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The approval of BTK and PI3K inhibitors (ibrutinib, idelalisib) represents a revolution in the
therapy of B cell malignancies such as chronic lymphocytic leukemia (CLL), mantle-cell
lymphoma (MCL), diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), or
Waldenström’s macroglobulinemia (WM). However, these “BCR inhibitors” function by
interfering with B cell pathophysiology in a more complex way than anticipated, and
resistance develops through multiple mechanisms. In ibrutinib treated patients, the most
commonly described resistance-mechanism is a mutation in BTK itself, which prevents
the covalent binding of ibrutinib, or a mutation in PLCG2, which acts to bypass the
dependency on BTK at the BCR signalosome. However, additional genetic aberrations
leading to resistance are being described (such as mutations in the CARD11, CCND1,
BIRC3, TRAF2, TRAF3, TNFAIP3, loss of chromosomal region 6q or 8p, a gain of Toll-like
receptor (TLR)/MYD88 signaling or gain of 2p chromosomal region). Furthermore, relative
resistance to BTK inhibitors can be caused by non-genetic adaptive mechanisms leading
to compensatory pro-survival pathway activation. For instance, PI3K/mTOR/Akt, NFkB
and MAPK activation, BCL2, MYC, and XPO1 upregulation or PTEN downregulation lead
to B cell survival despite BTK inhibition. Resistance could also arise from activating
microenvironmental pathways such as chemokine or integrin signaling viaCXCR4 or VLA4
upregulation, respectively. Defining these compensatory pro-survival mechanisms can
help to develop novel therapeutic combinations of BTK inhibitors with other inhibitors
(such as BH3-mimetic venetoclax, XPO1 inhibitor selinexor, mTOR, or MEK inhibitors).
The mechanisms of resistance to PI3K inhibitors remain relatively unclear, but some
studies point to MAPK signaling upregulation via both genetic and non-genetic changes,
which could be co-targeted therapeutically. Alternatively, drugs mimicking the BTK/PI3K
inhibition effect can be used to prevent adhesion and/or malignant B cell migration
(chemokine and integrin inhibitors) or to block the pro-proliferative T cell signals in the
microenvironment (such as IL4/STAT signaling inhibitors). Here we review the genetic and
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non-genetic mechanisms of resistance and adaptation to the first generation of BTK and PI3K
inhibitors (ibrutinib and idelalisib, respectively), and discuss possible combinatorial therapeutic
strategies to overcome resistance or to increase clinical efficacy.
Keywords: B cell malignancies, ibrutinib, resistance, adaptation, targeted therapy, B cell receptor, BCR inhibitor
INTRODUCTION

The BCR signaling pathway plays a central role in the onset and
progression of mature B cell malignancies, such as chronic
lymphocytic leukemia (CLL), mantle-cell lymphoma (MCL),
diffuse large B cell lymphoma (DLBCL), follicular lymphoma
(FL), or Waldenström’s macroglobulinemia (WM). Activating
mutations in the BCR signaling pathway are commonly found in
DLBCL, FL, or WM (1). Though these mutations are usually
missing in CLL and MCL, BCR signaling is constitutively
activated and is a key player in their pathogenesis (2–5).
Introducing “B cell receptor (BCR) inhibitors” in recent years
has marked a revolution in treating B cell malignancies since
many patients are responsive to the inhibitors of BCR-associated
kinases BTK or PI3K, such as ibrutinib and idelalisib,
respectively. They are now widely used as a first-line treatment
or to treat relapsed/refractory diseases. However, the patient
response to them varies across B cell malignancies in clinical
trials as well as in real-world setting, and a large percentage of
patients develop resistance or have to stop the therapy due to
toxicities associated with these inhibitors’ long-term use (6–14).

In this review, we summarize the genetic and non-genetic
mechanisms of resistance and adaptation to the first generation of
BTK and PI3K inhibitors (ibrutinib and idelalisib, respectively), and
discuss possible therapeutic strategies to overcome resistance or
increase clinical efficacy by using combinatorial therapeutic
strategies. We also discuss the complexity of the mechanisms of
action of “BCR inhibitors” and how this affects the choice of
potential combinatorial therapy.
BCR SIGNALING AND ITS CROSS-TALK
WITH OTHER PATHWAYS

Cell-surface immunoglobulin does not have any kinase activity
itself. It is non-covalently connected to disulphide-linked
heterodimers Iga and Igb (CD79A, CD79B). After recognition
and antigen binding, BCRs start to aggregate and change their
conformation, which concludes in phosphorylation of tyrosine-
based activation motifs (ITAMs) on Iga and Igb’s cytoplasmic
domains. This phosphorylation, mediated by Src-family kinase
LYN, creates a docking site for spleen tyrosine kinase (SYK) (15).
The activated SYK then phosphorylates the B cell linker protein
(BLNK), an adaptor protein helpful in recruiting other molecules
such as Bruton tyrosine kinase (BTK). BCR stimulation also
leads to phosphorylation of co-receptor CD19 and PI3K
adaptor BCAP by LYN and SYK, which afterwards activates
phosphoinositide 3-kinase (PI3K) leading to PIP3 generation
(16, 17) (Figure 1).
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PIP3 helps to recruit GRB2-associated-binding protein 1
(GAB1), 3-phosphoinositide-dependent protein kinase 1
(PDK1, also known as PDPK1), protein kinase B (PKB, Akt),
and BTK to the plasma membrane via their pleckstrin homology
(PH) domain. Here, Akt is phosphorylated on S473 by mTORC2
which also facilitates Akt phosphorylation on T308 by PDK1
leading to full Akt activation (18). PI3K signaling is further
positively regulated by the adaptor protein GAB1, which recruits
additional PI3Kmolecules generating more PIP3 (19, 20). On the
other hand, the amount of PIP3 is negatively balanced by the
activity of phosphatases such as SHIP1, SHP1, and PTEN.

PIP3 is also needed for optimal BTK activation, since it helps
to translocate BTK to the cell membrane and via the interaction
with its PH domain, it allows the activation of BTK’s kinase
activity (21). For full BTK activation after the recruitment to the
cell membrane, phosphorylation at two sites is needed. Firstly,
BTK gets phosphorylated by SYK or LYN at tyrosine Y551,
which then leads to autophosphorylation at Y223 (22, 23). Fully
activated BTK phosphorylates phospholipase Cg2 (PLCg2).
PLCg2 hydrolyses PIP2 into secondary messengers inositol
triphosphate (IP3), which controls intracellular Ca2+ levels, and
diacylglycerol (DAG) which, via protein kinase Cb (PKCb)
activation, induces cRaf-MEK-Erk pathway activation. PKCb
also activates CARD11, which then forms a complex with
MALT1 and BCL10 to activate TAK1 (24). Afterwards, TAK1
phosphorylates IKKb which initiates the NFkB pathway (25).
Apart from this, PKCb plays a role in negative feedback
regulation of BCR signaling by removing BTK from the plasma
membrane by phosphorylating BTK on S180 (26). Non-
redundant negative regulation is also mediated by LYN kinase,
since mouse B cells with LYN knockout have a surprisingly
stronger BCR signaling suggesting that LYN has a specific role
in negatively regulating the pathway (27). BCR signaling
propensity is also affected by levels of cell-surface molecules
that act as docking sites for positive or negative BCR pathway
regulators, which include molecules such as CD19, CD22, and
CD32. Recently, we have shown that a notorious therapeutic
target in B cell malignancies, CD20, is also a positive BCR
signaling regulator (28). When CD20 is silenced, response to
BCR stimulation is weaker, as underscored by the lower
phosphorylation of BCR-associated kinases and impaired
calcium flux (29, 30). Moreover, an additional layer of
regulation involves small non-coding RNAs (microRNAs) that
influence both the positive and negative regulation of BCR
signaling propensity (20, 31–38).

BCR signaling is activated in the lymphatic tissue
microenvironment and is closely intertwined with the
pathways responsible for the cell homing and adhesion (5).
BCR activation affects adhesion via integrin VLA4 formed by
October 2020 | Volume 10 | Article 591577
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CD49d and CD29 (integrin b1); together BCR and VLA4
provide B lymphocytes with adhesion and enhanced signaling
(39). CD49d activation causes SYK phosphorylation and, on the
other hand, BCR stimulation leads to VLA4 activation (40–42).
BCR stimulation also increases chemotaxis towards chemokines
such as CXCL12 produced in the microenvironment. Binding of
CXCL12 to its receptor CXCR4 activates PI3K, MAPK, and
STAT3, and leads to actin polymerization and cell migration
(43–45). In CLL, cell-surface IgM levels and BCR signaling is
increased by the IL4 produced by T cells which also activates the
JAK1-3/STAT6 pathway and upregulates the levels of anti-
apoptotic proteins from BCL2 family, resulting in partial
malignant B cell protection from the effects of “BCR
inhibitors” (46, 47). The importance of the microenvironment
can be well illustrated in CLL, where malignant B cells are
dependent on constant re-circulation between the peripheral
blood and lymph nodes, where they are supported by pro-
survival signals from mesenchymal stromal cells, monocyte-
derived nurse-like cells, and T lymphocytes (29, 43, 48–50).
The supportive stromal cells produce not only chemoattractants
CXCL12 and CXCL13 but also BAFF, APRIL, CD31, and plexin
B1 which protect CLL cells from spontaneous and induced
apoptosis by activating BCR and NFkB signaling (43, 49, 51,
52). Kinases of the BCR pathway BTK and PI3Kd together with
JAK are also involved in T cell dependent proliferation induced
by CD40L and IL21, which can be inhibited by ibrutinib,
idelalisib or JAK inhibitor (53).
Frontiers in Oncology | www.frontiersin.org 3
Overall, there is crosstalk between the BCR, chemokine signaling
and cell adhesion pathways. Therefore, the success of “BCR
inhibitors” lies not only in inhibiting the BCR pathway itself but
also in inhibiting other processes. In CLL and some lymphomas,
BTK/PI3K inhibition results in malignant B cells egressing from the
lymph nodes, causing transient lymphocytosis in patients (8, 54, 55).
MECHANISTIC EFFECTS OF IBRUTINIB
ACTION

Ibrutinib is an orally administered small-molecule inhibitor
targeting BTK. It binds to BTK covalently, selectively, and
irreversibly, inhibiting its phosphorylation and enzymatic
activity. BTK is an important kinase in BCR signaling needed
for B cells to properly develop (56, 57). Inhibiting it with
ibrutinib leads to a loss of pro-survival signals from BCR
activation by ligands, and also impairs the “tonic” BCR signals
that sustain B cell survival. BTK inhibition decreases cell
proliferation as well as interferes with the activation of
downstream molecules in BCR pathway such as PLCg2, Akt
and Erk irrespective of BCR stimulation (58–61). As BTK is not
only involved in BCR signaling (see above), ibrutinib also
disrupts CXCR4 internalization, impairs migration toward
CXCL12 and also indirectly decreases total BTK levels (62).
Ibrutinib further disrupts signaling from CXCR5 and integrins,
molecules that allow B lymphocyte migration and adhesion
FIGURE 1 | The genetic and non-genetic mechanisms of resistance to BTK or PI3K inhibition in B cell malignancies. The “*” indicates genetic mechanisms of
resistance to ibrutinib (BTK inhibitor), the red arrows indicate non-genetic mechanisms of resistance/adaptation to ibrutinib, the blue arrows indicate mechanisms of
resistance/adaptation to idelalisib (PI3K inhibitor), and the green arrows indicate mechanisms of resistance/adaptation to venetoclax (BH3-mimetic [BCL2 inhibition]).
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ondrisova and Mraz Resistance to “BCR Inhibitors”
(63, 64). Altogether, ibrutinib inhibits BCR stimulation, B cell
proliferation, and migration toward homing chemokines such
as CXCL12 and CXCL13. It also blocks BCR-dependent CCL3
and CCL4 chemokine release in CLL and decreases CCL4,
CCL22, and CXCL13 levels in the serum of ibrutinib-treated
MCL patients (54, 61). As mentioned above, inhibiting the
adhesion and homing capacity causes transient lymphocytosis
in CLL and MCL patients (54, 55). In most of the patients, this
resolves within 8 months after starting therapy (55). CLL cells
together with non-malignant immune cells after ibrutinib
treatment are of a quiescent phenotype as shown by the
expression of the genes involved in senescence and/or cell
quiescence (30, 55, 65). Apart from the mentioned mechanisms
of ibrutinib action, it also affects the microRNAs’ expression,
resulting in higher levels of several tumor suppressors and
inhibition of cell proliferation (66, 67).

Ibrutinib has been approved for therapy of CLL, MCL, WM,
and marginal zone lymphoma (MZL). Though it is a potent drug,
not all patients are responsive to ibrutinib and a significant
number of them acquire resistance to the treatment or
discontinue the therapy due to toxicities that are most likely
caused by ibrutinib off-target inhibition of molecules such as
BLK, JAK3, EGFR, and several TFK members (for a list of off-
Frontiers in Oncology | www.frontiersin.org 4
targets of ibrutinib and other BTK inhibitors see Supplementary
Table 1). In the following sections, we will summarize the genetic
mechanisms of ibrutinib resistance, the non-genetic mechanisms
of adaptation/resistance by activating compensatory pro-survival
pathways and describe possible solutions to different types of
ibrutinib resistance (Figure 1).
GENETIC MECHANISMS OF IBRUTINIB
RESISTANCE

Genetic mechanisms of primary or acquired resistance to
ibrutinib have been widely studied and recurrent mutations
associated with resistance have been described in B cell
malignancies (Table 1, Figure 1). Whole-exome sequencing
revealed mutations in BCR-involved proteins BTK and PLCg2
in ~80% of CLL patients with acquired resistance to ibrutinib (7,
96), however, some studies have reported a much lower
frequency of these mutations (97, 98). The most common
mutation in BTK is a C481S point mutation which interferes
with the binding of ibrutinib to BTK (7, 68). Other mutations in
the BTK gene were also found in ibrutinib-resistant patients and
have been suggested to affect either ibrutinib binding to BTK or
TABLE 1 | Recurrent mutations in ibrutinib-resistant patients and possible therapeutic strategies to overcome them.

Mutated gene/aberration Disease Mechanism Possible therapeutic strategy Ref.

BTK CLL, MCL, WM,
MZL

reversible binding of ibrutinib third-generation BTK inhibitors, PROTAC-BTK,
inhibitors of LYN and SYK

(7, 68–77)

PLCG2 CLL, MCL, WM,
MZL

BTK-independent activation inhibitors of RAC2, LYN, and SYK (7, 68–71,
78, 79)

CARD11 CLL, MCL, WM,
DLBCL, FL

↑ NFkB proteasome or MALT1 inhibitor (12, 71, 80–
83)

BIRC3, TRAF2, TRAF3 MCL ↑ NFkB MP3K14 inhibitor (84, 85)

CCND1 MCL cell cycle progression unknown (86)

CDKN2A and MTAP co-
deletion

MCL cell cycle progression PRMT5 inhibitor (87)

SMARCA2, SMARCA4,
ARID2

MCL disruption of SWI-SNF complex; ↑ BCLXL BCLXL inhibitor (88)

MYD88mt/CD79Bwt DLBCL MYD88-dependent and BCR-independent
subtype

SYK or STAT3 inhibitor (9, 89, 90)

KLHL14 DLBCL ↑ MYD88-TLR9-BCR super-complex inhibition of BCR-dependent NFkB activation/mTOR
inhibitors

(91)

TNFAIP3 DLBCL ↑ NFkB unknown (82)

2p+ CLL ↑XPO1 XPO1 inhibition (selinexor) (92)

Del 8p CLL Loss of TRAIL-R, insensitivity to TRAIL-
induced apoptosis

unknown; possibly venetoclax (93)

Del 6q WM ↑ MYD88/NFkB, loss of regulators of
apoptosis

unknown (94, 95)

Del 8p WM ↑ TLR/MYD88, loss of DOK2, BLK and
TNFRSF10A/B

unknown (94)
October 2020 | Volume 10 |
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BLNK binding to BTK, altogether leading to PLCg2 activation
even in the presence of ibrutinib (93, 99–101) (Supplementary
Table 2). PLCG2, a gene coding for PLCg2, seems to mostly
harbor gain-of-function mutations when PLCg2 can be activated
by RAC2 or SYK and LYN without BTK (7, 78, 79, 100)
(Supplementary Table 2). As mutations in BTK and PLCG2
occur early before relapse on ibrutinib, they may serve as a
biomarker to indicate a need to change the therapy before disease
progression (102). They can also co-occur, which may bring
complications to solving the resistance with next-generation
BTK inhibitors (103). Apart from the mentioned mutations,
resistance to ibrutinib in CLL has also been associated with
chromosomal aberrations such as 8p deletion and gain in the 2p
region (92, 93). The 8p region contains a gene for TRAIL
receptor and its deletion results in insensitivity to TRAIL-
induced cell death (93). On the other hand, 2p gain causes
exportin-1 overexpression (XPO1), regulating the transport of
proteins between the nucleus and cytoplasm (92). Additionally,
CLL patients that progress or develop Richter’s transformation
on ibrutinib recurrently harbor mutations of tumor-suppressor
TP53, splicing factor SF3B1, or NFkB pathway regulator
CARD11, however, whether these genetic aberrations may
directly impact response to ibrutinib during Richter’s
transformation remains unclear (80). Though, despite good
initial response in most of CLL patients, it has been shown
that mutations in TP53 are responsible for a worse prognosis in a
long-term ibrutinib treatment and they also partially protect CLL
cells in vitro from ibrutinib-induced apoptosis and inhibition of
proliferation (104–107). This might be related to the recently
described role of p53 in the negative regulation of BCR signalling
(31, 32).

Mutations in BTK and PLCG2 have also been found in MCL
and WM patients with acquired ibrutinib resistance as well as in
one MZL patient (69–71). List of the most common BTK and
PLCG2 mutations is provided in the Supplementary Table 2.
Though CLL cells on ibrutinib have a decreased NFkB binding to
DNA elements, activating an alternative NFkB pathway by
genetic changes is another mechanism responsible for ibrutinib
resistance, mostly in MCL (65). This is caused by mutations in
BIRC3, TRAF2, or TRAF3, whose absence leads to MP3K14
enzyme stabilization and constitutive activation of alternative
NFkB pathway (Figure 1) (84, 85, 108, 109). Recurrent
mutations in MCL patients who have relapsed on ibrutinib
have also been found in CARD11, a protein responsible for
BCR-induced NFkB activation, or in CCND1, a cyclin that
promotes G1-S cell cycle progression (24, 81, 86). CDKN2A
and MTAP co-deletion was also observed in ibrutinib-resistant
MCL tumors (87). Additionally, loss and/or mutations in the
SWI-SNF chromatin remodeling complex lead to the
upregulation of anti-apoptotic BCLXL and cause a primary or
acquired resistance to the combination of ibrutinib and
venetoclax in MCL (88).

In Waldenström’s macroglobulinemia (WM), mutations in
CARD11 also lead to ibrutinib resistance, and inWM patients the
ibrutinib resistance may be accompanied by 6q and 8p
chromosome region deletions that expand from pre-existing
Frontiers in Oncology | www.frontiersin.org 5
clones or emerge during treatment (71, 94). These
chromosomal regions contain important signaling pathway
regulators. The 6q region loss involves negative regulators of
MYD88/NFkB (TNFAIP3, HIVEP2, TRAF3IP2, IRAK1BP1), an
inhibitor of BTK (IBTK), and regulators of apoptosis (FOXO3,
BCLAF1, PERP). The genes deleted on 8p include DOK2, a TLR/
MYD88 signaling inhibitor, BLK, another target of ibrutinib that
is important for B cell proliferation and differentiation, and
TNFRSF10A/B, a gene encoding for TRAIL receptor (94, 95).
Common mutations in WM are WHIM-like mutations in
CXCR4 and L265P mutations in MYD88, a mediator of Toll-
like receptor signaling (110). In WM, MYD88L265P activates
NFkB via BTK and IRAK1/4, making these cells sensitive to
ibrutinib (110, 111). WHIM-like mutations in CXCR4 are
responsible for impaired CXCR4 internalization upon
stimulation and result in constant Akt and Erk activation.
However, mutations in MYD88, which occur in 90% of WM
patients, seem to have a more profound effect on the WM cell
survival than CXCR4WHIM, as MYD88 inhibition could not be
rescued by the CXCR4WHIM mutation (112). These facts might
explain why, even though WHIM-like mutations promote
ibrutinib resistance in vitro, MYD88wt/CXCR4wt patients have a
lower response rate to ibrutinib therapy than MYD88L265P/
CXCR4wt or MYD88L265P/CXCR4WHIM patients (13, 113).

In DLBCL, ibrutinib seems to be more effective in patients
with an activated B cell-like DLBCL (ABC-DLBCL) subtype
rather than in patients with germinal center B cell-like DLBCL
(GC-DLBCL) due to constitutively active BCR signaling in ABC-
DLBCL. However, even amongst ABC-DLBCL, complete or
partial response was only detected in 37% of patients (9, 82),
and a phase III clinical trial confirmed the benefit of adding
ibrutinib to R-CHOP (rituximab plus cyclophosphamide,
doxorubicin, vincristine, and prednisone) therapy only in
younger patients with non-GC-DLBCL (114). As for resistance,
it has been shown that DLBCL patients carrying mutations in
MYD88 and simultaneously having wild-type CD79B are
primarily resistant to ibrutinib. As other combinations
(MYD88mt/CD79Bmt, MYD88wt/CD79Bmt, MYD88wt/MYD88wt)
are sensitive to ibrutinib, there is a possibility of an MYD88-
dependent but BCR-independent ABC-DLBCL subtype (9).
These findings might be explained by the formation of a
multiprotein super-complex consisting of MYD88, TLR9 and
BCR. It activates the NFkB pathway and is found in ABC-
DLBCL tumors that respond to ibrutinib (Figure 1) (115). On
the other hand, cells with inactivated KLHL14, a negative BCR
component regulator often mutated in DLBCL, induce the NFkB
pathway by activating the MYD88-TLR9-BCR super-complex,
which partially protects them from ibrutinib-induced cell death
(91). The role of knockout of the KLHL14 tumor suppressor was
demonstrated in rescuing the ABC-DLBCL cell line from
apoptosis when IgM and CD79A were knocked down, which is
a manipulation normally lethal to the DLBCL cells (91). Lastly,
the above mentioned mutations in CARD11 and inactivating
mutations in TNFAIP3, a negative NFkB regulator, were also
found in DLBCL patients not responding to ibrutinib
treatment (82).
October 2020 | Volume 10 | Article 591577
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The genetic mechanisms of resistance, especially the BTK
mutations that develop during ibrutinib therapy, are a clear
indication of the on-target effects of the utilized small molecular
inhibitors. The other mutations in the BCR signaling pathway
members such as PLCG2 or CARD11 also demonstrate that
malignant B cells try to gain or lose gene activity in order to
overcome the inhibition of the key BCR-associated kinase (Table
1). However, it has been shown that cancer cells can also utilize
non-genetic mechanisms to bypass the inhibition of a key
pathway (116–120). In the following section we will review
these potential mechanisms for ibrutinib/BTK-inhibition based
therapy, and suggest the implications for combinatorial
therapeutic strategies (Table 2).
NON-GENETIC MECHANISMS
OF ADAPTATION TO IBRUTINIB

Patients resistant to ibrutinib that harbor the above-mentioned
mutations often have these mutations subclonally in a relatively
small fraction of surviving malignant B cells. Malignant non-
mutated cells that co-exist with BTKC418S mutated cells might be
protected by the mutated cells though this has only been
conceptually demonstrated in MYD88mt WM and ABC-
DLBCL. Mutated cells showed Erk1/2 activation, which led to
pro-survival chemokine release and protection of BTKwt cells
(147). Even if this could explain the survival of the non-mutated
sub-populations of cells, there are still ibrutinib-resistant patients
(>20% of ibrutinib-resistant patients in CLL) that do not show
any genetic mutations responsible for the resistance (96). This,
together with slow cell apoptosis during ibrutinib therapy,
suggest that there are non-genetic mechanisms of resistance
and cells are able to partially adapt to ibrutinib and BTK
inhibition (Table 2, Figure 1). Collectively, it seems that
malignant B cells activate BTK-independent compensatory
survival pathways under ibrutinib treatment, mainly PI3K/
mTOR/Akt pathway and adhesion. Activating the NFkB
pathway also induces some degree of ibrutinib resistance. This
was described mainly by genetic mechanisms as mentioned
before, but the non-canonical NFkB pathway together with
MAPK signaling can also be activated and thus protect the
cells from ibrutinib in MCL cells by activating CD40 (148, 149).
Frontiers in Oncology | www.frontiersin.org 6
Activating the PI3K pathway is a well-known mechanism that
rescues BCR deficient mature B cells from apoptosis (150, 151). It
is therefore not surprising that more and more studies see a
similar mechanism in malignant B cells by which they overcome
BTK inhibition. Activated Akt has been observed in ibrutinib-
resistant CLL and DLBCL cell lines, together with downregulated
FoxO3a and PTEN levels (Figure 1) (121). Activating Akt/
MAPK via CD79B overexpression has been sufficient to induce
ibrutinib resistance in primary ABC-DLBCL (152). Ibrutinib also
synergizes with CRISPR-Cas9 knockout of PI3Kd (91). PI3K
pathway activation was observed in B cell lymphoma patient-
derived xenograft models with acquired resistance to ibrutinib
and the growth of these tumors was blocked by combination of
ibrutinib and idelalisib (122).

However, activation of PI3K/mTOR/Akt signaling after
ibrutinib has been best described in MCL. Activated Akt and
Erk levels, but not BTK, correlate with the response to ibrutinib
in MCL cell lines and furthermore, ibrutinib-responsive patients
have dephosphorylated Akt as opposed to non-responsive
patients (69, 153). Ibrutinib in MCL strengthens cell adhesion
via integrin dimer VLA4 formed by b1-integrin and CD49d and
activates the PI3K/Akt pathway in this way (Figure 1). Zhao et
al. described this phenomenon by showing that ibrutinib-
resistant cells have a higher b1-integrin expression that helps
to form an ILK-Rictor complex that activates a pro-survival
mTORC2/Akt pathway. This was disrupted by ibrutinib in
combination with dual mTOR1/2 inhibitor AZD8055 or dual
PI3K-mTOR1/2 inhibitor BEZ235 (123). Here, it is also worth
mentioning that ibrutinib-resistant MCL samples upregulate the
mTOR signaling pathway (as well as genes involved in cell cycle
regulation and MYC targets) compared to ibrutinib-sensitive
cells (87). A similar compensatory survival mechanism was seen
by Guan and colleagues who demonstrated that stromal cells
protect MCL cells from ibrutinib-induced death via their
interaction with VLA4. A combination of ibrutinib with VLA4
blockage or with an inhibitor of PI3K catalytic p110a subunit
disrupted the interaction and overcame the resistance (124).

In CLL, the cells lose the ability to adhere to fibronectin
almost completely and partly to stromal cells when treated with
ibrutinib in vitro for a short period of time (63, 154). Interestingly
though, BCR stimulation activates VLA4 in CLL cells exposed
to ibrutinib for an extended time via a BTK-independent
TABLE 2 | Non-genetic mechanisms of resistance/adaptation to ibrutinib and possible therapeutic strategies to overcome them.

Mechanism of resistance/adaptation Disease Possible therapeutic strategy Ref.

↑ PI3K-Akt pathway CLL, MCL, DLBCL PI3K, mTOR, or XPO1 inhibitor (92, 115, 121–132)
↑ JAK-STAT CLL Dual SYK/JAK-STAT inhibitor (Cerdulatinib) (133)
↑ MYC MCL HSP90 inhibitor (134)
↑ MAPK pathway CLL, MCL, DLBCL MEK inhibitor (125, 135, 136)
↑ BCL2 CLL, DLBCL BCL2 inhibitor (venetoclax) (30, 125, 129, 137–143)
Metabolic reprogramming CLL, MCL OXPHOS inhibitor, inhibitor of fatty acid oxidation (87, 144)
Integrin-mediated protection CLL, MCL VLA4 inhibition (FAK inhibitor) (45, 145)
Resistant cancer stem cells MCL Wnt pathway inhibitor (146)
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manner involving PI3K. Also, higher CD49d levels in patients
prevent ibrutinib-induced lymphocytosis and cause a lower nodal
response. This translates into a shorter progression-free survival
in ibrutinib treated patients (42). Analogically, it has been
described that ibrutinib induces CXCR4 expression on cell-
surface, which might translate to a paradoxically increased
responsiveness of these cells to chemokine ligands, however, it
is likely that the response to chemokines in this context is not
completely physiological since BTK is involved in the chemokine
pathway (30, 155). Time to progression can also be predicted by
cell-surface IgM levels prior to ibrutinib treatment, suggesting
another non-genetic mechanism of ibrutinib resistance in CLL,
potentially similar to the CD79B overexpression in DLBCL
(Figure 1) (152, 156). In CLL, the mechanism might be
explained by BCR signaling bypassing BTK upon BCR
crosslinking as ibrutinib is not able to properly inhibit Ca2+

mobilization and Erk1/2 phosphorylation when surface IgM
levels are high (156). Moreover, cell-surface IgM levels rise
during ibrutinib treatment in CLL patients, although this might
depend on the time since the start of therapy (30, 157).

Activating the MAPK pathway might also be one of the
compensatory mechanisms for BTK inhibition, as noted in a
recent study. Upregulation of the genes involved in MAPK was
observed by Forestieri et al. in residual CLL cells after ibrutinib
treatment and in addition, acquired mutations in BRAF, NRAS,
and KRAS were found in a fraction of patients (135). This might
explain the observed synergy betweenMEK inhibitors with “BCR
inhibitors” in B cell lymphomas (125, 136).

Besides the described pathways, other ibrutinib resistance
mechanisms are also possible and fit the biology of B cells. It has
been shown that MYC acts as a key downstream BCR effector,
and its over-expression can rescue the absence of BCR activity in
some B cells (158, 159). Indeed, upregulation of MYC has been
observed in ibrutinib-resistant MCL cell lines and this resistance
can be reversed by inhibiting HSP90 (134). Protection from
ibrutinib can also be provided by cells in the microenvironment
(133, 160, 161). On the other hand, CLL cells resistant to BTK
inhibition recover the ability to produce and respond to IL4 and
require less T cell help for growth (162). Lymphoma relapse can
potentially also arise from cancer stem cells described in MCL
and FL. Their quiescent phenotype, together with high ABC-
transporter activity gives them general drug-resistant properties
(163–166). Indeed, the MCL-initiating cells were found to be
resistant to ibrutinib and could be eliminated by inhibiting Wnt
signaling pathway whose genes were overexpressed in these
cancer stem cells (146).
TARGETING IBRUTINIB RESISTANCE

There are several potential ways to overcome ibrutinib resistance
such as i) in cases with specific BTK mutations using third
generation BTK inhibitors which do not target C481, or
PROTAC mediated BTK degradation, ii) using different
molecular targets once a patient is resistant to ibrutinib, or iii)
preventing the resistance by a more rapid B cell elimination that
Frontiers in Oncology | www.frontiersin.org 7
would lower the chance of developing resistance or activating
compensatory survival pathways (Figure 1, Tables 1 and 2).
Additionally, time-limited or more selective treatment would
likely lower toxicities in patients as up to 40% of CLL patients
discontinue ibrutinib therapy, which is caused mostly by the
toxicities (11, 167).

Unfortunately, second-generation BTK inhibitors such as
acalabrutinib, zanubrutinib, or tirabrutinib are not able to
overcome the resistance caused by BTKC481S since they bind to
the same protein region as ibrutinib. Their advantage is their
higher selectivity with less off-targets (Supplementary Table 1)
and lesser toxicities than ibrutinib, making them more feasible
for patients intolerant to ibrutinib (168–172). Acalabrutinib has
recently been approved for CLL and MCL and zanubrutinib for
MCL (171, 173). The solution to BTKC481S mutations could be
the use of non-covalent third-generation BTK inhibitors that are
able to inhibit the kinase’s activity independently of C481S
(Supplementary Table 1). BTK inhibitors such as fenebrutinib
(GDC-0853), LOXO-305, or vecabrutinib are currently in the
early phases of clinical testing even for patients with BTKC481S

(72–74). ARQ 531 has shown better efficacy than ibrutinib in
murine models resembling Richter transformation, targets CLL
not only with BTK but also PLCG2 mutations and has off-target
activity against kinases in Erk signaling and kinases in the Src
family (75). The off-targets of various BTK inhibitors are
summarized in the Supplementary Table 1. A different but
also promising therapeutic strategy is provided by PROTAC
which degrades its target with E3 ligase. PROTAC-induced BTK
degradation is highly selective and effective in treating BTKC481S

ibrutinib-resistant mouse models (76, 77). CLL cells with R665W
and L845F mutations in PLCG2 are sensitive to RAC2 or SYK
and LYN inhibition (78, 79). Inhibiting RAC2 or its binding
partner VAV1 is synergistic with ibrutinib also in DLBCL just
like inhibiting STAT3 or SYK together with ibrutinib in MYD88
mutated DLBCL (89–91).

Another approach would be combining ibrutinib with
compensatory survival pathway inhibitors such as PI3K/
mTOR/Akt or NFkB (Table 2). As mentioned before, ibrutinib
synergizes with PI3K/mTOR/Akt pathway inhibitors in MCL,
CLL and DLBCL (121–126). A combination of ibrutinib and
umbralisib, a next-generation PI3Kd inhibitor, was studied in a
clinical trial in CLL and MCL patients with promising results
(127). It has been shown that ibrutinib increases CLL-cell
sensitivity to mTOR inhibitors as well as proteasome and
PLK1 inhibitors (128). Targeting mTOR combined with
ibrutinib was also suggested in ABC-DLBCL by Phelan et al. as
mTORC1/2 inhibitor AZD2014 further attenuates formation of
MYD88/TLR9/BCR super-complex when compared to ibrutinib
alone (115). CC-115, a dual mTOR/DNA-dependent protein
kinase inhibitor, is now in a clinical trial and is able to revert
CD40-mediated resistance to venetoclax and also inhibits BCR
signaling in CLL patients with acquired idelalisib resistance
(174). Inhibiting the PI3K/mTOR/Akt pathway has been
shown to be successful also in in vitro drug screening in
DLBCL, where PI3K inhibitors synergized with ibrutinib (129).
The same study, confirmed by others, proved a synergy between
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ibrutinib and inhibition of IRAK4, a mediator for TLR and NFkB
activation whose targeting is studied not only in DLBCL but in
CLL as well (129, 175, 176). Furthermore, the synergy with
ibrutinib was also seen in combination with selinexor, an XPO1
inhibitor, although this seems to be regulated again via the PI3K/
mTOR/Akt pathway as selinexor restores a nuclear abundance of
FoxO3a and PTEN after ibrutinib treatment, resulting in the
inhibition of PI3K/mTOR/Akt signaling activation (Figure 1)
(121, 129). Absence of tumor suppressors FoxO3a and PTEN in
the nucleus could be an explanation for ibrutinib resistance in
2p+ CLL patients who overexpress XPO1 and why selinexor and
next-generation XPO1 inhibitors seem to be efficient in
preclinical CLL and MCL models where it reduces NFkB
binding to DNA (92, 130–132). Another molecule that could
be targeted together with BTK is the MP3K14 enzyme, a member
of an alternative NFkB pathway constitutively activated in
ibrutinib-resistant MCL patients due to mutations in BIRC3,
TRAF2, or TRAF3 (Figure 1) (84, 85).

An attractive strategy to increase the treatment efficacy is
combining drugs that are already approved in therapy. Recently,
ibrutinib has been shown to be efficient with venetoclax, a BH3
mimetic that inhibits anti-apoptotic molecule BCL2 and is approved
for CLL treatment (125, 137, 138, 177). This combination is rational
as ibrutinib induces BCL2 expression and on the other hand,
decreases anti-apoptotic MCL1 levels, which can be a cause of
venetoclax resistance (Figure 1) (30, 139–141). Higher BCL2 levels
have also been found in DLBCL patients with poorer response to
ibrutinib therapy (142). Furthermore, ibrutinib inhibits malignant
cell proliferation while venetoclax targets preferentially resting sub-
populations, potentially explaining the synergy of these two drugs in
B cell malignancies (129, 143). Combining ibrutinib with
fludarabine, a purine analog commonly used together with
cyclophosphamide and anti-CD20 monoclonal antibody
rituximab to treat CLL patients, has been shown to be synergic ex
vivo (125). Ibrutinib with immune modulator lenalidomide and
rituximab is under investigation in DLBCL and MCL but has not
been successful in CLL (178–181). A profoundly studied possibility
for therapy is combining “BCR inhibitors” with widely-used anti-
CD20 monoclonal antibodies (28). However, adding rituximab to
ibrutinib did not bring any clinical benefit and this is likely due to
ibrutinib downregulating CD20 levels and/or interfering with
effector cell functions (28, 30, 182, 183). Furthermore, ibrutinib
has been shown to negatively regulate anti-CD20 induced apoptosis
in MCL cell lines (184). A combination of ibrutinib with a more
efficient anti-CD20 antibody, obinutuzumab, is now approved for
CLL therapy. However, the real benefit of obinutuzumab still
remains unclear as the control arm of the clinical trial was
chlorambucil with obinutuzumab (185). In the ELEVATE clinical
trial, acalabrutinib or acalabrutinib plus obinutuzumab were both
superior to chlorambucil plus obinutuzumab (170). Even though it
is not yet clear whether this combination reduces the occurrence of
acquired BTK inhibition resistance, it is true that re-distributing
malignant cells to the peripheral blood makes malignant cells more
susceptible to monoclonal antibodies (145, 186). An interesting
option is ibrutinib combined with anti-ROR1 monoclonal antibody
in CLL, which is expected to have a great specificity for malignant B
Frontiers in Oncology | www.frontiersin.org 8
cells, and ROR1 levels are not reduced during ibrutinib therapy
(187). Promising results have also been obtained from a fixed-
duration treatment with venetoclax and obinutuzumab in CLL
(188). Therapy nowadays aims for a time-limited treatment
setting as it would lower the selection pressure, leave shorter time
for cells to compensate for inhibition of targeted pathway, and
reduce toxicities in patients.

It has been reported that patients who relapse or are
intolerant to one kinase-inhibitor benefit from a change to
different small-molecule inhibitors rather than chemotherapy
(189). Novel therapeutic targets and drugs are therefore being
investigated. Promising results have been obtained by targeting
different players in BCR signaling such as PKCb or MALT1
whose inhibition is effective in ABC-DLBCL, MCL, and naïve as
well as ibrutinib-resistant CLL (190–193). Cerdulatinib, a dual
SYK/JAK-STAT inhibitor, targets BCR signaling and is also able
to overcome microenvironmental protection and blocks
proliferation in ibrutinib-resistant primary CLL samples and
BTKC481S lymphoma cell lines (Figure 1) (133). Directly
targeting microenvironmental interactions, migration and
adhesion could also have potential use in therapy of ibrutinib-
resistant patients via the use of natalizumab or CXCR4 inhibitor
plerixafor (45, 145). Lastly, malignant cells of ibrutinib-resistant
CLL and MCL patients show metabolic reprogramming, which
has also been suggested as a possible therapeutic target (87, 144).
EFFECTS OF IDELALISIB AND
MECHANISMS OF RESISTANCE

Another molecule in BCR signaling widely therapeutically
targeted in B cell malignancies is PI3K. Activated PI3K/Akt
axis in B cell malignancies and its signaling pathway’s role in cell
survival makes it an attractive therapeutic target (3, 151, 194,
195). PI3K exists in four catalytic isoforms: p110a, p110b, p110g,
and p110d. p110a (PI3Ka) and p110d (PI3Kd) are both needed
for “tonic” (antigen-independent) BCR signaling, while only
p110d is needed for antigen-induced BCR signaling (196). The
PI3Kd isoform is targeted by widely-used idelalisib, which has
been approved for the treatment of CLL, FL, and non-Hodgkin
lymphomas. Idelalisib not only thwarts the PI3K/Akt/mTOR
pathway but also inhibits cell migration towards chemokines and
adhesion to stromal cells, which, just like with ibrutinib, leads to
an initial increase in the number of lymphocytes in the
peripheral blood caused by lymphocyte migration out of the
tissues in CLL. This is accompanied by a reduction in Akt
phosphorylation and other downstream effectors as well as by
apoptosis induction (8, 197–199). Unfortunately, due to serious
adverse effects and infections, it has been suggested to primarily
give idelalisib to CLL patients with progression on ibrutinib or
indolent NHL patients with progression on two prior therapies
(14, 200, 201). As already mentioned, promising results have
recently been seen in a clinical trial of a combination of ibrutinib
and a next-generation dual PI3Kd/CK1ϵ inhibitor, umbralisib
(127). Furthermore, the importance of the p110g subunit is now
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emerging in CLL. Its activation does not respond to BCR
stimulation but increases in response to CD40L/IL4 and cells
with overexpressed PI3Kg show an enhanced cell migration
towards CXCL12. A dual PI3Kd/g inhibitor, duvelisib, seems to
have a bigger impact on cell migration than idelalisib alone and is
now approved to treat CLL/SLL and FL (197). Another PI3K
inhibitor, copanlisib, is approved for relapsed/refractory FL. It is
a pan-class I PI3K inhibitor that inhibits all four PI3K isoforms
with higher selectivity against PI3Ka and PI3Kd (202). Its
advantage lies not only in its molecular mechanism as
inhibition of other PI3K isoforms can lower viability and
migration of B cells, but it also seems to cause fewer adverse
events in patients when compared to idelalisib (197, 203–205).

Despite idelalisib’s and other PI3K inhibitors’ ability to
initially control the disease in some patients, a fraction of
patients develop resistance. Unfortunately, unlike in ibrutinib
treated patients, the mechanisms of resistance remain mostly
unclear (8, 206). No recurrent mutations were found in patients
progressing on idelalisib nor have they been found in a mouse
model resistant to PI3Kd inhibition (207, 208). Two studies have
shown the role of MAPK signaling in resisting PI3Kd inhibition.
Firstly, Murali et al. confirmed activating mutations in MAPK
pathway leading to Erk phosphorylation in patients resistant to
PI3K inhibition and suggested that blocking Erk might sensitize
patients to PI3K inhibitors (Figure 1) (209). Secondly, a non-
genetic mechanism of resistance was found in PI3Kd resistant
mice, where the upregulation of insulin-like growth factor 1
receptor (IGF1R) led to MAPK signaling activation. IGF1R
upregulation was caused by FoxO1 and GSK3b and the
resistance was resolved by inhibiting the receptor with
linsitinib (208). Initial experiments with copanlisib point to IL6
signaling as a main player in copanlisib resistance; levels of IL6
and phosphorylation of STAT5, Akt, p70S6K, and MAPK were
increased in copanlisib-resistant B cell lymphoma cell lines and
the resistance was reversible by JAK inhibitor (210).

Extensive research is needed in order to reveal the resistance
mechanisms for PI3K inhibitors and it seems that they might be
more complex than in BTK inhibition. Despite their adverse
effects in patients and the emergence of BCL2 inhibitors and
next-generation BTK inhibitors, the PI3K/mTOR/Akt signaling
pathway plays an important role in B cell malignancy
pathogenesis and its inhibition might find its therapeutic place.
DISCUSSION

Targeting BCR signaling is now a commonly used therapy
strategy for B cell malignancies. Unfortunately, some patients
are primarily resistant to “BCR inhibitors” or develop resistance
during the course of treatment. Furthermore, the now required
continuous treatment often leads to toxicities and forces a change
of therapy. BTK and PLCG2 mutations are the most common
and best-described mechanisms of resistance to BTK inhibitor
ibrutinib, although recurrent mutations in other genes or
aberrations in larger chromosomal regions have been described
as being responsible for the resistance across the B cell
Frontiers in Oncology | www.frontiersin.org 9
malignancies. Interestingly, malignant B cells are able to
overcome BTK inhibition by non-genetic mechanisms as well.
These include activation of compensatory survival pathway, such
as PI3K/mTOR/Akt, NFkB, or MAPK signaling pathways.
Compensatory survival is also provided by the upregulation of
anti-apoptotic BCL2, MYC or adhesion involved integrins. Even
though a lot is known about BTK inhibition, PI3K inhibitor
resistance remains largely unclear. Several studies point to
MAPK pathway activation as a compensatory mechanism to
PI3K inhibition, but further research is needed in this area.

Resistance caused by BTK mutations can be solved by third-
generation BTK inhibitors now in clinical trials or by BTK
degradation by PROTAC-based compounds; mutations in
PLCG2 by combining BTK inhibition with RAC2 or SYK and
LYN inhibition. Compensatory survival by upregulating other
signaling pathways could be solved by combining several
inhibitors as well. The synergy between blockage of BTK and
the PI3K/mTOR/Akt pathway has been shown repeatedly in
CLL, DLBCL and MCL. It remains largely unknown how the
non-coding part of the genome influencing BCR signaling is
affected by “BCR inhibitors” and if (de)regulation of these
molecules could contribute to therapy resistance or be directly
used as a therapeutic target (20, 31, 34, 35). Novel therapeutic
targets and strategies are still being investigated and their
inhibition is tested alone or in combination with “BCR
inhibitors”. These combinations should be supported by
analyzing the responses of malignant cells to individual drugs
and using multi-omics to identify possible compensatory
signaling pathways to be co-targeted by small-molecule
inhibitors. Furthermore, co-targeting two kinases in seemingly
the same pathway can also have a synergistic effect, as observed
by BTK and PI3K inhibition’s synergy. Analyzing individual
patient-to-patient response to “BCR inhibitors” could help to
identify specific compensatory pathways and this could help to
define a personalized combinatorial therapy. However, it is likely
that there might be some universal responses to “BCR inhibitors”
in each B cell malignancy and this could follow pre-existing
mechanisms that allow B cells to survive for an extended time
without antigen encounter. Single cell analysis of the response to
BTK/PI3K inhibitors in multiple patients could help to
understand if the response or adaptation to therapy follows a
generally uniform course or if there are major intra- and inter-
patient specific mechanisms. Besides transcriptomics and
proteomics, research should focus on describing the cells’
immunophenotypic profiles after “BCR inhibition” to identify
surface molecules that could be targeted by monoclonal
antibodies, since this can be of high specificity for cancer cells
and low toxicity in general. The time dynamics of changes during
therapy should also be studied in order to describe the
mechanisms of early and long-term adaptation and potentially
identify an optimal time point for adding a second drug in
combination. Improving clinical efficacy of drug combinations
containing “BCR inhibitors” should allow a time-limited
treatment with a deep molecular response, decreased chance of
resistance and limited toxicities associated with long-
term therapy.
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