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Background: The role of next generation sequencing (NGS) for identifying high risk
mutations in thyroid nodules following fine needle aspiration (FNA) biopsy continues to
grow. However, ultrasound diagnosis even using the American College of Radiology’s
Thyroid Imaging Reporting and Data System (TI-RADS) has limited ability to stratify genetic
risk. The purpose of this study was to incorporate an artificial intelligence (Al) algorithm of
thyroid ultrasound with object detection within the TI-RADS scoring system to improve
prediction of genetic risk in these nodules.

Methods: Two hundred fifty-two nodules from 249 patients that underwent ultrasound
imaging and ultrasound-guided FNA with NGS with or without resection were
retrospectively selected for this study. A machine learning program (Google AutoML)
was employed for both automated nodule identification and risk stratification. Two
hundred one nodules were used for model training and 51 reserved for testing. Three
blinded radiologists scored the images of the test set nodules using TI-RADS and
assigned each nodule as high or low risk based on the presence of highly suspicious
imaging features on TI-RADS (very hypoechoic, taller-than-wide, extra-thyroidal
extension, punctate echogenic foci). Subsequently, the TI-RADS classification was
modified to incorporate Al for T4 nodules while treating T1-3 as low risk and T5 as high
risk. All diagnostic predictions were compared to the presence of a high-risk mutation and
pathology when available.

Results: The Al algorithm correctly located all nodules in the test dataset (100% object
detection). The model predicted the malignancy risk with a sensitivity of 73.9%, specificity
of 70.8%, positive predictive value (PPV) of 70.8%, negative predictive value (NPV) of
73.9% and accuracy of 72.4% during the testing. The radiologists performed with a
sensitivity of 52.1 + 4.4%, specificity of 65.2 + 6.4%, PPV of 59.1 + 3.5%, NPV of 58.7 +
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1.8%, and accuracy of 58.8 + 2.5% when using TI-RADS and sensitivity of 53.6 + 17.6%
(p=0.87), specificity of 83.3 £ 7.2% (p=0.06), PPV of 75.7 + 8.5% (p=0.13), NPV of 66.0 +
8.8% (p=0.31), and accuracy of 68.7 + 7.4% (p=0.21) when using Al-modified TI-RADS.

Conclusions: Incorporation of Al into TI-RADS improved radiologist performance and
showed better malignancy risk prediction than Al alone when classifying thyroid nodules.
Employing Al in existing thyroid nodule classification systems may help more accurately

identifying high-risk nodules.

Keywords: machine learning, thyroid nodules, next generation sequencing, object detection, Thyroid Imaging
Reporting and Data System classification

INTRODUCTION

In 2020, there are expected to be 52,890 new cases of thyroid
cancer and 2,180 thyroid cancer related deaths in the United
States alone (1). While relatively common (1.3% of people will be
diagnosed with thyroid cancer at some point in their lifetime),
overall survival is excellent, with a 5-year survival rate of 98.3%
(1). However, the clinical burden of diagnosing and managing
thyroid nodules continues to grow due to incidental findings on
unrelated work-ups. Ultrasound is widely used as first-line
imaging modality for the evaluation of thyroid nodules. The
presence of high-risk features on thyroid ultrasound informs
subsequent clinical decisions which aim to prevent missed
diagnoses of thyroid cancers through selective biopsy while
avoiding over-management of benign nodules.

The use of fine needle aspiration (FNA) biopsy, which enables
cytology to be evaluated using the Bethesda System for Reporting
Thyroid Cytopathology has reduced the number of diagnostic
surgical thyroidectomies by half while doubling the number of
identified thyroid cancers (2). However, 20-30% of all FNA
samples fall into an indeterminate category such as follicular
lesion of undetermined significance or atypia of undetermined
significance (FLUS/AUS, Bethesda III) or suspicious for follicular
neoplasm (Bethesda IV). The risk of malignancy with these
cytologic classifications range from 6%-40% (3-6) and
importantly, can only be evaluated following surgical resection.
The Thyroid Imaging, Reporting and Data System (TI-RADS) was
recently developed by the American College of Radiology (ACR)
to standardize reporting of thyroid ultrasound exams, provide a
system for differentiation of benign and malignant thyroid nodules
and unify patient management recommendations (7). Recent
reports have shown the use of these guidelines improves the
classification of thyroid nodules (8-10). However, while this
system provides reasonably high sensitivities in identifying
thyroid carcinoma, it suffers from a poor overall specificity.
Consequently, overtreatment of benign or indolent disease
remains a significant clinical problem. Next-generation
sequencing (NGS) identification of cancer-associated genes has
improved risk stratification of indeterminate nodules. Thyroid
cancer has specific genetic variations, such as point mutations of
proto-oncogenes and chromosomal rearrangements that are
related to histopathologic subtype and malignancy. NGS has
been used for risk stratification of thyroid cancer based on the

malignancy classification (4, 11-13). However, TI-RADS has been
shown to perform poorly in Bethesda III-IV nodules undergoing
NGS, with accuracies of 50%-75% (14-16). Additionally, it has
been shown that inter-reader agreement using TI-RADS is
relatively low in this population of nodules (14).

Numerous artificial intelligence (AI) models have been
developed for use in thyroid ultrasound and have shown
encouraging results in evaluating nodules and improving
radiologic workflow (17-21). Work on thyroid nodule
detection has also recently emerged and these tools are now
becoming commercially available (22, 23). However, the vast
majority of these studies focused on stratifying malignant from
benign lesions in general population (containing an overwhelming
large presence of benign nodules easily ruled out on ultrasound) or
rely on surgical pathology following surgical excision which often
omit or limit nodules falling into Bethesda IIT and IV categories on
FNA. Diagnostic imaging and radiomic approaches are greatly
needed to improve the management of these indeterminate
nodules. Our group has recently explored the use of an
ultrasound-based machine learning algorithm for genetic risk
stratification of thyroid nodules, using NGS as a reference
standard. Results of this study were encouraging, with specificity
of 97% and overall accuracy of 77% (21). This model employed a
Google AutoML algorithm (AutoML Vision; Google LLC), which
benefits from cloud computing (thereby reducing localized
hardware requirements) and transfer learning which
dramatically reduces the data input requirements compared to
conventional Al models (24, 25). The complete details of this
proprietary algorithm are not provided, although it is stated it
relies on neural architecture search approaches with reinforced
learning using an internal validation dataset (24). Although we
have been encouraged by our initial findings, we believe this
algorithm’s “black box” approach and failure to incorporate into
existing standardized scoring systems will limit clinical adoption.
Consequently, the aim of this study was to explore the use of a
machine leaning-based ultrasound AI model that provides object
detection capabilities and to evaluate radiologist performance
when this model is incorporated into the TI-RADS scoring
system on a group of Bethesda III and IV “indeterminate”
nodules. Object detection capabilities alert the reader to the area
of the image being used for diagnosis, thus reducing the “black
box” of unknown computations, which limited prior work by
our group.
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MATERIAL AND METHODS

Data Source and Extraction

This retrospective clinical study was approved by the
Institutional Review Board (IRB) of Thomas Jefferson
University Hospital. Informed consent was waived. Data were
retrieved from department Picture Archiving and
Communication System (PACS) and consisted of ultrasound
images acquired at our institution immediately before or during
FNA. The decision to perform FNA as part of the patient’s
clinical care was based on the presence of known suspicious
features on ultrasound (very hypoechoic, taller-than-wide, extra-
thyroidal extension, punctate echogenic foci), TI-RADS
classification, and patients’” risk factors. All of the above was
reviewed with the patient who were presented with several
options, including conservative management, imaging
surveillance or to proceed with FNA. Inclusion criteria
consisted of all patients who underwent thyroid ultrasound
imaging and ultrasound-guided FNA with next-generation
sequencing (NGS) with or without surgical pathology between
January 2017 and August 2019. This relatively short eligibility
window was based on availability of NGS, which was adopted for
clinical care by our institution in January 2017. An institutional
NGS panel of 23 evidence-based gene mutations associated with
thyroid malignancy served as a reference to mark FNA samples
as high- or low-risk. This 23-gene panel is summarized in
Table 1 and served as a rule-in test with samples containing
one or more high-risk mutations being classified as high risk for
malignancy, whereas samples with no mutation or a mutation
considered to be of low or unknown risk were classified as low
risk for malignancy by the molecular testing report. In cases

TABLE 1 | High risk genes on NGS used as a reference standard.

Gene Human Genome Region
AKTA1 aa17-18

APC aa 178-291 and 312-1594 with splice sites
AXIN1 aa 1-688 and 731-865 with splice sites
BRAF aa 594-606, 439-478

CDKN2A Full with splice sites

CTNNB1 aa 6-60

DNMTS3A aa 881-883

EGFR Exons 18,19,20,21

EIF1AX aa 1-6, 35-86, and 115-147

GNAS aa 201-203 and 226-227

HRAS aa 10-14 and 60-62 and 146

IDH1 aa 67-71,123-134

KRAS aa 10-14 and 60-62 and 146
NDUFA13 Full with splice sites

NRAS aa 10-14 and 60-62 and 146
PIK3CA aa 520-554 and 980-1069
PTEN Full with splice sites

RET aa 883, 918, 588-636
SMAD4 aa 36-552 with splice sites
TERT promoter chrb: 1295228 and 1295250
TP53 aa 26-393 with splice sites
TSHR Full with splice sites

VHL Full with splice sites

*aa denotes amino acid residue numbers.

where total thyroidectomy or lobectomy were performed
following ultrasound imaging, subsequent malignant or benign
pathology were treated as high or low risk respectively for the
purpose of this study.

Data Formatting and Model Training

Two hundred forty-nine patients with Bethesda III-IV nodules
were used for this study. Ultrasound images contained both the
nodule in question and anterior neck muscles and were collected
on a wide variety of ultrasound scanners as part of the patient’s
clinical care. For image formatting, patient information,
manufacturer label, and scale bars were removed via a
cropping script written in Matlab (2016a, The Mathworks Inc.,
Natick, MA). A summary of the training and prediction dataset
is show in Table 2. Eighty percent of the patients (198 patients
with 201 total lesions) were used for model training. This
training set consisted of 143 low-risk cases and 58 high-risk
cases. In order to generate a large training dataset, all available
B-mode images focused on the lesion were utilized to form the
training dataset for the model, resulting in 488 low-risk and 228
high-risk images. Randomization was performed automatically
by the algorithm, but there was no nodule overlap between
training and testing sets. Restricting nodules to either test or
training sets ensures that the algorithm does not have the
advantage of being tested on an image from a nodule after
being trained on images from the same nodule.

Following de-identification, training images were uploaded
into the Google AutoML object detection model running on the
cloud platform. A radiologist (JX) from a high volume academic
medical centers with over 10 years of thyroid ultrasound
experience and blinded to the NGS and pathology results used
bounding boxes and labels to mark the location of the nodule in
question as well as a cropped area of the larger image containing
the lesion. An example of this cropped image and subsequent
bounding boxes placed to train the location and genetic risk of
the model is provided in Figure 1. Following data input, the
model was trained unsupervised using a 16 nodal hour training
condition, as the product documentation warns that additional
nodal training hours may result in model overfitting.

Evaluation of Model and

Radiologist Performance

Twenty percent of cases (n=51) were randomly selected to
evaluate the model’s performance [this split is recommended
by the product literature and a commonly accepted ratio for
validation of AI algorithms (24, 25)]. In this test, or more aptly
named prediction dataset, there were 25 low-risk and 26 high-
risk cases by either NGS or final pathology. One image was
selected by a radiologist from each case to form the prediction
dataset that resulted in 51 prediction images. Prediction images

TABLE 2 | Summary of training and prediction dataset composition.

Dataset/# of images Low-risk High-risk Total
Training dataset 488 228 716
Prediction dataset 25 26 51
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X Image 13 of 50 Q Q
HighRisk_lesion v
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FIGURE 1 | Example of a de-identified image being input into the AutoML object detection model. In this example, radiologists used bounding boxes to mark the
location of the lesion (Yellow bounding box) and overall image (Green bounding box). The label was assigned with bounding boxes where the yellow bounding box
indicated a high-risk lesion and the green bounding box indicated an ultrasound image that contained a high-risk lesion.

were uploaded into the pre-trained object detection model which
in turn generated a processed image identifying the nodule, risk
assignment, and overall confidence score (0-1) of the risk
assignment. In order to draw decisions from the prediction
results, a confidence score of 0.81 was utilized. This threshold
was determined by the model training parameters as well as the
threshold at which the most cases could be provided with an
assigned risk by the model. Cases with a prediction certainty
greater than 0.81 of either high- or low-risk were assigned to that
diagnosis. Cases in which the nodule was not conclusively
characterized included cases where the model provided a
confidence < 0.81 or in which the model provided both high-
and low-risk labels to the same lesion with > 0.81 confidence.
These Al findings were then considered non-applicable (NA).

For the initial readings, three blinded radiologists with over
10 years of experience in thyroid ultrasound (JX, J-BL, AL)
individually scored each nodule using the ACR TI-RADS scoring
system (7). The radiologists were also asked to classify lesions as
high or low risk based on TI-RADS imaging characteristics of
very hypoechoic, taller-than-wide, extra-thyroidal extension and
punctate echogenic foci. These classifications were later used to
compare radiologist performances with and without Al
assistance. In the post-Al phase, nodules with a radiologist-
assigned TR1-3 were assigned as low risk, radiologist-assigned
TR4s were classified using the Al model, and TR5 was considered
high risk. These assignments were based on the defined risk
assessments within the TI-RADS system (Benign to Mildly
Suspicious, Moderately Suspicious, Highly Suspicious).

All reads and predictions were compared to NGS or final
surgical pathology (when available) as a reference standard.
Statistical analysis was performed in GraphPad Prism Version

8.4.2 for Windows, GraphPad Software, La Jolla California USA.
Data was presented as mean + standard deviation. A paired t-test
was employed to compare the radiologist performances in pre-
and post- incorporation of Al into the TI-RADS grading system.

RESULTS

The 249 patients included 53 males and 196 females with an
average age of 56 + 14 years old, and an average lesion dimension
of 28 + 1.4 cm. Each case from the 249 patients included
multiple images that represented the sagittal and transverse
views of the nodule, providing a total of 716 images. Both
surgical pathology and NGS were available in 59 patients.
Within the subset of indeterminate (Bethesda III and IV
nodules) that later underwent surgery, NGS provided a
sensitivity of 71.4%, specificity of 58.6%, a positive predictive
value (PPV) of 60.6%, negative predictive value (NPV) of 69.2%
and an accuracy of 64.4%.

The function of the object detection model was to detect all
predetermined objects (in this study, the nodules themselves) in
a given image and provide confidence scores (certainty) for the
objects it detected. After the model training was finished, a model
performance report was generated by the platform (Figure 2A).
The model split the 716 images into new training (644 images)
and internal testing (72 images) datasets (Figure 2B). From the
report, based on the 72 internal validation images, the model had
an AUC of 0.889 with a precision of 68.31%, and a recall of
86.81% at a confidence score level of 0.44.

When this model was applied to the 51 prediction images
(with no images from these patients used during model
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Model ID @ 10D3456402762844078080
Created Apr 2,2020, 9:59:10 AM
Data 716 images

Model type Cloud High Accuracy

Deployment state Not deployed

images) dataset.

development) it correctly identified the nodule in all 51 (100%)
cases. Correct identification in all cases was confirmed by a
blinded radiologist and each image contained only 1 nodule.
Following identification, the risk prediction portion of the model
showed three distinct behaviors. In the first behavior, the model
detected the nodules and provided a confidence score with
greater than 80% certainty (Figures 3A, B), indicating a
reliable interpretation. In the second behavior, the model
correctly identified the location of the nodule, but classified it
as both a high-risk and low-risk area with different confidence
levels (Figure 3C), thereby making the reliability of the diagnosis
dependent on the confidence threshold. In the final behavior, the
model detected nodules, but assigned both high-risk and low-risk
labels to the same nodule with different confidence scores
(Figure 3D), thereby indicating an unreliable diagnosis.

The overall performance of the model in the prediction test
set is summarized by the confusion matrix in Table 3. Final
diagnosis was provided in 47 of 51 cases based on the confidence
score criteria described above. The corresponding sensitivity,
specificity, PPV, NPV, and accuracy are provided in Table 4 as
well as the radiologist performance post- incorporation of the AI
results into the TI-RADS scoring system. As a stand-alone
model, the AI platform demonstrated a sensitivity of 73.9%,
specificity of 70.8%, PPV of 70.8%, NPV of 73.9%, and overall
accuracy of 72.4%. The performance of the Al model was better
although not statistically significant than the performance of
three experienced radiologists when using TI-RADS
classification alone to identify suspicious imaging features
(sensitivity of 52.1 + 4.4%, specificity of 65.2 + 6.4%, PPV of
59.1 + 3.5%, NPV of 58.7 + 1.8%, and accuracy of 58.8 + 2.5%).
Importantly, Al-modified TI-RADS radiologist improved the
diagnostic performance in these nodules (sensitivity of 53.6 +
17.6%, specificity of 83.3 + 7.2%, PPV of 75.7 + 8.5%, NPV of
66.0 + 8.8%, and accuracy of 68.7 + 7.4%). While not statistically
significant (p > 0.06), all radiologist performance metrics
improved with the incorporation of AI (Figure 4).

86.81%

A
ThyroidALL_v3
Average precision @
at0.5loU
0.888
Precision* @ 68.31%
Recall* @

* Using a score threshold of 0.444

B
All labels
Total images 644
Test items 72
Total objects 144
Object to image avg 2
Precision @ 68.31%
Recall @ 86.81%

FIGURE 2 | (A) The model performance report generated by the platform. The model had an AUC of 0.889. (B) The model split the 716 training images into new
training (644 images) and new testing (72) datasets. At a confidence score level of 0.44, the model had 68.31% precision and 86.81% recall for the new testing (72

DISCUSSION

Opverall, the object detection model used in this study showed
promising performance. The model correctly designated the
location of all 51 thyroid nodules in the testing set. Although
four cases (7.8% of the total) needed to be removed due to
conflicting predictions, when predicting high vs low risk for
malignancy in the identified nodules, the AT model achieved
reasonably high diagnostic performance during testing (Table 4).
Notably, these values are higher than the performance of NGS in
the subset of patients with both NGS and pathology available,
although the model itself was built primarily on NGS data. These
challenges highlight the need for improved diagnostic tools for
characterizing nodules that meet radiographic criteria for biopsy
but have indeterminate cytopathology following FNA.

Most metrics improved with the combination of radiologists
with AI vs. Al alone. While not statistically significant, these
improvements are promising given the low diagnostic
performance of TI-RADS for predicting genetic risk we have
previously reported in a significantly larger sample size (14).
These improvements appear to rely on clusters of atypical cases
falling in the moderately suspicious category (TR4) on the TI-
RADS system. For example, there were six nodules in the
prediction set that all radiologists classified as low risk, but
which fell into high risk categories based on NGS or final
pathology and two nodules that all radiologists identified as
high-risk but were low risk on NGS. The algorithm correctly
classified both of these low-risk nodules and four of six of the high-
risk nodules. From a clinical perspective, our data suggests
incorporation of the AI model would allow more patients with
low risk nodules to potentially forgo surgical intervention while
also improving the identification of higher-risk nodules in need of
further intervention. These results are highly encouraging given
the nodules used in this model all met radiographic criteria for
biopsy and had indeterminate cytopathology requiring further risk
stratification with NGS testing to help in risk assessment.
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with a confidence score of 0.93 and 0.8.
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FIGURE 3 | (A) Example prediction from the Object Detection Model that correctly detected a nodule and correctly assigned a high-risk label with 98% certainty.
The position of the high-risk nodule was marked by the orange color bounding box drawn by the model. (B) Example prediction from the Object Detection Model
that correctly detected the nodule and correctly designated the lesion as low risk with 100% confidence. The position of the low-risk nodule was marked by the
yellow bounding box drawn by the model. (C) Example prediction from the Object Detection Model that detected a high-risk lesion, a high-risk area, and a low-risk
area with confidence scores of 0.96, 0.76, and 0.56, respectively. The position of the high-risk nodule was marked with the orange bounding box drawn by the
model. (D) Example prediction from the Object Detection Model that detected the nodule but assigned both high-risk and low-risk labels. The model provided a
confidence score of 0.74 for the nodule to be high risk and a confidence score of 0.68 for the nodule to be low risk. The model also indicated two low risk areas

While many AI models have been published for the diagnosis
and management of thyroid nodules, relatively few have focused
on genetic risk of nodules referred for FNA. A deep learning

TABLE 3 | Confusion matrix for the prediction images with Al diagnosis.

High-Risk Low-Risk
Prediction High-Risk 17 7
Prediction Low-Risk 6 17

algorithm described in the Buda et al. study achieved a higher
sensitivity (87%) and specificity (52%) than the mean sensitivity
(83%) and specificity (48%) of nine radiologists for thyroid nodule
biopsy referral based on ultrasound images (26). Wildman-
Tobriner et al. modified the ACR TI-RADS by a genetic
machine learning algorithm and called it AI-TIRADS. Their
proposed AI-TIRADS system reassigned point values based on
Al interpretation, assigning 1 point for taller than wide shape, 2
points for hypoechogenicity, irregular and lobulated margins,
peripheral echogenic foci and 3 points for solid composition,

TABLE 4 | Sensitivity, specificity, PPV, and NPV, and accuracy from the Al alone, TI-RADS alone, and Al + TI-RADS.

Sensitivity (95% ClI)

Specificity (95% CI)

PPV (95% CI) NPV (95% Cl) Accuracy (95% CI)

Object Detection Model 73.9% 70.8%
(51.6-90.0) (48.9-87.4)
Radiologist Alone 52.1+4.4% 65.2 £ 6.4%
(30.6-73.1) (43.4-83.2)
Radiologist Post-Al 53.6 + 17.6% 83.3+7.2%
(32.7-73.6) (62.9-94.9)
p=0.87 p =0.06

70.8% 73.9% 72.4%
(55.4-82.6) (57.5-85.5) (57.4-84.4)
59.1 + 3.5% 58.7 + 1.8% 58.8 + 2.5%
(42.4-74.0) (45.9-70.5) (43.6-73.0)
75.7 + 8.5% 66.0 + 8.8% 68.7 + 7.4%
(53.2-89.0) (54.6-75.9) (53.8-81.4)

p =013 p =031 p=0.21

95% Confidence interval: 95% Cl.
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FIGURE 4 | Radiologist performance using TI-RADS criteria alone (white) and
TI-RADS with Al assistance (checkered) for predicting the risk of thyroid
nodules on B-mode ultrasound.

very hypoechoic lesions, extra thyroidal extensions, and punctuate
echogenic foci. The rest of ACR-TIRADS features received zero
points. Similar to our study their results improved specificity
greatly when compared to ACR TI-RADS scoring alone (27).
Incorporation of radiology Al into established classification
systems is likely to aid in clinical adoption. Results from this study
demonstrate the potential improvements of combining both
advanced machine learning programs with experienced
radiologists in a particularly challenging nodule population.
Similarly, a need to explain and validate an AI model’s decision
making is likely to be vital for clinical adoption. Most of the Al
algorithms applied for the classification of thyroid nodules do not
provide an indication of what part of the image is being used for
diagnosis and serve as a black box. Additionally, the algorithm
performance can be affected by the training node hours
(computation time allotted during training), noise and contrast
level of images, and parameter sampling. The model employed in
this study is still subject to some of these limitations. However, the
incorporation of the object detection model and confidence
scoring provides reassurance that the correct area is being
evaluated and multiple diagnostic criteria are being weighed.
While this study has shown encouraging results, limitations
exist and should be addressed moving forward. Due to its
retrospective, single center design, the study was limited in
sample size and did not utilize a standardized imaging protocol.
Larger, multi-center prospective trials are needed to fully validate
findings. While the algorithm’s detection of the lesion agreed with
blinded radiologists in 100% of cases, the program’s use of a
rectangular bounding box prohibits traditional object detection
quantitative measures such as intersection over union (28).
Similarly, while automated identification of the nodule reassures
the reader the correct area is being used during prediction, it is
possible areas outside the nodule but within the rectangular
bounding box are being used for forecasting genetic risk. Future
work should explore feature extraction to confirm the appropriate
region within the bounding box is being used while also
identifying key features being used by the algorithm (thereby
also reducing the ‘black box’ nature to some degree). Our reference
standard used primarily NGS but was supplemented by some
cases with final pathology following surgical resection to meet the

data requirements of the high-risk label. While the goal of this
study was to predict genetic risk, ideally longer-term surveillance
should be incorporated to correlate genetic risk with clinical
outcomes. Lastly, for the consistency of the comparison we
showed only one image per nodule to clinicians while in clinical
practice they usually assess the nodule risk by looking at multiple
images of the nodule in different planes.

Despite these limitations, initial results have been encouraging
and may serve as a roadmap for the incorporation of ultrasound-
Al into clinical practice. Ultimately, we expect these approaches to
help guide radiologist decision making by providing management
direction in nodules in which the decision to perform FNA is
unclear based on existing risk classification systems. Similarly,
findings from Bethesda III and IV nodules may be combined with
known risk factors and patient preference to help guide the
selection of either active surveillance or surgical intervention.

CONCLUSION

The incorporation of Al algorithms into daily clinical practice
can potentially assist radiologists in decision making and act as
an auxiliary tool. In this study, Al-modified TI-RADS improved
the performance of both radiologists and AI alone when
classifying the genetic risk of thyroid nodules for further
management while looking specifically at a subset of nodules
which were indeterminate (Bethesda III/IV) on cytopathology.
Clinically, this approach suggests the ability to more accurately
identify truly high-risk nodules on initial ultrasound and prevent
invasive interventions of lower-risk nodules.
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