratify these 78 CRC patients into
four subgroups that had different clinical outcomes. Group 1 (G1)
was the patient without the MYOI8A mutation in the founding
clone (F.MYO18A), and this group of patients had the worst DFS
(Figure 5C). Patients harboring the MYOI8A mutation could be
further categorized into groups 2, 3, and 4 according to the
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dominant subclone’s mutation status of FBXW7 and ATM. Patients
in group 2 (G2) had FBXW?7 mutations (SFBXW?7), and patients in
group 4 (G4) had ATM mutations in the dominant subclone
(S.ATM). Patients in group 4 had the best outcome, followed by
groups 3 and 2. The mutated genes in the founding and dominant
subclones detected in these four subgroups of patients are shown in
Figure 5D. Targeting these relevant mutations in founding and
dominant subclones might provide benefits for stage III CRC
patients, especially groups 1 and 2. Since MYOI18A, FBXW7, and
ATM mutations (Supplementary Figure 5) have a considerable
impact on clinical outcomes, these mutations might be potential
therapeutic targets. MYOI8A mutation was detected in 50 and
84.6% of patients with and without recurrence. In contrast, the
percentage of FBXW?7 mutations in patients with or without
recurrence was 38.5 and 13.5%, respectively. When analyzed by
the Chi-Square test, the distributions of MYOI8A and FBXW7
mutations are significantly different in these two groups of patients
(p = 0.002 and 0.019) (Supplementary Table 1). Several clinical
and pathological factors, as shown in the Supplementary Table 4,
were also considered when analyzing the prognostic impact of
MYOI8A and FBXW7 mutations. We analyzed these factors
through univariate and multivariate Cox proportional hazards
model. The results showed MYOI8A, and FBXW7 mutations are
significantly associated with the clinical outcome when univariate
analysis. The outcome was not affected by age, gender, primary
tumor location, the depth of tumor invasion, and the number of
lymph node metastasis. In multivariate analysis, both the
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MYOI8A and FBXW7 mutations were still the independent
prognostic factors (Supplementary Table 4).

Examining the Biological Role of

MYO18A In Vitro

MYOI8A is a gene encoding a unique myosin involved in
intracellular transport processes and cell motilities (29).
Therefore, we assessed whether MYOI8A has a role in CRC
cell invasion or migration. Specific siRNA targeting MYOI8A
was transfected into human CRC cancer cells, and the impact on
cell migration was determined by gap closure assay. As shown in
Figure 6A, MYOI8A siRNA significantly reduced the level of
MYOI8A protein after 48 hours of transfection. Compared to
cells treated with scrambled siRNA, HCT-116 cells transfected
with MYOI18A siRNA demonstrated a significant reduction in
cell migration activity by 20 to 40% (Figures 6B, C). Reduced
migration was also observed in MYOI8A siRNA-treated HT-29
and DLD-1 cells. These results indicate that MYOI8A plays an
essential role in the migration of human CRC cells.

DISCUSSION

With the advances of NGS technologies and machine learning in
cancer biology, targeting cancer evolution has become more
feasible. Here, we demonstrate using a genomic-machine
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learning model for recurrence-risk prediction and identification
of potential therapeutic targets for CRC. Importantly, we
designed different treatment strategies for different risk
subgroups of CRC patients. Our results highlight the following
important points: (i) The sequential oncogenic and tumor
suppression genetic alterations were found during tumor
evolution. (ii) We identified a fourteen genes panel that could
predict the risk of recurrence in stage III CRC. (iii) Three genes,

including MYO18A in the founding clone, FBXW7, and ATM in
the dominant subclone, affected the prognosis. (iv) MYO18A
plays an important role in the migration of human CRC cells.
These findings suggest that the integration of genomic data
and cancer evolution models provides insights into disease
biology. These results could be applied for the recurrence-risk
classification of stage III CRC and the development of novel
therapeutic strategies.
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The ability to predict the future behavior of individual cancers
is crucial for precision cancer medicine. Considering that
traditional methods might hinder the efficacy of rare somatic
selection, we established a more comprehensive pipeline by the
cancer evolution model for treatment strategy analysis. First, we
selected rare somatic mutations that were not detected by
traditional methods. To target intratumor heterogeneity and
cancer evolution somatic mutations to overcome chemotherapy
resistance, we used the evolution model. We supposed that
founding clone and dominant clones (the most estimated
prevalence) are the significant events for cancer recurrence,
which was confirmed by the probability of random two
subclone sampling (Supplementary Figure 5). Finally, for
robust optimization, the different machine learning algorithms
and statistical methods were selected for cancer recurrence-risk
prediction and survival stratification models.

In the CRC multistage progression model, the adenoma-
carcinoma sequence refers to a stepwise pattern of mutational
activation of oncogenes and inactivation of tumor suppressor
genes. In our cancer evolution model, we provide information
about genetic changes in cancer-driving metastasis. In the early
stages, mutations in the oncogenic pathway, such as the receptor
kinase signaling (RTK) pathway, the fibroblast growth factor
receptor (FGFR) signaling pathway, and the transforming
growth factor-beta (TGFB) signaling pathway, appear to be the
first step. Second, mutations in TP53, FBXW?7, and APC may
play a role in cancer evolution. Sequential oncogenic and tumor
suppression genetic alterations were consistent with the
hypothesis of cancer two-hit theory.

Classification and decision systems in data analysis are mostly
based on accuracy. In our study, we trade off accuracy, precision,
and recall for useful optimization in a multiple machine learning
model. We selected the 14 genetic variants for cancer recurrence
prediction. The variant distribution and frequency in cancer
patients with or without recurrence are shown in Figure 4. There
are 11 genetic variants in the funding clone and three genetic
variants in the dominant subclone. This study implies a robust
optimization cancer panel for recurrence prediction. We have
developed a genomic-machine learning model and pipeline
software for CRC recurrence-risk prediction.

Figure 5A shows the 5-year DFS of this CRC cohort. The 5-
year disease-free survival rate is approximately 70%, which has
reached the benchmark of a worldwide standard. In addition to
modeling for recurrence prediction, we need to improve care
survival by different treatment strategies. Using the three machine
learning models, we can classify the CRC subgroup by three
genetic variants. Group 1 and group 2 have a poor prognosis.
The progression-free survival of Group 4 was better than that of
group 3. This successful study identified associations between
three genetic markers and survival subgroup and recurrence
status. The uniqueness of this study is that the evolution model
shows the clinical impact on stage III colorectal cancer by the
machine learning method utilizing the comprehensive clinical and
genomic information. However, the major limitation of this study
is the small sample size. It is too early to make a strong conclusion
at this stage in terms of the case number.

MYOI8A and FBXW? intratumor heterogeneity variants are
potential targets in the cancer evolution model. MYOI8A is an
unconventional myosin that has been implicated in multiple cellular
processes. MYOI8A has been involved as a cancer driver.
Overexpression of MYOI8A was observed in metastatic prostate
cancer cell lines in a previous study (29, 30). Migration assay of
various cancer cell lines also revealed that MYOI8A-depleted cells
had decreased cell motility (31, 32). By analyzing the clinical data,
we found that patients without MYOI18A mutation in the founding
clone (F. MYO18A) had the worst DES (Figures 5B, C). Moreover,
the in vitro study showed knockdown of MY0I18A by siRNA caused
a reduction in cell migration activity by 20-40% (Figure 6). These
results imply that MYOI8A is a potential tumor driver for cancer
cell migration. The alteration of MYOI8A was common in the
founding clone (Figure 3). To conclude, the alteration of MY0I8A is
a gain-of-function or loss-of-function mutation; further in vitro and
in vivo investigations are needed to study the impact of MYOI8A
mutations on cell survival, proliferation, or angiogenesis. FBXW?7 is
a critical tumor suppressor involved in the ubiquitin-proteasome
system in human cancer. It has been demonstrated that metastatic
CRC patients with FBXW?7 missense mutations show shorter overall
survival compared with patients with wild-type FBXW?7 (33). The
results are consistent with our data showing poor prognosis survival
in the G1 and G2 groups.

In conclusion, this study highlights the importance of a
cancer evolution model in the development of new therapeutic
strategies. The integration of genomics and machine learning
could provide an opportunity to identify new targets for cancers.
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