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Progresses over the past years have extensively improved our capacity to use

genome-scale analyses—including high-density genotyping and exome and genome

sequencing—to identify the genetic basis of pediatric tumors. In particular, exome

sequencing has contributed to the evidence that about 10% of children and adolescents

with tumors have germline genetic variants associated with cancer predisposition. In

this review, we provide an overview of genetic variations predisposing to solid pediatric

tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma,

Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the

biological processes affected by the involved mutated genes. A careful description of

the genetic basis underlying a large number of syndromes associated with an increased

risk of pediatric cancer is also reported. We place particular emphasis on the emerging

view that interactions between germline and somatic alterations are a key determinant

of cancer development. We propose future research directions, which focus on the

biological function of pediatric risk alleles and on the potential links between the germline

genome and somatic changes. Finally, the importance of developing new molecular

diagnostic tests including all the identified risk germline mutations and of considering

the genetic predisposition in screening tests and novel therapies is emphasized.

Keywords: genetic predisposition, germline variants, cancer predisposition genes, pediatric tumors, cancer

susceptibility, germline-somatic interaction, SNP, next generation sequencing

INTRODUCTION

Genomic sequencing studies have highlighted that pediatric cancers typically have few somatic
mutations but a higher prevalence of germline alterations in cancer predisposition genes (1). The
contribution of germline variants in pediatric tumors has been estimated between 8 and 12% (2, 3).
Genetic variants are generally classified on the basis of their clinical effect: pathogenic variantmeans
any sequence change that, differing from the consensus wild-type sequence, directly contributes
to the development of the disease; likely pathogenic variants, instead, are genetic changes with
a high likelihood of being disease-causing, but additional evidence is expected to confirm their
clinical significance. Variant classification can arise from different methodologies and algorithms,
which can assign different weights to collected data. However, studies cited in the present review
generally refer to the American College of Medical Genetics and Genomics (ACMG) guidelines
for variants interpretation (4). In this process, multiple categories of data (such as frequency
in affected and unaffected populations, computational prediction tools, functional studies, and

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.590033
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.590033&domain=pdf&date_stamp=2020-10-28
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mario.capasso@unina.it
https://doi.org/10.3389/fonc.2020.590033
https://www.frontiersin.org/articles/10.3389/fonc.2020.590033/full


Capasso et al. Genetics of Pediatric Cancers

gene- or disease-specific information) are taken into account and
combined to determine a variant pathogenicity classification.

It is also important to note that genetic variants can be
detected through different genomic approaches and the type of
identified alteration depends on the nature of the assay used.
Large-scale genomic analyses such as whole-exome sequencing
(WES) or whole-genome sequencing (WGS) can identify
uncommon,moderate penetrant variants. SinceWES investigates
only the coding regions of the genome, it has proved very useful
in detecting most of the causative variants of Mendelian diseases
(5, 6). Furthermore, it has recently been used also to identify
rare and uncommon causative mutations of complex diseases (7).
On the other hand, WGS can capture nearly all known genetic
variations, including those falling in regulatory elements, with
much more uniform coverage of the genome, but it does not
allow to detect mosaic variants with low clonality or variations
causing DNA repetitions (8). Common, low-penetrance genetic
variants, instead, are mostly identified by genome association
study (GWAS), which assesses genotype–phenotype associations
through testing of variants across genomes of many individuals,
based on data obtained using numerous technologies, mostly
WGS or genome-wide single-nucleotide polymorphism (SNP)
arrays. Consequently, GWAS limitations are linked to the
technology on which it is based: e.g., SNP array-based GWAS
rely on pre-existing genetic variant reference panels (9). Finally,
besides SNP array, copy-number variations (CNV) can be
identified also through CGH array. Anyway, array methods

FIGURE 1 | Frequency of pediatric cancers in patients younger than 19 years. The figure shows the prevalence of the main pediatric cancer types among patients

younger than 19 years of age, calculated from Centers for Disease Control and Prevention (CDC) data (United States Cancer Statistics Data, https://wonder.cdc.gov/

cancer.html) and based on incidence in United States for the years 1999–2016. CNS, Central Nervous System. *This frequency is related to Wilms tumor and other

non-epithelial renal tumors.

cannot be used to detect single base pair changes, indels, balanced
chromosome rearrangements, and low-percent mosaicism (10).

Recently, in addition to germline pathogenic and/or likely
pathogenic variants in known cancer-predisposing genes, it
has been estimated that a high percentage (61%) of children,
adolescent and young adult patients with solid tumors carry
germline pathogenic and likely pathogenic variants in new
candidate genes, including PRKN, SMACAL1, SMAD7, and
TMPRSS3 (3). The detection of cancer predisposition can lead
to clinical benefits for patients, both for the molecular diagnosis
and for the presence of specific biological features, as well as to
eventually refine therapeutic choices. We provide an overview of
the most significant knowledge of germline predisposition for the
main pediatric solid tumors, which are central nervous system
tumors (medulloblastoma, ependymoma and astrocytoma),
neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma,
rhabdomyosarcoma, and Ewing sarcoma, altogether accounting
for 34.8% of all childhood cancers (Figure 1). Each tumor
description is organized into two subsections: “familial cancer”
and “sporadic tumor.” Familial cancer means a form of cancer
that has higher incidence in families than in the general
population due to rare, high-penetrance genetic variants. In this
group, we also included rare genetic syndromes that are not
usually considered as cancer syndromes but that predispose to
the development of solid pediatric tumors. The second group,
sporadic tumor, is referred to cancers which do not run in
families and are intended as multifactorial diseases whose onset
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can be attributed to the combined effect of environmental
and genetic factors. In sporadic cancers, genetic factors can be
categorized into two types: uncommon, moderate-penetrance
genetic variants, which for the studies considered in this review
show a frequency lower than 1–0.001% in the general population
and are not so rare as those associated with familial cancer, and
common, low-penetrance genetic variants.

The knowledge of genetic mutations responsible for
syndromic disorders associated with the risk of developing
pediatric cancer has greatly increased over the past years
(11). Indeed, several tumor predisposing syndromes are the
underlying cause of at least 8.5% of cancers in pediatric patients
(12). Thus, the role of general practitioners and pediatricians
in recognizing the major cancer genetic-associated syndromes,
in making appropriate referrals for genetic counseling and
testing when indicated, is crucial for a specific monitoring and
management of the patient.

Most cancer susceptibility genes are involved in fundamental
biological pathways such as cell-cycle control, chromatin
remodeling, or DNA repair. Therefore, alterations in these genes
compromise the normal control of cell growth and lead to a
substantial increase in the risk of developing cancer. Another

element of great interest discussed here is the presence of
cooperation between germline and somatic alterations, which
can represent an early tool for evaluating the clinical outcome
and for the stratification of patients in risk subgroups. We also
discuss evidence that points to a need for more collaborative
investigations in identifying driver events in pediatric cancers.

CENTRAL NERVOUS SYSTEM TUMORS

Central nervous system (CNS) tumors represent the most
frequent types of cancer in children aged 0–14 years, with a
mortality rate of 0.72 per 100,000 population (13). The threemost
frequent tumors are medulloblastoma (MB), ependymoma (EP),
and astrocytoma (AS) (Figure 2).

Medulloblastoma
MB is an embryonal tumor of cerebellum (14) that affects
children under the age of 14, with an average onset of about 6–8
years (Figure 2) and with a 5-year overall survival for standard-
risk patients of 70–85% (14). It is classified into four genetic and
molecular groups: the first two groups,WNT-activated (MBWNT)
and Sonic Hedgehog activated (MBSHH), are named for the

FIGURE 2 | Global incidence of pediatric cancers in patients younger than 19 years. The graph shows the global age-specific incidence rates (ASR) per million for

individual age groups (0–4 years, 5–9 years, 10–14 years, and 15–19 years) of pediatric cancer types discussed in this review. ASR reported next to the bars are

calculated from International Incidence of Childhood Cancer (IICC, https://iicc.iarc.fr/) data. *These ASR include also less frequent embryonal central nervous system

tumors.
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signaling pathways that play prominent roles in the pathogenesis
of those subgroups, while, since less is known about the biology of
the remaining two subgroups, they are numerically designated as
“Group 3” and “Group 4” (14). Damaging germline mutations in
known cancer-predisposing genes play an important role in two
main subgroups, MBWNT and MBSHH, in which genetic testing
is highly recommended (15). MBWNT is characterized at somatic
level by activating mutations in exon 3 of β-catenin (CTNNB1)
andmonosomy of chromosome 6, while MBSHH by amplification
of GLI2 andMYCN, as well as loss of 17p (16).

Familial Medulloblastoma

To date, only germline mutations in ELP1 have been found in
two independent families with MBSHH (17). Although inherited
or familial MB is extremely rare, there are few rare inherited
syndromes that are associated with increased risk of developing
this tumor (Table 2). Germline mutations of PTCH1 and SUFU,
by causing activation of the SHH signaling pathway, predispose
to MBSHH in Gorlin syndrome, an autosomal dominant disease
caused by mutations in PTCH1 (67, 124). In Turcot syndrome,
a rare disorder characterized by the association of colonic
polyposis and primary brain tumors, germline mutations of APC
predispose to the development of MBWNT (114). In MBWNT,
activation of the WNT pathway is due to somatic mutations
of CTNNB1 in most of tumors but it is also observed in
patients with only germline mutations of APC, stressing the
importance of genetic predisposition in high-risk patients (15,
114). Germline mutations in BRCA2 and PALB2, associated
or not associated with Fanconi anemia, have been found in
MBSHH (58, 125) and are often observed in association with
somatic homologous recombination repair defects (15). The role
of germline mutations in TP53 in MB is still widely debated
today. TP53 germline mutations affect MB prognosis differently
according to the different subgroups: germline mutations in
MBSHH are associated with poor prognosis, while both germline
and somatic mutations in MBWNT are associated with better
prognosis. This may be due to a different origin of the MB
itself (14). Patients with germline TP53 mutations can have
tumors characterized by catastrophic DNA chromothripsis and
are often associated with Li–Fraumeni syndrome (LFS), a cancer
predisposition disorder caused by germline mutations of the
tumor-suppressor p53 (71). Other MB-associated syndromes are
Bloom’s syndrome (31), ataxia telangiectasia (18), and Greig’s
cephalopolysyndactyly syndrome (14, 40, 45, 85, 122) (Table 2).

Sporadic Medulloblastoma

The association between MB and genetic syndromes explains
most of the genetic predisposition to MB. However, sporadic
forms are known in literature and are partially explained through
uncommon, moderate penetrant mutations identified by whole-
exome sequencing (WES) or whole-genome sequencing (WGS),
or common, low-penetrance genetic variants identified by
genome wide association study (GWAS) (Table 1 and Table 3).

Uncommon, Moderate-Penetrance Variants

In a study on 1,022MB patients, novel partial or total APC
deletions were found (15). These mutations were not associated
with any familial syndrome and predisposed to MBWNT. In

TABLE 1 | Rare, high-penetrance, and uncommon, moderate-penetrance

variants in genes predisposing to pediatric tumors and main biological pathways.

Pathways Gene(s) Tumors References

Collagen chain polymerization COL7A1 NB, RMS, WT (3)

Cytoskeletal and adhesion

signaling

GJB2 AS, CNS tumors,

EWS, OS, RMS

(3, 126)

CDH1 WT (3)

DNA base excision repair (BER) ERCC2 AS, OS (127–129)

DNA double-strand break repair

(DSB)

BRCA1 AS, CNS tumors,

EWS, OS, RB

(3, 126, 129,

130)

BRCA2 AS, NB, MB, RMS (2, 3, 15, 58,

125, 126)

CHEK2 CNS tumors,

EWS, NB, OS, RB,

RMS, WT

(3, 129, 131,

132)

BAP1 RB (3)

BLM EWS, MB (15, 130)

BRIP1 EWS, MB, OS (2, 3, 15, 129,

130)

NBN MB (15)

WRN MB (15)

PALB2 MB, OS, WT (3, 15, 129,

131, 132)

DNA mismatch repair system

(MMR)

MSH2 WT, OS (2, 3)

MSH6 RB, RMS, WT (3, 133)

PMS2 AS, CNS tumors,

EWS

(2, 3, 127,

130)

DNA repair FANCA AS, MB (15, 126)

FANCC EWS, MB (2, 15, 130)

FANCI RMS (133)

FANCL OS (2, 129)

FANCM OS (2, 129)

ATR RMS (3)

MUTYH AS, EWS (2, 127)

RAD51D WT (3)

RECQL4 OS (129)

Genome stability and regulation

of cell cycle

ALK Familial/sporadic

NB

(2, 3, 134,

135)

ATM EWS, MB, OS,

RB, RMS

(3, 15, 129,

133)

RB1 OS,

familial/sporadic

RB

(2, 3, 129,

135, 136)

TP53 AS, EWS, MB,

NB, OS, RMS, WT

(2, 3, 15, 127,

129–131,

133, 135,

137–139)

Metabolic pathways HMBS CNS tumors (3)

FAH OS (129)

SDHA NB (3)

Protein interaction at synapsis PTPRD Advanced/metastatic

EWS

(140)

Protein translation and

modification

KIF1Bβ Familial NB (141)

RET signaling and G-protein

signaling, H-RAS regulation

pathway

ERBB4 NB (3)

NF1 AS (126)

RET EWS (2, 130)

(Continued)
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TABLE 1 | Continued

Pathways Gene(s) Tumors References

miRNA processing genes DIS3L2 WT (131, 132,

137)

DROSHA WT (131, 137)

XPO5 WT (131)

DICER1 Familial/sporadic

WT, RMS

(3, 52, 55,

131, 137,

142)

Sonic Hedgehog pathway (SHH) GPR161 MB (143)

PTCH1 MB (15, 67)

SUFU MB (15, 67)

Spindle assembly checkpoint

(SAC)

TRIP13 Familial WT (83)

Transcriptional regulation and

chromatin remodeling

CTR9 Familial WT (144)

ELP1 MB (17)

LZTR1 CNS tumors, EWS (3)

PHOX2B Familial NB (145)

POLE EWS, NB (3, 130)

SMARCA4 NB (3, 146)

REST Familial/sporadic

WT

(147, 148)

TRIM28 Familial/sporadic

WT

(147)

WT1 Familial/sporadic

WT

(147, 149,

150)

WNT signaling pathway APC MB (15)

Other 11p15 Familial/sporadic

WT

(150, 151)

Rare, high-penetrance variants are related to familial forms of tumors, while uncommon,

moderate-penetrance variants refer to sporadic forms. When the tumor form is not

specified we refer to uncommon, moderate-penetrance variants. AS, astrocytoma; CNS,

central nervous system; EP, ependymoma; EWS, Ewing sarcoma; MB, medulloblastoma;

NB, neuroblastoma; OS, osteosarcoma; RB, retinoblastoma; RMS, rhabdomyosarcoma;

WT, Wilms tumor.

the same study, 1% of patients (classified as MBSHH) had
TP53 mutations but only 5/11 patients showed family history
of cancer, emphasizing the role of TP53 germline mutations
in predisposing to sporadic MB. Notably, germline missense,
frameshift, or non-sense mutations in the DNA-binding domain
of TP53 were found to be associated with a series of events
at the somatic level such as rearrangements, chromothripsis,
and loss of heterozygosity in MBSHH patients, whereas germline
mutations in SUFU and PTCH1 co-occurred with somatic loss
of heterozygosity (15) (Table 4). These results further provide
evidence that novel associations between germline variants and
specific somatic events, beyond those reported by Knudson in
1971, can play a role in carcinogenesis. Indeed, recent body of
literature supports the hypothesis that specific germline variants
determine which somatic events andmutations are generated and
selected in cancer cells during tumorigenesis (179).

MB can also arise in patients with germline mutations in other
known cancer genes such as ATM, FANCA, FANCC, NBN,WRN,
BLM, and BRIP1 and in candidate genes like CHEK2, CREBBP,
RAD51, ERCC2, and ERCC4. All of these genes are involved in

cell-cycle regulation and DNA repair (15). Frameshift, protein-
truncating, and missense mutations occurring in GPR161, a
gene never previously associated with MB, were found in 6
MBSHH cases (143) that, at the somatic level, showed loss of
heterozygosity with retention of the mutated allele, confirming
its role as driver gene in MBSHH. GPR161 functions are essential
for embryonic development and for the proliferation of granular
cells (143). Germline mutations in ELP1 have been very recently
found to predispose to MBSHH and to be associated with two
consecutive somatic events: loss of the 9q arm, with consequent
loss of the wild-type copy of PTCH1 and ELP1, and a second
independent mutation event in PTCH1 (17) (Table 4). This
study, importantly, showed that 40% of MBSHH patients carry
disease-predisposing mutations and that genetic predisposition
to proteome instability may be a determinant in the pathogenesis
of pediatric brain cancers (17) (Table 1).

Common, Low-Penetrance Variants

To date, there are no relevant GWAS conducted to identify
common variants associated with MB. Only one study has
been performed in a small sample including 244MB cases and
247 control subjects from Sweden and Denmark, but no locus
reached the significance threshold (154). The most significant
locus was 18p11.23 including PTPRM (154). A different approach
that starts from the most frequently mutated genes in MB
such as CCND2, CTNNB1, DDX3X, GLI2, SMARCA4, MYC,
MYCN, PTCH1, TP53, and KMT2D was proposed to identify
MB-associated common variants (162). Eight variants, located
in CCND2, PTCH1, and GLI2, associated with the risk of
developing MB (162) (Table 3). However, these findings need
further validation in independent cohorts of cases and controls.

Microsatellites are tandem repeats of 1–6 base pairs, and
their variability is associated with numerous tumors, including
MB. In a recent work, starting from WES and WGS data, the
authors developed an algorithm able to identify a signature
of 43 microsatellites that distinguished with high-sensitivity
and specificity MB subjects from controls in two independent
sets of MB cases and controls (180). Interestingly, in silico
analyses revealed that genes harboring these microsatellite loci
had cellular functions important for tumorigenesis (180).

Other Brain Tumors
EP originates from the walls of the ventricular system (79), arises
between 0 and 4 years (Figure 2) (79), and has a 5-year overall
survival of about 60% (181). EP is diagnosed in ∼33–53% of
patients with type 2 neurofibromatosis, with high occurrence
of truncating mutations in NF2 (97). EP has recently been
associated with Kabuki syndrome, with mutations in KMT2D
(70) and rarely occurs in Turcot and MEN1 syndromes with
mutations in MSH2 and MEN1, respectively (79) (Table 2). To
date, large studies on common variants and sporadic forms are
lacking (Table 1). AS is classified into several forms including
pilocytic, anaplastic, diffuse, and glioblastoma (182). Pilocytic
AS is the most common form in children and young adults,
with an average age at onset between 0 and 9 years (13)
(Figure 2) and a 5-year survival of 94.1% (13). Regarding
the genetic predisposition, one large study reported germline
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TABLE 2 | Syndromes associated with pediatric tumors. Frequencies reported refer to the occurrence rate of pediatric cancers in patients with genetic syndromes.

Syndrome/disease Inheritance pattern Gene/s associated Tumor Frequency References

Ataxia telangiectasia AR ATM MB Extremely rare (18)

ATR-X syndrome AR ATR-X OS Extremely rare (19)

Baller–Gerold syndrome AR RECQL4 OS Extremely rare (20, 21)

Beckwith–Wiedemann syndrome Imprinting, AD CDKN1C NB 4–21% (22, 23)

KCNQ1OT1 RMS 7.5% (24–28)

11p15 or H19 loci WT 7–30%/20% (29, 30)

Bloom syndrome AR RECQL3 (BLM) MB Extremely rare (31)

OS 2% (32, 33)

WT <5% (29, 34)

Bohring-Opitz syndrome AD ASXL1 WT 7% (35, 36)

CCHS/hirschsprung syndrome AD PHOX2B NB 10–20% (37–39)

Constitutional mismatch repair deficiency AR MSH2, MSH6, MLH1,

PMS2

MB 11.6% (33, 40)

Costello syndrome AD HRAS NB 17% (41)

RMS 17% (42–44)

Curry–Jones syndrome Unknown GLI3 MB Extremely rare (45, 46)

Diamond–Blackfan anemia AD Unknown OS <1% (33, 47–50)

Denys–Drash syndrome AD WT1 WT 90% (51)

DICER1 syndromes AD DICER1 RMS Rare (52–54)

WT <5% (29, 55)

Familial paraganglioma/pheochromocytoma

syndrome

AD SDHB NB Rare (56)

Fanconi anemia AR BRIP1, BRCA2, PALB2 NB rare (57)

BRCA2, PALB2 MB, 25% (58, 59)

WT >20% (60–62)

Frasier syndrome AD WT1 WT 5–10% (63)

Gorlin syndrome AD PTCH1 RMS Rare (64, 65)

WT <5% (36, 65, 66)

PTCH1 MB <2% (67, 68)

SUFU 30-40%

Hyperparathyroidism-jaw tumor syndrome AD CDC73 (HRPT2) WT <5% (60)

Isolated hemihypertrophy AD 11p15 locus WT 6%/<5% (69)

Kabuki syndrome AD KMT2D EP Extremely rare (70)

Li–Fraumeni syndrome AD TP53 MB 14% (68, 71)

NB rare (72)

OS 12% (73–76)

RMS 80% (75, 77)

WT <5% (29, 78)

MEN1 syndrome AD MEN1 EP Rare (79)

Mosaic variegated aneuploidy syndrome AR BUB1B RMS High (80, 81)

BUB1B, TRIP13 WT >20% (60, 80, 82, 83)

Muliebry nanism syndrome AR TRIM37 WT <5% (29, 84)

Nijmegen breakage syndrome AR NBN MB Extremely rare (85)

NBS1 RMS Rare (86, 87)

Noonan syndrome AD PTPN11, KRAS NB 17% (88)

SOS1 RMS Rare (89–93)

Noonan-like syndrome AD CBL RMS Extremely rare (94)

Neurofibromatosis type I AD NF1 NB Rare (95, 96)

RMS 0.5% (44)

Neurofibromatosis type II AD NF2 EP 3–6% (68, 97)

Paget’s disease of bone AD Unknown OS <1% (98, 99)

(Continued)
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TABLE 2 | Continued

Syndrome/disease Inheritance pattern Gene/s associated Tumor Frequency References

Perlman syndrome AR DIS3L2 WT 50–60% (33, 100)

PIK3CA-related segmental overgrowth Unknown PIK3CA WT <5% (29, 101)

ROHHAD Unknown Unknown NB Rare (39)

Rothmund–Thomson and RAPADILINO

syndrome

AR RECQL4 OS 30–60%, 13.3% (33, 102–108)

Rubinstein–Taybi syndrome AD CREBBP, P300 MB Extremely rare (14)

CREBBP NB Extremely rare (77, 109)

Simpson–Golabi–Behmel syndrome X-linked GPC3 NB 10% (77)

WT 10% (60, 82, 110)

Sotos syndrome AD NSD1 NB Rare (111, 112)

WT <5% (36, 113)

Turcot syndrome AR APC MB <1% (68, 114)

MSH2 EP 53% (68, 79)

WAGR syndrome AD WT1 WT 50% (60, 115)

Weaver syndrome AD EZH2 NB Rare (116, 117)

Werner syndrome AR RECQL2 (WRN) OS 7% (108, 118–120)

Wolf–Hirschhorn syndrome Unknown MSX1 NB Extremely rare (121)

Xeroderma pigmentosum AR DDB2, ERCC1, ERCC2,

ERCC3, ERCC4, ERCC5,

POLH, XPA, XPC

MB Extremely rare (122)

13q deletion syndrome Unknown RB1 RB Variable (123)

AD, autosomal dominant; AR, autosomal recessive; EP, ependymoma; MB, medulloblastoma; NB, neuroblastoma; OS, osteosarcoma; RB, retinoblastoma; RMS, rhabdomyosarcoma;

WT, Wilms tumor.

splicing mutations in the tumor-suppressor genes MUTYH and
ERCC2 and point mutations in TP53 and PMS2 (127) (Table 1).
Pathogenic mutations in NF1, BRCA2, FANCA, and GJB2 have
been also identified in a recent study involving 280 patients with
different forms of AS (126).

NEUROBLASTOMA

Neuroblastoma (NB) originates from neural crest cells and
affects the nervous sympathetic system (183). NB exhibits unique
features, such as early age of onset, high frequency of metastatic
disease at diagnosis in patients over 1 year of age (Figure 2), and
the tendency for spontaneous regression of tumors in infants. In
high-risk cases, the survival rate is only 50% (183). NB tumors,
as well as other pediatric cancers, present few recurrent somatic
mutations but frequent chromosomic aberrations such MYCN
amplification, 17q gain, 1p deletion, and 11q deletion (184).

Familial Neuroblastoma
Familial NB represents 1–2% of cases, with PHOX2B and
ALK as major susceptibility genes (184) (Table 1). The first
identified familial gene is PHOX2B (37, 145), already associated
with congenital central hypoventilation syndrome (CCHS)
(185) and encoding a transcription factor driving neural
crest differentiation (186). NB-exclusive mutations are mainly
missense and frameshift (187). PHOX2B germline mutations
account for ∼10% of familial NB (188), but this gene is also
mutated in 2% of sporadic cases (189). Subsequently, the major
susceptibility gene was identified in ALK. Its gain-of-function

mutations, which account for 75% of familial cases (134, 188),
are mainly located in the kinase domain of the encoded tyrosine
kinase receptor and show incomplete penetrance (190). ALK
somatic mutations are also reported in 10–12% of primary
sporadic NB tumors (134, 191). Additional NB-predisposing
genes have not yet been discovered. Mutations in KIF1Bβ (141)
and GALNT14 (192) and in 16p12–13, 4p16, and 1p loci (193–
195) (Table 1) have been reported in related patients, but further
validations are needed.

Children suffering from specific cancer predisposition
syndromes such as LFS and others (Table 2) show an increased
NB risk (22, 38, 39, 41, 56, 57, 72, 77, 88, 95, 111, 116, 121). Thus,
protocols for NB surveillance need to be established.

Sporadic Neuroblastoma
Only a small subset of sporadic NB cases has an identifiable
somatic oncogenic point mutation (196, 197), suggesting that
predisposing genetic factors found in GWAS studies could
cooperate to increase disease occurrence (198, 199).

Uncommon, Moderate-Penetrance Variants

Recent studies focused on uncommon germline variants, which
presumably have a larger effect on predisposition compared
to common ones. In different studies, pathogenic and likely
pathogenic variants were identified in predisposition genes such
as ALK, CHEK2, BRCA2, SMARCA4, and TP53 (Table 1) but
also in candidate genes like AXIN2, PALB2, BARD1, PINK1,
APC, BRCA1, SDHB, and LZTR1 (2, 135, 146, 196, 197, 200)
Specifically, TP53 variants are strongly associated with NB
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susceptibility (201). All thementioned genes are involved inDNA
repair and maintenance of genomic integrity (Table 1).

Common, Low-Penetrance Variants

GWAS studies identified several NB susceptibility loci (Table 3)
including CASC15 (160), BARD1 (157), LMO1 (175), HACE1,
and LIN28B (155) associated with high-risk NB, whereas
DUSP12, HSD17B12, DDX4, and IL31RA associated with the
low-risk NB group (161, 198). Functional studies of these
loci have highlighted the key role of GWAS in elucidating
NB carcinogenesis. A SNP in the long non-coding RNA
(lcnRNA) CASC15 produces a truncated isoform, whose lower
expression correlates with advanced disease (202). Loss of
another lncRNA, NBAT-1, at the same locus, contributes
to aggressive NB by increasing proliferation and impairing
differentiation of neuronal precursors (203). Diverse functional
studies have elucidated the role of BARD1 and its variants in NB
development (204). Variants in the BARD1 promoter decrease
the expression of the tumor-suppressor form which protects NB
cells from DNA damage (205, 206), whereas variants in introns
increase the expression of an oncogenic isoform, BARD1β ,
which stabilizes the Aurora kinases (207, 208). LMO1 decreased
expression, caused by a variant in a super-enhancer which
disrupts GATA binding (209), reduces NB cell proliferation.
Finally, the activation of LIN28B, due to genetic variants, can
enhance MYCN levels via let-7 microRNA suppression (155, 210,
211). The genetic landscape of sporadic NB has been amplified
with the discovery of additional susceptibility genes including
RSRC1/MLF1 and CPZ (159), SPAG16 (177), NEFL (156), and
CDKN1B (170).

Reanalyses of GWAS data have discovered novel mechanisms
and genetic factors that promote NB development (Table 3). Two
studies clearly demonstrate a cooperation between predisposing
variants and somatic aberrations in NB initiation (Table 4).
Indeed, SNPs in MMP20 (167) and KIF15 (168) increase
NB susceptibility in the presence of 11q deletion and MYCN
amplification, respectively, whereas another study shows that
specific mtDNA haplogroups can influence the risk of NB
(212). We have provided evidence that SNPs in PARP1 and IL6
might be predictive biomarkers of response to chemotherapy
and prognosis (213, 214). Finally, our recent works found that
NB shares risk loci with other complex diseases and tumors.
Indeed, SNPs in 2q35, 3q25.32, and 4p16.2 are cross-associated
with congenital heart disease (CHD) and NB (215), while
1p13.2 showed cross-association with NB and melanoma (216).
Very recently, a cross-match investigation between germline
alterations in pediatric patients with different solid tumors and
CHD-related genes has identified that NB is among the tumors
with the highest enrichment of germline pathogenic and likely
pathogenic variants in these genes (3).

Constitutional Chromosomal Abnormalities
Highly associated with NB are hemizygous deletion in 1q21.1,
disruption in NBPF23 (217), and microdeletion in 16p11.2,
containing SEZ6L2 and PRRT2 (218). Deletion including
SLFN11, duplication of SOX4, and partial deletion of PARK2 have
been identified in three different patients, respectively (219).

TABLE 3 | Common, low-penetrance variants in genes predisposing to pediatric

tumors and main biological pathways.

Pathways Gene(s) Tumors References

Centrosome stabilization KIZ EWS (152)

Cytoskeletal and adhesion

signaling

NHS WT (153)

PTPRM MB (154)

Differentiation NKX2-2 EWS (152)

NEFL, LIN28B NB (155, 156)

DNA double-strand break repair

(DSB)

BARD1 NB, WT (157, 158)

Extracellular matrix remodeling MMP20 NB (159)

Genome stability and regulation

of cell cycle

BMF EWS (152)

CASC15/NBAT-1,

DUSP12

NB (160, 161)

CCND2 MB (162)

MDM2, MDM4 RB (163, 164)

Immunity pathways HACE1, IL31RA NB (155, 161)

Metabolic pathways ACYP2 OS (165, 166)

HSD17B12 NB (161)

PCSK9, TCN2 WT (153)

Protein translation and

modification

CPZ, DDX4, KIF1, NB (159, 161,

167, 168)

DDX3X MB (162)

Replication and telomere

maintenance

TERC, NAF1,

TERT, OBFC1,

CTC1, RTEL1

OS (165, 166)

RET, RAS, and G-proteins

signaling

CDKN1A RB (169)

CDKN1B NB (170)

KRAS WT (171)

RNA biogenesis and processing DDX1 WT (153)

TARDBP EWS (172)

Sonic Hedgehog pathway (SHH) GLI2 MB (162)

Synaptic proteins and

neurotransmitters

DLG2, WT (153)

GRM4 OS (173)

Transcriptional regulation and

chromatin remodeling

EGR2, NR0B1,

RREB1

EWS (152, 172,

174)

KMT2D, MYC,

MYCN, SMARCA4

MB (162)

LMO1,

RSRC1/MLF1

NB (159, 175)

NFIB Metastatic

OS

(176)

WNT signaling pathway CTNNB1 MB (162)

Others 2p25.2 OS (173)

SPAG16 NB (177)

EWS, Ewing sarcoma; MB, medulloblastoma; NB, neuroblastoma; OS, osteosarcoma;

RB, retinoblastoma; WT, Wilms tumor.

RETINOBLASTOMA

Retinoblastoma (RB) is a pediatric malignancy of the neural
retina, commonly initiated by biallelic inactivation of RB1 (220)
and affecting one (unilateral) or both eyes (bilateral). The median
age at diagnosis is 12 months in bilateral tumors and 24 months
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TABLE 4 | Germline–somatic interactions identified in genes predisposing to

pediatric tumors.

Tumors Gene Frequency Somatic interaction References

MB TP53 Rare DNA chromothripsis (71)

ELP1 Rare Loss of the 9q arm and a

second independent

mutation event in PTCH1

(17)

NB KIF15 Common Increased NB risk in

presence of MYCN

amplification

(168)

MMP20 Common Increased NB risk in

presence of 11q deletion

(167)

EWS EGR2 Common EWSR1-FLI1 chimera (178)

NR0B1 Common (174)

EWS, Ewing sarcoma; MB, medulloblastoma; NB, neuroblastoma.

in unilateral ones (220) (Figure 2). Patient survival is >95% in
high-income countries but <30% globally (220). The first studies
on RB unveiled the importance of genetics in cancer; indeed, the
“two-hit hypothesis” formulated by Knudson (221) on RB1 has
been paradigmatic for the understanding of tumor-suppressor
genes and the study of familial cancers.

Familial Retinoblastoma
Hereditary RB encompasses about 40% of all cases with
most having bilateral tumors, 15% unilateral, and 5% trilateral
(associated with midline brain tumor) (220). Familial RB is
distinctly associated with the RB1 tumor-suppressor gene, which
encodes pRB, a crucial regulator of the cell cycle. Germline
mutations in RB1 are inherited in 25% of cases in an autosomal-
dominant manner. A broad spectrum of inactivating RB1
germline mutations have been described, mainly nonsense and
frameshifts affecting the coding region, few large deletions, and
<5% silencing gene promoter (136). Penetrance and expressivity
can vary within families due to partially functional RB1 alleles
(222, 223) or parent-of-origin effect (224). Influence of genetic
modifiers such as MDM2, MDM4 (225, 226), or MED4 (227)
and polymorphisms in p53 (228), CDKN1A (169), and CDKN2A
(229) could also influence RB development. Reduced MDM2
and MDM4 expression may increase the RB1 haploinsufficiency,
whereas variants affecting the activity of p53 pathway effectors
impact cell-cycle arrest. However, studies on larger cohorts of
patients are required to confirm these findings. A small subset
of hereditary RB patients is not carrier of RB1 mutations.
Investigation through a clinical exome gene panel within 3
families proposed FGFR4, NQO1, ACADS, CX3CR1, GBE1,
KRT85, and TYR as possible candidate genes involved in RB
oncogenesis, given their association with the retinoic acid
pathway (230).

RB is generally described as retinoblastoma predisposition
syndrome since germline RB1 mutations lead to a high risk
of second primary malignancies (231). Interestingly, RB onset
is reported in 13q deletion syndrome, caused by deletion of
part of the long arm of chromosome 13, where RB1 is located
(123, 232) (Table 2). Patients with this syndrome show a very

wide phenotypic spectrum depending on the size and the location
of the deletion (123, 232, 233).

Sporadic Retinoblastoma
Sporadic RB is always unilateral. Biallelic loss of RB1 is found
in 98% of cases, whereas 2% show MYCN amplification (234,
235). A significant proportion of sporadic RB exhibits somatic
mosaicism for RB1mutations (236, 237).

Uncommon, Moderate-Penetrance and Common,

Low-Penetrance Variants

Susceptibility variants have been investigated mostly in patients
with hereditary RB. However, given the role of the p53
pathway in RB development, polymorphisms in genes such
as MDM2 (163), MDM4 (164), and CDKN1A (169) could
also influence the development of the sporadic form (Table 3).
Uncommon variants conferring RB risk may be present in
asymptomatic individuals. Indeed, high-throughput analysis
revealed that several low-frequency RB1 variants are present
in the human population, including rare alleles disrupting
splicing (238).

Constitutional Chromosomal Abnormalities
Mosaic and non-mosaic chromosomal deletions of 13q14 region
are causative of RB (123, 239). Additionally, duplication of
1q21.1, containing the oncogene BCL9, has been reported in a
patient with bilateral RB (240).

WILMS TUMOR

Wilms tumor (WT), also known as nephroblastoma, is the
most common renal malignancy of childhood, with a median
age at diagnosis between 2 and 3 years (241) (Figure 2).
It is considered an embryonal tumor as it arises from the
aberrant kidney development, due to genetic anomalies in
genes essential for fetal nephrogenesis (29). WT treatment is
successful with a 5-year overall survival of about 90% and
75% for localized and metastatic disease, respectively (82).
It is estimated that about 10% of WT cases are caused by
genetic predisposition factors, mainly represented by germline
pathogenic variants or epigenetic alterations occurring early
during embryogenesis (147, 242). The number of known
susceptibility loci has significantly increased over the past
years, even if our knowledge is still incomplete and further
predisposition factors remain to be discovered. The landscape
of somatic genetic alterations in WT is quite broad, with
classical genetic changes involving WT1, the IGF2 locus, the
WNT pathway, MYCN and TP53 but also driver mutations in
several additional cancer genes including epigenetic remodelers,
miRNA processing genes and transcription factors essential for
nephrogenesis (29).

Familial Wilms Tumor
Several congenital malformation and cancer predisposition
syndromes are associated with the risk of developing WT
(Table 2). Some of the most known and characterized syndromes
are associated with constitutional alterations in WT1 at 11p13
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(60). WT1 was the first gene identified in WT and encodes a
zinc-finger transcription factor, essential for renal and gonadal
development (243). A syndrome frequently associated with high
risk of developing WT (around 50%) is the Wilms tumor–
aniridia syndrome (WAGR), caused by microdeletions of 11p13
including WT1 and PAX6 (115, 244). The second WT1-related
disorder is Denys–Drash syndrome (DDS), due to missense
variants in WT1 exons 8 or 9, which affect critical residues in
the zinc finger domains (51). The risk of WT in children with
DDS is about 90% (241). Another syndrome, phenotypically
similar to DDS but with a lower risk of WT development, is
Frasier syndrome (FS), caused by splicing variants that result
in an imbalance of WT1 isoforms (63). The second major WT
locus, identified at 11p15 (245), is also characterized by multiple
germline epigenetic and genetic changes causing the overgrowth
disorder Beckwith–Wiedemann syndrome (BWS). High WT
risk is specifically associated with uniparental paternal disomy
at 11p15 and to isolated H19 hyper-methylation that results
in biallelic expression of IGF2 and over-activation of the IGF
signaling pathway (30, 246). Table 2 reports other constitutional
genetic mutations underlying both congenital syndromes and
WT predisposition (34, 35, 61, 66, 69, 78, 80, 84, 100, 101, 110,
113).

WT is primarily a non-familial condition, with only about
2% of affected individuals belonging to familial pedigrees
(29) (Table 1). A small proportion of familial cases are due
to germline WT1 variants (149, 150) and mutations in the
H19 region of 11p15 (151). Two further predisposition loci
at 17q21 (FWT1) and 19q13 (FWT2) were identified by
genetic linkage studies, but the causative genes still remain
not fully characterized (247). Another cause of familial WT
is the presence of inactivating mutations in the DICER1
miRNA processing gene, also causative of cancer susceptibility
in DICER1 syndrome (55). Other recognized familial WT
predisposition genes are CTR9 and REST (144, 148, 248). CTR9
encodes a key component of the PAF1 complex, implicated
in maintenance of stem cell pluripotency (144), while REST
encodes the RE1-silencing transcription repressor, well-known
for its role in repressing neural development and differentiation
(249). Rare biallelic TRIP13 mutations have been found in a
WES study on familial WT pedigrees (83). TRIP13 encodes a
member of the spindle assembly checkpoint complex, whose
inactivation leads to chromosome segregation dysfunction and
aneuploidy (83). Pathogenic inactivating mutations of TRIM28
have been found in about 8% of familial WT in a sequencing
study on 890 patients (147). These mutations have been
found to show a strong parent-of-origin effect and a robust
association with the epithelial subtype of WT (147, 250, 251).
The same study reports constitutional mutations in FBXW7,
NYNRIN, and CDC73 as contributors to a small number of
familial cases, and pathogenic mutations in TRIM28, FBXW7,
and KDM3B as de novo events in children with sporadic
tumors (147).

It is important to note that, to date, germline pathogenic
variants have been identified only in a small proportion of
familial WT cases and so that the underlying causative genetic
events remain still obscure for the majority of individuals.

Sporadic Wilms Tumor
Many genetic causes of familial and syndromic WT also
contribute to sporadic cases, e.g., constitutional WT1 mutations
and germline 11p15 anomalies (150, 151). It is currently
estimated that in sporadic cases the number of predisposition
genes is more than 20 (147). Next-generation sequencing (NGS)
and GWAS approaches have allowed researchers to discover
an ever-growing number of uncommon (Table 1) and common
(Table 3) genetic variants associated with WT susceptibility.

Uncommon, Moderate-Penetrance Variants

Two recent WGS and WES studies have identified new
pathogenic germline variants in CHEK2 and PALB2 in children
with sporadic WT (131, 132). Both PALB2 and CHEK2 are
involved in DNA repair pathways and are associated with breast
cancer predisposition (62, 252). Germlinemutations in REST and
TRIM28, in addition to their role of familial WT predisposition
genes, are also responsible for uncommon sporadic cases (148,
251). Additional pathogenic and likely pathogenic variants were
identified in predisposition genes such as TP53, DIS3L2, and
MLLT1, but also in candidate genes like EP300, HDAC4, HACE1,
ARID1A, NF1, MYCN, and GLI3 (131, 132, 137), that need
to be validated in independent cohorts. Finally, exome and
transcriptome sequencing studies have revealed constitutional
mutations in the miRNA processing genes DROSHA, DGCR8,
DICER1, and XPO5 (131, 137), some of which associated with
the blastemal subtype of WT (137).

Common, Low-Penetrance Variants

The first WT related GWAS study was performed by Turnbull
et al. (153), using a dataset of 757 affected and 1.879 controls from
North America and subsequently validated in two independent
replication series from UK and US populations. They identified
two significant SNPs at 2p24 (rs807624 and rs3755132), in the
promoter of DDX1, and one SNP at 11q14 (rs790356) located
near DLG2. They also identified candidate predisposition loci at
5q14, 22q12, and Xp22, located near the genes PCSK9, TCN2,
and NHS, which need further validation (153). More recently,
the group of Fu and colleagues performed two candidate gene
studies on Southern Chinese populations and found a significant
association between WT risk and BARD1 (158) and KRAS (171)
polymorphisms, respectively. However, both associations need to
be validated in larger cohorts.

Constitutional Chromosomal Abnormalities
Few chromosomal aberrations and copy-number variations
(CNVs) are known to be WT predisposing genetic factors. In
addition to karyotypic abnormalities affecting 11p13 and 11p15
(60), a very small number of WT patients with gain of entire
chromosomes have been reported, specifically with trisomy 18
and trisomy 13 (60). Rare chromosomal aberrations have been
identified at 2q (60, 253, 254) and 7q (255, 256) regions, with
terminal deletions and balanced and unbalanced translocations.
A constitutional de novo balanced translocation was also
identified in a child with bilateral WT, affecting the tumor-
suppressor gene HACE1, also reported as NB susceptibility gene.
HACE1 controls growth and apoptosis and is often somatically
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mutated in WT (257). Moreover, gain of MYCN (2p24), which
is predominantly a somatic event, has been reported as a
rare germline aberration (258). Finally, in 2020, a germline
duplication of SUZ12 has been detected in a WT patient carrying
other germline pathogenic variants in new candidate cancer
predisposition genes (3).

OSTEOSARCOMA

Osteosarcoma (OS) is the most common primary bone cancer.
This tumor has a bimodal distribution with a high peak during
adolescence and a smaller peak in elderly individuals (259)
(Figure 2). Survival rates for children and young adults with
non-metastatic disease have remained at 60–70%; however,
outcome is reduced in patients with metastases (259). Unlike
other childhood sarcomas, which are characterized by specific
chromosome rearrangements and low mutation rate, complex
genomic rearrangements are involved in OS. Indeed, OS exhibits
extensive intra-tumoral heterogeneity and has a higher mutation
rate (259).

Familial Osteosarcoma
OS is a sentinel cancer in many heritable cancer predisposition
syndromes, including autosomal dominant cancer predisposition
syndromes such as LFS (73–75) and Diamond–Blackfan anemia
(47–50) (Table 2). Furthermore, recessive cancer syndromes
associated with OS are Rothmund–Thomson syndrome (102–
105), Baller–Gerold syndrome (20, 21), RAPADILINO syndrome
(106, 107), Werner syndrome (118–120), Bloom syndrome (32),
and ATR-X syndrome (19). OS has also been seen to arise in
Paget’s disease of bone (98, 99).

Sporadic Osteosarcoma
Targeted gene sequencing and WGS and WES studies have
identified uncommon variants in tumor-suppressor and cancer
predisposition genes (Table 1), while candidate gene, pathway
studies, and GWAS have discovered common variants in genes
involved in several key pathways for OS development (259)
(Table 3).

Uncommon, Moderate-Penetrance Variants

In 2015, a sequencing study on 765 germline DNA samples
showed the presence of uncommon TP53 germline variants that
could contribute to OS development; 3.8% of these variants were
associated with LFS, and 5.7%were uncommon exonic variants of
uncertain clinical significance (138). Another sequencing study
on 1120 cases found 7/39 OS patients carrying pathogenic and
likely pathogenic variants in TP53, RB1, APC,MSH2, and PALB2
(2). In 2016, a targeted exon sequencing on 1162 patients with
sarcoma found that >50% of all patients carried pathogenic
variants in TP53, BRCA2, ATM, ATR, and in ERCC2 (128).
Among 11% of patients with OS, one patient showed a probable
pathogenic variant in ERCC2. In the same work, an excess of
functionally pathogenic variants in ERCC2 was found to enhance
cell sensitivity to cisplatin, commonly used in the treatment of OS
(128). Recently, a sequencing study of 1244 OS patients showed
that 28% of patients carried pathogenic and likely pathogenic

variants in OS susceptibility genes, identifying new candidates
(CDKN2A, MEN1, VHL, POT1, and ATRX) that require further
confirmation in independent cohorts (129).

Common, Low-Penetrance Variants

In 2013, the first GWAS study on 941 cases and 3291 controls
of European ancestry, identified two risk loci, one at 6p21.3
(rs1906953) mapping in intron 7 of GRM4, and the other at
2p25.2 (rs7591996) in an intergenic region (173). Subsequently, a
GWAS study on OS metastasis at diagnosis identified rs7034162
at 9p24.1 (in NFIB) associated with metastasis (176). Functional
investigations showed that reduced NFIB expression, due to the
risk allele of the rs7034162 SNP, promoted an increase of OS
cell migration, proliferation, and colony formation (176). In
2016, a case–control study identified that, for SNPs in genes
associated with inter-individual variation in leukocyte telomere
length (LTL) (ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, and
RTEL1), the allele associated with longer LTL increased OS
risk, mainly rs9420907 in OBFC1 (165). These findings were
confirmed in 537 OS cases belonging to California Cancer
Registry (166).

Constitutional Chromosomal Abnormalities
Next to the heterogeneous somatic CNV scenario present in
OS, in a study conducted on 54 patients with childhood tumor,
two large germinal CNVs were identified in 2 OS patients:
dup4q13.33 of 476 kb containing STATH, CSN1S2B, CABS1,
CSN1S1, CSN2, HTN3, HTN1, CSN1S2A, C4orf40, ODAM,
FDCSP, and CSN3; and dup18q21.33 of 600 kb containing
RNF152, CDH20, and PIGN (240). In 2020, a duplication of
DDX10 in an OS patient with a germline variant inGJB2 has been
reported (3).

RHABDOMYOSARCOMA

Rhabdomyosarcoma (RMS) is the most common soft tissue
sarcoma in childhood and represents a high-grade neoplasm of
skeletal myoblast-like cells. Currently, 5-year overall survival of
pediatric RMS exceeds 70% (260). The two major histological
subtypes are embryonal (ERMS, 67%) and alveolar (ARMS,
32%) (261). ARMS is uniformly distributed among the different
age groups (Figure 2) and has a worse prognosis; ERMS has
a bimodal distribution (the first peak in early childhood and
the second one in early adolescence) and has a better outcome
(260, 262) (Figure 2). At somatic level, ARMS is often associated
with fusion of FOXO and PAX3 or PAX7, while ERMS does
not show such translocations, but it is characterized by loss
of heterozygosity at 11p15.5 as well as mutations in TP53,
NRAS, KRAS, HRAS, PIK3CA, CTNNB1, and FGFR4 (263).
Since a small but substantial fraction of ARMS patients do
not harbor one of these translocations, and tumors from those
patients are biologically and clinically similar to ERMS, the
disease classification has been further refined dividing RMS
into “fusion-positive” RMS (FPRMS) and “fusion-negative” RMS
(FNRMS) subtypes.
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Familial Rhabdomyosarcoma
Although RMS is primarily sporadic (264, 265), it arises in several
syndromes. Cancer predisposition syndromes appear to be more
frequent in patients with ERMS than in those with ARMS (260).
Among syndromes commonly associated with RMS and reported
in Table 2 (24–27, 42, 43, 52–54, 64, 75, 80, 81, 86, 87, 89–
92, 94, 96), a high RMS risk is associated with RASopathies-
like type I neurofibromatosis (NF1) (deletions in NF1), Costello
syndrome (HRAS mutations), and Noonan syndrome (germline
variants activating RAS-MAPK pathway), highlighting the tight
dependence of RMS on the RAS pathway, which results to be
activated in 40% of sporadic ERMS (263, 266, 267). In particular,
up to 25% of children affected by Costello syndrome shows high
RMS risk (43, 268). In addition, children who have a first-degree
relative with cancer, particularly if the cancer occurred at a young
age (<30 years), show an increase in RMS risk, especially of
ERMS (269).

Sporadic Rhabdomyosarcoma
Unlike OS and Ewing sarcoma, GWAS studies for RMS have
not been published (260) and few studies identified uncommon
germline variants associated with tumor susceptibility (2, 52, 133,
139, 142, 270) (Table 1).

Many studies have found the presence of DICER1 germline
mutations in sporadic RMS patients for whom DICER syndrome
has been ruled out (52, 142). WES and WGS on 1,120 patients
with pediatric cancers identified germline pathogenic variants in
3/43 RMS patients in TP53 and BRCA2 (2). In a cohort of 66
patients with sarcoma, one patient with ARMS showed a protein-
truncating variant (in ERCC4) co-occurring with predicted
pathogenic mutations (in ATM, FANCI, and MSH6), suggesting
a possible collective impact of these genetic variants on DNA
repair and genomic instability, therefore conferring susceptibility
to tumorigenesis (133).

EWING SARCOMA

Ewing sarcoma (EWS) is the second most frequent primary
skeletal tumor that mainly affects bone and can also arise in
soft tissue. It occurs in children, adolescents, and young adult
(Figure 2). It is highly aggressive, with a survival of 70–80% for
patients with standard-risk and localized disease and 30% for
those with metastasis at diagnosis (20–25% of those resistant to
intensive therapy) (271). EWS is characterized by low somatic
mutation rate (272–274), mainly including fusions between
EWSR1 and members of the ETS gene family, usually EWSR1-
FLI1, that play a key role in its pathogenesis. The chimeric
protein EWSR1-FLI1 leads to the production of an oncogenic
transcription factor that binds GGAAmotifs (174, 271, 275, 276).

Familial Ewing Sarcoma
To date, no susceptibility genes to familial forms of EWS have
been reported, and only case reports about siblings and cousins
affected by this tumor have been documented (277, 278). On
the basis of these isolated clinical cases, the presence of other
cancer types among familial members of EWS patients (279,
280) suggests an important contribution of genetic susceptibility

factors in this tumor. Nowadays, EWS is not considered part of
predisposition syndromes because of its rare occurrence among
these (281).

Sporadic Ewing Sarcoma
WES, WGS, and GWAS studies have led to the identification of
uncommon (Table 1) and common (Table 3) germline variants
associated with the risk of developing EWS. Despite the rarity
and the paucity of information about familial cases, most
of the known genetic scenario on this tumor concerns the
sporadic form.

Uncommon, Moderate-Penetrance Variants

Two WGS and WES studies on EWS revealed an over-
representation of uncommon pathogenic and likely pathogenic
variants in DNA repair and cancer-predisposing syndrome
genes (2, 130). Studies on small cohorts of patients identified
other uncommon germline variants in BRCA2 (146) and in
PTPRD (140).

Common, Low-Penetrance Variants

In 2012, the first GWAS on EWS found 3 susceptibility loci
at 1p36.22, 10q21, and 15q15, identifying a strong association
of EWS risk with rs9430161 (25 kb upstream of TARDBP) and
rs224278 (5 kb upstream of EGR2), and a modest association
with rs4924410 (at 15q15) (172). The second GWAS detected
a tagging variant strongly associated with EWS at 15q.15.1
(rs2412476 near BMF) and new risk loci at 6p25.1, 20p11.22, and
20p11.23 (152). Expression quantitative locus (eQTL) analyses
identified candidate genes at 6p25.1 (RREB1) and 20p11.23 (KIZ)
(152). Independent studies showed that a different number of
germline GGAA repeats in polymorphic enhancer-like GGAA
microsatellites impacts the binding between these regulatory
elements and EWS cancer driver mutations (EWSR1-FLI1),
affecting downstream genes expression (174, 178, 282).

These studies further suggest that cooperation between
regulatory germline variants and somatic mutations can
drive oncogenesis and create a major source of inter-tumor
heterogeneity, determining clinical outcome and drug response
through modulation of a druggable key downstream player.

Constitutional Chromosomal Abnormalities
Only one study reports the presence of germline CNV associated
with EWS, describing a 14-year-old male with EWS carrying
an intragenic deletion in PTPRD (283). Notably, germline and
somatic variants in PTPRD have been already identified in a
limited number of EWS patients (140).

CONCLUSIONS

For a long time, the prevalence of childhood cancer attributed
to genetic predisposition was generally considered very low.
However, to date, WGS, WES, and GWAS studies performed
on pediatric cancers have made it possible to highlight a strong
contribution of germline variants to tumorigenesis, helping us
to better understand the etiology underlying pediatric tumors.
Indeed, an important body of work allows us to highlight that
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the prevalence of hereditable risk variants in pediatric solid
cancers ranges between 6% and 18% (Figure 3). These variants
generally affect the functions of genes belonging to biological
processes linked to tumorigenesis, such as cell-cycle control,
apoptosis, DNA repair, and transcriptional regulatory programs.
The enrichment of genetic alterations in these pathways is often
due to a bias because, since germline variant analysis is a highly
challenging task in general, the vast majority of studies are based
on a “candidate-gene” approach, which means they focus on
specific subsets of genes already known to play a key role in
cancer predisposition and tumorigenesis. For this reason, it may
be useful exploiting a genome-wide scale approach, e.g., exome-
wide association studies, to investigate the presence of genetic
alterations predisposing to cancer also in genes involved in
pathways others than the ones above mentioned. This approach
may contribute in a meaningful way to the current knowledge of
the mechanisms underlying solid pediatric tumors onset.

A very recent study reports a high number of germline
variants in new candidate susceptibility genes, highlighting
that some of them carry druggable alterations (3). It should
be emphasized that the presence of germline variants in
target therapeutic genes could improve current approaches of
personalized therapy, making them more efficient and less toxic

to patients. Furthermore, a more in-depth investigation of the
germline component underlying tumor development should also
be performed on pediatric solid tumors for which there is not
yet a broad knowledge of germline landscape (e.g., thyroid
carcinoma, melanoma) (284–289).

Our literature review reveals that the presence of specific
germline mutations is often associated with increased frequency
of somatically acquired cancer-specific abnormalities (such as
aberrations, rearrangements). The interplay between somatic and
germline mutations may be at the basis of high interindividual
tumor heterogeneity (290). For example, the cooperation
between regulatory germline variants and somatic mutations
underlines the importance of regulatory regions to stratify
patients into risk groups to predict the clinical outcome and
therapeutic approaches (290). In NB, inherited deleterious
variants in genes that code for proteins involved in chromosomal
segregation, centrosome segregation, DNA repair, and spindle
apparatus machinery are thought to be the cause of chromosome
instability at somatic levels (199). A similar germline–somatic
interaction has been proposed for MB; indeed, germline
TP53 mutations are often found in combination with tumors
characterized by catastrophic DNA chromothripsis. Determining
if germline risk alleles predispose to genomic instability in

FIGURE 3 | Prevalence of germline predisposition in pediatric tumors. The percentage of germline predisposition due to uncommon, moderate-penetrance variants,

reported above the bars, has been calculated evaluating the number of patients carrying pathogenic and likely pathogenic variants on the total number of patients

from the cohorts analyzed for each tumor: CNS tumors: (3, 15, 17); neuroblastoma: (2, 3, 135, 146, 196, 197, 200); Wilms tumor: (3, 131, 132, 137, 148, 150, 251);

osteosarcoma: (2, 3, 129, 138); rhabdomyosarcoma: (2, 3, 52, 139); Ewing sarcoma: (2, 3, 130, 146). N, number of patients analyzed in cohorts; CNS, central

nervous system.
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pediatric cancers is an important research objective for biologists
and geneticists. Another interesting research field is related to
the impact of risk alleles on genomic regions that regulate
mutated cancer driver genes. The mechanisms underlying this
type of interaction between germline–somatic variation have
been elegantly elucidated in the EWS (174, 178, 282), and it
is reasonable to think that it is common to other pediatric
tumors as well. No relevant study has investigated the possible
interplay between germline variations and epigenetic somatic
events. For instance, there is an urgent need to find possible
associations between germline risk alleles and DNA methylation
of tumor. Studies integrating information on germline, somatic,
and epigenomic variations using gene expression data as the
intermediate phenotype may unravel the biological mechanisms
underlying oncogenic interactions and cooperation of these
different types of genomic variations.

The low number of recurrent somatic mutations in some
pediatric cancers, compared to adult ones (135), does not explain
the clinical heterogeneity and the resulting need for personalized
therapies in tumors. Confirming a germline contribution to
the clinical heterogeneity, some studies have highlighted that
specific pathogenic variants are much more common in specific
tumor histotypes (137, 147) and these associations could be
used for the management and stratification of patients. Thereby,
implementing screening tests with the introduction of germline
detection would bring clinical benefits. In addition, screening for
germline and somatic components of the tumor could lead to the
identification of new prognostic markers to monitor cancer and
predict clinical outcome. Finally, the use of these information in
screening tests is important in the context of genetic counseling,
to monitor and supervise family members of patients.

It is also important to note that many genetic syndromes such
as Beckwith–Wiedemann, Costello, Fanconi anemia, Gorlin,
Noonan syndrome, Li-Fraumeni, and others (Table 2) are
both characterized by genetic and/or allelic heterogeneity and
associated with the risk to develop different types of pediatric
cancers. Therefore, NGS-based cancer gene panel tests should
be performed in children with a genetic syndrome to ensure the
patient a more precise diagnosis and to be able to assess the
risk of developing a cancer disease. A clinical management that
includes a cancer genetic test not only is useful to indicate a
modification of the surveillance that also integrates periodic and
cancer specific diagnostic tests, but over time it will increase our
knowledge of genetic risk variants and thus will give a clearer
picture of cancer risk in children affected by genetic syndrome.
This surely can have a positive impact on improving patient care
and survival.
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