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Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs),
have been found in a variety of tumor entities and play distinct roles in the pathogenesis
and development of various cancers including head and neck cancer (HNC). HNC is a
heterogeneous disease arising from the mucosal epithelia of the upper aerodigestive tract,
including different anatomic sites, distinct histopathologic types, as well as human
papillomavirus (HPV)-positive and negative subgroups. Despite advances in multi-
disciplinary treatment for HNC, the long-term survival rate of patients with HNC remains
low. Emerging evidence has revealed the members of UCHs are associated with the
pathogenesis and clinical prognosis of HNC, which highlights the prognostic and
therapeutic implications of UCHs for patients with HNC. In this review, we summarize
the physiological and pathological functions of the UCHs family, which provides
enlightenment of potential mechanisms of UCHs family in HNC pathogenesis and
highlights the potential consideration of UCHs as attractive drug targets.
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Inducing Transcription Factor; CTTN, Cortactin; mTORC1, mTOR complex 1; eIF4F, Eukaryotic initiation factor 4F; TRAF2,
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INTRODUCTION

Head and neck cancer (HNC) represents the seventh most
prevalent human malignancies with an annual incidence of
890,000 new cases worldwide, including 76,000 cases in China
and 18,260 cases in Germany (1, 2). Anatomically, HNC occurs
at distinct sites including lip, oral cavity, nasal cavity, sinonasal
cavity, nasopharynx, oropharynx, hypopharynx, larynx, and
salivary glands, and etiologic risk factors, epidemiology,
treatment strategies as well as clinical outcome differ among
individual subsites (3). Over 90% of cases are diagnosed as head
and neck squamous cell carcinoma (HNSCC), which arises from
the mucosal epithelia of the upper aerodigestive tract. High
incidence areas for oral cavity cancer include Middle and
South Asia, Western and Southern Europe as well as South
Africa. The incidence of oropharyngeal SCC (OPSCC) is elevated
in Europe and North America. Nasopharyngeal cancer (NPC) is
most common in East and Southeast Asia, especially in South
China (4). Tobacco smoking and heavy alcohol consumption
have been identified as the most important risk factors in
developed countries (5). In developing countries, risk factors
also include EpsteinBarr virus (EBV) infection for NPC, areca
nut chewing, consumption of preserved foods, and oral hygiene
(6–8). During the past two decades, the overall incidence of
HNSCC has gradually decreased in western developed countries.
However, a subgroup of HNSCC, particularly OPSCC, has been
becoming more prevalent in young adults, which is attributed to
high-r i sk human papi l lomavirus (HPV) infect ion ,
predominantly HPV16 (9). High-risk HPV types comprise two
oncogenes, E6 and E7, which inactivate the tumor suppressors
p53 and retinoblastoma (RB), respectively. As a result, cell cycle
progression and cell death in infected cells are disrupted, as
initial steps for HPV-related carcinogenesis (10–13). Besides the
viral oncogenes E6/E7, HPV E2, E4, and E5 have been shown to
facilitate the synergistic effects of viral oncogenesis, which
represents an alternat ive manner to HPV-induced
carcinogenesis (14). It has been well-established that HPV-
positive and HPV-negative OPSCC have distinct differences in
gene expression profiles, genomic alterations, immune
landscape, as well as clinical outcomes (15–18). Due to the
more favorable prognosis of HPV-positive OPSCC, clinical
trials have been launched to investigate HPV-stratified de-
escalation treatment based on currently established protocols.
However, final results and definitive conclusions are pending,
which might improve the post-treatment quality of HPV-related
OPSCC patients (19–22).

Despite advances in multi-disciplinary treatment for HNSCC,
including surgical approaches, radiotherapy, chemotherapy,
molecular-targeted therapy, and immunotherapy, the overall
survival of advanced HNSCC has only improved slightly, and
appropriate therapy remains a major challenge. Over the past
decade, large-scale genomic profiling and proteomic studies,
including The Cancer Genome Atlas (TCGA) projects, have
highlighted a comprehensive molecular landscape of changes
in DNA copy number, somatic mutations, promoter
methylation, and protein and gene expression, indicating the
Frontiers in Oncology | www.frontiersin.org
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critical components and signal pathway in HNSCC pathogenesis
(23–25). A better understanding of these molecular
underpinnings may inspire novel drug targets as well as
molecular biomarkers for personalized treatment.

The proteome is exceedingly complex and has been regarded
as the major driver or actuator of fundamental cellular processes.
Protein ubiquitination is a post-translational modification
process that plays critical roles in numerous biological
processes, including cell growth and differentiation, signal
transduction, DNA repair, and oncogenesis (26). The
conjugation of ubiquitin (Ub) to target proteins is catalyzed by
a cascade of ubiquitinating enzymes, including Ub-activating
enzymes (E1s), Ub-conjugating enzymes (E2s), and Ub ligases
(E3s). Conjugation of Ub to a substrate lysine, its lysines or its N-
terminus, results in the generation of different substrate
ubiquitin structures, which can be either a mono- or poly-
ubiquitylation process and allows targeted proteins to fulfill a
diverse range of functions. However, protein ubiquitination is
highly reversible. Deubiquitinases or deubiquitinating enzymes
(DUBs) catalyze the removal of ubiquitin from target proteins to
generate free monomeric Ub (27). The human genome encodes
approximately 100 DUBs categorized into six subfamilies: the
ubiquitin C-terminal hydrolases (UCHs), the ubiquitin-specific
proteases (USPs), the ovarian tumor proteases (OTUs), the
Josephin or Machado-Joseph disease protein domain proteases
(MJDs), the Jab1/MPN domain-associated metalloisopeptidase
(JAMM), and the monocyte chemotactic protein-induced
protein family (MCPIP) (27). Among these families, UBPs are
mostly described to date, with 60 proteases in humans, which
have been well-reviewed by a range of publications (28–31).
Recent studies have revealed the emerging functions of UCHs in
the pathogenesis and progression of human malignancies.
However, few studies on UCHs in HNC are available. One
member of UCHs family, BRCA1-associated protein-1 (BAP1),
was identified to be associated with poor outcome following
radiation in HPV-negative HNSCC clinical sample by proteomic
and transcriptomic analysis (32). Moreover, another member of
UCHs family, UCHL1 was demonstrated as a tumor suppressor
gene in nasopharyngeal carcinoma (NPC) (33). In this review, we
systematically summarize the physiological and pathological
functions of the UCHs family in human malignancies,
providing enlightenment on potential mechanisms of UCHs
family in HNC pathogenesis and the potential consideration of
UCHs as novel promising drug targets.
STRUCTURES AND FUNCTIONS OF UCHS

Among DUBs family, molecular structures of UCHs were the
first to be characterized. Four UCHs in humans have been
identified: UCHL1/PGP9.5 (protein gene product 9.5), UCHL3,
UCHL5/UCH37, and BAP1. All UCHs share a core catalytic
domain with 230 amino acids and close homology among family
members. They comprise a confined loop that cleaves short
ubiquitylated peptides (up to 20–30 amino acids) from the C-
terminal glycine residue (Figure 1).
January 2021 | Volume 10 | Article 592501
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UCHL1
First identified as a member of UCHs family in the 1980s,
UCHL1 is an abundant neuronal protein containing only one
UCH domain with very short N- and C- terminal extensions. It
possesses one of the most complicated protein knotted structure,
which is regarded to protect UCHs from degradation in the
proteasome as well as to maintain proper proteasomal function.
Besides its DUB function in the recycling of free Ub, UCHL1 is
also known to have a ubiquitin ligase activity as a mono-Ub
stabilizer by preventing its degradation (34). It was reported that
the generation rate of monomeric Ub by UCHL1 in vitro is
enhanced by the catalytic residues C90 and H161 (35). Analysis
of the crystal structure suggests that UCHL1 preferentially binds
monomeric or small adducts of Ub, but does not act on large
polymers of Ub (36). Therefore, UCHL1 has the potential for
numerous ubiquitination-dependent biological processes.

UCHL1 is predominantly expressed in the brain, where it
comprises up to 5% of total neuronal proteins. Although the
precise function of UCHL1 is not fully clarified in many
pathological processes, better understandings of functional
UCHL1 has been largely reported in neuronal dysfunction and
neurodegenerative disorders (34, 37–39). For instance, the
specific distribution and activity of UCHL1 in human tissues
has the potential clinical significance for Parkinson’s disease
(PD) and Alzheimer’s disease (AD), might be a major target of
reactive oxygen species (ROS) damage (40). Although most cases
of PD are sporadic, a small subgroup of PD has been linked to
specific genomic mutations (41). Interestingly, The I93M point
mutation in UCHL1 has been reported to be associated with PD
susceptibility by decreasing hydrolytic activity (42). By contrast,
an S18Y variation in UCHL1 shows a protective enzyme with
a reduced risk of PD by a reduction of a-synuclein (43). A
study has shown that modification of the UCHL1 C152 site
decreases injury to gray and white matter, resulting in the
recovery of motor function after middle cerebral artery
occlusion (44). Another potential feature of UCHL1 is an
ATP-independent E3 ligase activity, which promotes Lys63
(K63) polyubiquitination of a-synuclein (34). Moreover,
Frontiers in Oncology | www.frontiersin.org 3
UCHL1 was demonstrated as a novel interactor and substrate
of PD linked E3 ubiquitin-protein ligase parkin by the
autophagy-lysosome pathway (45).

It has also been reported at much lower levels in kidney, breast
epithelium, and reproductive tissues (46, 47), and to be expressed
context-dependent in individual cells, such as human fibroblasts
during wound healing (48). Uniform cytoplasmic staining of
UCHL1 was observed in neurons, but UCHL1 can translocate
into the nucleus and regulate microtubule dynamics (49).
Although it is absent in most other normal tissues, UCHL1
appears to be aberrantly expressed in many non-neuronal
tumors, including breast, prostate, colorectal, gastric, head and
neck, and pancreatic ductal carcinomas (33, 50–55). The functions
and potential mechanisms of UCHL1 in tumorigenesis have been
reviewed by several excellent publications (56, 57). The interactive
proteins with UCHL1 as well as other UCH family members in
human malignancies are summarized in Table 1. In addition,
altered expression levels of UCHs in various cancers have also
been reviewed in Table 2.

Recent findings have revealed significant functions for UCHL1
in immune response and regulation. UCHL1 was found in mouse
kidney, spleen, and bone marrow-derived dendritic cells, and its
expression and activity were strongly regulated by the immune
stimuli LPS and IFN-g (113). UCHL1 modulates antigen
processing by affecting the colocalization of intracellular MHC I
with late endosomal/lysosomal compartments necessary for cross
priming of CD8 T cells (113). Interestingly, an induced UCHL1
expression was also demonstrated in multipotent mesenchymal
stromal cells (MSCs) upon stimulation with proinflammatory
cytokines IFN-g plus TNF-a, and negatively regulated the
immunosuppressive capacity and survival of MSC. This discovery
may provide potential MSC-based immunotherapy for
inflammatory diseases by modulation of UCHL1 (114).

UCHL3
UCHL3 andUCHL1 have significant structural similarity. However,
the biological characteristics of UCHL3 are quite distinct
concerning expression patterns and ligase activity. Unlike
FIGURE 1 | Simplified structure of the UCH family proteins. All UCH members share close homology in their catalytic domains and have a core catalytic domain with
230 amino acids. UCHL3 contains a KEKE motif in the C-terminal tail. BAP1 consists of a long C-terminal extension illustrating numerous functional domains and
binding sites for interacting proteins. UCH, ubiquitin C-terminal hydrolase; Ba, BARD1 binding domain; H, HCF-binding motif; BR, BRCA1 binding domain; NLS,
nuclear localization signal; YY1, Ying Yang 1 binding region. Inspired by (26).
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UCHL1, which is mainly restricted to neuronal and neurosecretory
tissues, UCHL3 is more widely expressed throughout mammalian
tissues. Interestingly, UCHL3 hardly exhibits ligase activity, while its
hydrolytic activity is two-hundred-fold higher than UCHL1 toward
a fluorogenic ubiquitin C-terminal amide (34). It was reported that
UCHL3 enables to cleave the C-terminus of NEDD8, which is a
ubiquitin-like protein that exerts the function of Ub to be
conjugated to a lysine residue of the substrate (115). Next,
UCHL3 has also been demonstrated to alleviate cryptorchid-
induced germ cell apoptosis in gad mice. UCHL3 appears to have
dual affinities for ubiquitin and Nedd8, and function as a
deNEDDylating enzyme in vivo, suggesting that UCHL3 plays a
critical role in germ cell apoptosis (116). Several studies using
similar UCHL3 knockout mouse models revealed the significant
functions in photoreceptor cell degeneration, neurodegeneration,
fertilization and embryogenesis, stress responses in skeletal muscle,
diet-induced obesity, and osteoblast differentiation (117–122). It is
worth mentioning that level of UCHL3 protein in several
neurodegenerative diseases is unchanged, while it hydrolyzes the
C-terminal extension of a mutant ubiquitin (UBB+1), contributing
to the role in neurodegenerative disorders (123).

An increasing number of studies have demonstrated vital
functions of UCHL3 on tumorigenesis, including breast, prostate,
Frontiers in Oncology | www.frontiersin.org 4
ovarian, and non-small cell lung cancer (Table 2) (50, 74, 101, 102).
Luo et al. found that UCHL3 deubiquitinates RAD51 and
subsequently facilitates RAD51-BRCA2 interaction, which is
critical for homologous recombination (HR) and contributes to
therapeutic resistance in breast cancer (75). By contrast, UCHL3 is
reduced in metastatic prostate cancer cell lines, and knockdown of
UCHL3 promotes epithelial-to-mesenchymal transition (EMT),
contributing to cancer cell invasion and metastasis (102). In
contrast, high UCHL3 expression was reported in ovarian cancer
and predicted a worse clinical outcome. The elevated UCHL3
facilitates carcinogenesis and enhances inflammation by
deubiquitinating and stabilizing TNF Receptor Associated Factor
2 (TRAF2) (74). Taken together, the UCHL3 function in cancer
remains controversial, suggesting the roles of UCHL3 is
complicated and context-dependent in individual tumor types.

UCH37
UCH37 (also known as UCHL5) was identified first as a 19S-
associated deubiquitinating enzyme in the 1990s, which comprises a
C-terminal extension (residues 227-329) in addition to an N-
terminal UCH domain (residues 1–226) (124). It is specific for
the distal subunit of Lys48-linked poly-Ub chains. Isolated full-
length UCH37 displays weak catalytic activity due to autonomic
TABLE 1 | Overview of interacting proteins with UCHs family in various human malignancies.

UCHs family Interacting protein Human malignancies References

UCHL1 P53 Breast cancer, metastatic colon adenocarcinoma, nasopharyngeal carcinoma, hepatocellular carcinoma (33, 58–60)
MDM2 Colorectal cancer, prostate cancer, nasopharyngeal carcinoma (33, 61)
b-catenin Colorectal cancer, pediatric high-grade glioma (62, 63)
NOX4 Cervical cancer (64)
EGFR Breast cancer (65)
HIF-1 Breast, lung cancer (66, 67)
cyclin B1 Uterine serous cancer (68)
PHLPP1 Lymphoma, lung tumor (69)
MITF Melanoma (70)
SMAD2 Breast cancer (53)
TGFb type I receptor Breast cancer (53)
CTTN Nasopharyngeal carcinoma (71)
mTORC1 B-cell lymphoma (72)
eIF4F B-cell lymphoma (73)

UCHL3 TRAF2 Ovarian cancer (74)
BRCA2 Breast cancer (75)
RAD51 Breast cancer (75)

UCH37/UCHL5 PRP19 Hepatocellular carcinoma (76)
PRDX1 Hepatocellular carcinoma (77)
SNRPF Glioma (78)
Smad2 Ovarian cancer (79)
GRP78 Hepatocellular carcinoma (80)
E2F1 Liver cancer (81)
Rpn13 Cervical cancer (82)

BAP1 BRCA1/BARD1 Breast cancer, chronic myeloid leukemia, meningioma (83–85)
HCF-1 Breast cancer, renal cell carcinoma (86, 87)
Ino80 Mesothelioma (88)
Gamma-tubulin Breast cancer (89)
ASXL1/2 Mesothelioma (90)
MCRS1 Renal cell carcinoma (91)
Histone H2A Head and neck cancer (32)
IP3R3 Prostate cancer (92)
ATF3 Multiple carcinomas (93)
14-3-3 protein Neuroblastoma (94)
SLC7A11 Multiple carcinomas (95, 96)
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inhibition by the C-terminal extension (125). The proteolytic
activity requires a Ub receptor called ADRM1 (named hRpn13 in
humans) binding to UCH37 via its C-terminal 46 residues (also
called the KEKE motif) (125). In addition, hRpn13 was found to
directly enhance the de-ubiquitination activity of UCH37 in vitro
(125–127). The hRpn13-UCH37 complex hydrolyzes large Ub
conjugates with incorporation into the 19S complex. By contrast,
UCH37 is inhibited by the chromatin remodeling complex
component INO80G mediated by the N-terminal domain of
NFRKB (nuclear factor related to kB, NFRKB) (128). Rpn13 and
INO80G share a conserved deubiquitinase adaptor (DEUBAD)
domain that interacts with the C-terminal of UCH37, revealing
conformational plasticity to regulate deubiquitinating activity on or
off, respectively (128). Functionally, UCH37 is reported to perform a
crucial role in certain protein-protein interactions involving several
physiological and pathological processes, including development,
cell proliferation, and apoptosis, hippocampal synaptic plasticity,
Alzheimer’s disease, pulmonary fibrosis, as well as human
malignancies (26, 129–133).

Wicks and colleagues reported UCH37 interacts with Smad7
to control TGF-b/Smad signaling activity, suggesting that
UCH37-mediated deubiquitination might contribute to
tumorigenesis (134). The first direct evidence of UCH37 in
cancer study was described by a chemistry-based functional
proteomics approach in cervical carcinoma. Activity profiling
showed UCH37 is induced in the majority of carcinoma tissues
and HPV E6/E7 immortalized human keratinocytes, indicating a
significant role of UCH37 in tumor transformation (103).
Frontiers in Oncology | www.frontiersin.org 5
Subsequently, an increasing number of studies reported the
potential functions in tumor cell proliferation, apoptosis,
migration, and invasion, as well as clinical implications (Table
2) (76–78, 135–138).

BAP1
The BAP1 protein consists of 729 amino acids that are encoded by
the BAP1 gene located on human chromosome 3p21.1. BAP1
protein was identified as a nuclear-localized DUB. In addition to
the N-terminal UCH domain, BAP1 comprises a long C-terminal
extension (Figure 1). BAP1 was originally found to interact with the
RING finger domain of BRCA1 and to perform the cell growth-
suppressive function. BAP1 is also involved in chromatin
modification and transcription by deubiquitinating lysine residues
in HCF1 and YY1. Both recruit histone-modifying complexes and
regulate expression of numerous genes involved in multiple
physiological processes (139). Moreover, BAP1 interacts with the
transcription factor FOXK1/K2 in a phosphorylation-dependent
manner, which represses FOXK2-target genes forming a ternary
protein complex in which BAP1 bridges FoxK2 and HCF-1. Loss of
BAP1 causes the increase of FoxK2 target genes, which is dependent
on the Ring1B-Bmi1 complex (140).

Polycomb group proteins exert critical roles in transcriptional
regulation, which contributes to a variety of physiological
processes, including embryonic development, differentiation,
and self-renewal. Polycomb repressive complexes (PRCs) are
responsible for histone ubiquitination and methylation (139).
BAP1 interacts with additional sex combs like 1 (ASXL1),
TABLE 2 | Expression regulation of UCHs family in human malignancies.

UCHs family Human malignances Possible variations (References)

UCHL1 Breast cancer Down-regulation (58)
Hepatocellular carcinoma Down-regulation (59)
Invasive and metastatic breast cancer Up-regulation (53, 97)
Metastatic colon adenocarcinoma Up-regulation (62)
Nasopharyngeal carcinoma Down-regulation (33, 71)
Prostate cancer Down-regulation (61)
Pediatric high-grade glioma Up-regulation (63)
Ovarian cancer Down-regulation (98)
Non-small cell lung cancer Up-regulation (99)
Uterine serous cancer Up-regulation (68)
B-cell lymphoma Up-regulation (100)

UCHL3 Breast cancer Up-regulation (50)
Ovarian cancer Up-regulation (74)
Non-small cell lung cancer Up-regulation (101)
Metastatic prostate cancer Down-regulation (102)
Cervical cancer Up-regulation (103)

UCH37/UCHL5 Hepatocellular carcinoma Up-regulation (76)
Glioma Down-regulation (78)
Cervical cancer Up-regulation (103)
Esophageal squamous cell carcinoma Up-regulation (104, 105)

BAP1 Breast cancer Down-regulation (83, 89)
Chronic myeloid leukemia Down-regulation (84)
Mesothelioma Down-regulation (85, 106, 107)
Non-small cell lung cancer Down-regulation (83)
Renal cell carcinoma Down-regulation (87, 108)
Uveal melanoma Down-regulation (109, 110)
Basal cell carcinomas Down-regulation (111)
Neuroblastoma Down-regulation (94)
Esophageal squamous cell carcinoma Down-regulation (112)
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forming a polycomb group repressive deubiquitinase complex
(PR-DUB). The transcriptional function is regulated through
histones modification via ubiquitination by PRCs and
deubiquitination by PR-DUB. Thus BAP1 deficiency
significantly alters ubiquitination level of histone 2A, leading to
the dysregulation of cell cycle and cellular senescence (141). A
recent study found cytoplasm BAP1 localizes at the ER, where it
regulates type 3 inositol-1,4,5-trisphosphate receptor (IP3R3),
modulating calcium (Ca2+) release from the endoplasmic
reticulum into the cytosol and mitochondria, promoting
apoptosis, which plays a critical role in cellular transformation
(92). Another study has identified cystine transporter SLC7A11
as a critical BAP1 target gene in human malignancies, which was
repressed by BAP1, causing increasing lipid peroxidation and
ferroptosis (95).

BAP1 functions as a tumor suppressor through chromatin
modulation, transcriptional regulation, cell cycle control, cellular
differentiation, and DNA damage repair (142). Loss or mutation
of BAP1 gene is a common event in cancer and serves as a
potential pathogenetic mechanism in various human
malignancies, including uveal melanoma, mesothelioma, small
cell and non-small cell lung carcinomas, renal cell carcinoma
(RCC), breast cancer, and hepatocellular carcinoma (Table 2)
(107, 143–148). Tumors associated with BAP1 somatic
mutations have already been discussed in recent reviews (139,
149). Other alterations in the BAP1 gene have been reported,
such as large deletions of exons causing premature protein
termination, frameshift mutation, splice site mutations, and
base substitutions-induced nonsense and missense mutations
(143, 149). BAP1 acts as a tumor suppressor depending on
both deubiquitination activity interfered by missense mutations
and loss of nuclear localization signal by truncating mutations.
Furthermore, several studies showed that BAP1 loss or
modification is associated with different tumor phenotypes and
clinical outcomes (108, 110, 150–152). For example, BAP1-
mutated mesothelioma is significantly correlated with female
predominance, younger age at onset, epithelioid differentiation,
and better prognosis (153). At the same time, BAP1 mutation is
strongly associated with a more aggressive, metastatic phenotype
in uveal melanomas (143). BAP1 is frequently mutated in
sporadic clear cell RCC with an incidence rate of 6–17%,
which is associated with high tumor grade, rhabdoid/
sarcomatoid transformation, and poor clinical outcome (154,
155). From a therapeutic standpoint in renal cell carcinoma,
inactivation of BAP1 sensitizes tumor cells to irradiation and
PARP-inhibitors, which might be due to the impaired ability of
double-stranded DNA breaks (87).
UCHS MEMBERS IN HNC

Although UCHs members have been well investigated in a
variety of human malignancies, the exact function of these
enzymes in HNSCC pathogenesis and progression remain
elusive. Each member of the UCHs family exerts distinct roles
depending on the various tumor types. For example, UCHL1 has
Frontiers in Oncology | www.frontiersin.org 6
been controversially considered as a tumor suppressor or tumor
promoter in specific tumor types. It was reported that UCHL1 is
silenced by promoter CpG hypermethylation in a large panel of
primary tumors including HNSCC cell lines and primary
tumors, suggesting a tumor-suppressive function (33, 156). The
methylation of the CpG locus associated with the UCHL1 gene is
dependent on the anatomic site of HNSCC primary tumors, with
most hypermethylation of UCHL1 specifically in oral cavity SCC
(157). Restored UCHL1 expression significantly suppressed
tumor cell proliferation and induced cellular apoptosis through
activation of the p14ARF-p53 signaling pathway (33). A more
recent study in nasopharyngeal carcinoma revealed a similar
conclusion that UCHL1 promoter hypermethylation was
validated in nasopharyngeal carcinoma tissues. In addition,
restoration of UCHL1 inhibits tumor invasion and metastasis
in vitro and in vivo. UCHL1 exerts tumor suppressor function by
inducing K48-linked ubiquitination of CTTN (71). Currently, it
is widely accepted that high-risk HPV infection is a risk factor for
HNSCC, particularly in the oropharynx. High-risk HPV infects
the oropharyngeal epithelium causing host immune suppression
and evasion (11). UCHL1 does not assist HPV genome
replication and viral propagation, but suppresses keratinocyte-
mediated production of inflammatory cytokines and
chemokines, thereby contributing to immune evasion and
HPV persistent infection (158). UCHL1 interacts with tumor
necrosis factor receptor-associated factor 3 (TRAF3), which acts
as a negative regulator of the alternative NF-kB pathway and
antiviral type I IFN activation. TRAF3 has been shown as a
tumor suppressor that regulates the malignant phenotype of
HPV-positive HNSCC (158).

As a tumor suppressor, BAP1 is critical for promoting DNA
repair and cellular recovery from DSB via modulation of H2A
ubiquitination (159). BAP1 was found to mediate radioresistance
in an in vivo xenograft model and HNSCC cell lines via the
deubiquitination of H2A and modulation of HR. Moreover, up-
regulation of BAP1 was associated with worse clinical outcome in
HNSCC, which indicates BAP1 might serve as a potential
therapeutic target in HNSCC (32). In summary, it seems that
loss of BAP1 foster genomic instability in tumor pathogenesis,
however, the activity of BAP1 promotes tumor cell survival and
contributes to therapeutic resistance during irradiation.

Induced activity of UCHL1 and UCHL3 were observed in E6/
E7 immortalized primary keratinocytes, indicating the potential
function of UCHL1 and UCHL3 in HPV-related HNSCC (103).
However, few direct evidences concerning the function of
UCHL3 and UCH37 in HNSCC have been reported.

Recently, comprehensive epigenetic and genomic profiling
studies have highlighted the most frequently altered genes and
signaling pathways in HNSCC. The genomic characterization of
279 HNSCCs including HPV-positive and HPV-negative
tumors, has been published (23). Moreover, the molecular
profiling data from over 500 HNSCC patients are available at
the cBioPortal for Cancer Genomics, which provides interactive
exploration and analysis of genetic alterations (160, 161). In
addition, the GTEx project provides RNA sequencing data from
more than 8,000 normal tissues. Currently, several web-based
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tools deliver interface-friendly and personalized functions based
on TCGA and GTEx data (161, 162). cBioPortal provides
visualization for the genomic alteration data. Clinical and
genomic analysis of multicohort HNSCC has demonstrated
that HPV-positive and HPV-negative tumors present
heterogeneity in anatomical regions, mutation profiles,
molecular characteristics, immune landscapes, and clinical
prognosis. Many evidence revealed the diversity and
heterogeneity of HNSCC clinicopathology and therapeutic
responses depending on HPV status (163). To better
understand the UCHs family mutational landscape in HNSCC,
the cBioPortal tool was used to display the types of mutations
and their positions in the domain structure of proteins (Figures
2A, B). UCHs member genes are altered in 22 (8%) of queried
patients. Of these, 20 cases are HPV-negative, and 2 cases are
HPV-positive.

UCHL1 alterations accounted for 0.4% in HPV-negative
subgroup and no genetic alteration in HPV-positive patients,
UCHL3 for 3.3% in HPV-negative and 2.7% in HPV-positive,
UCHL5 for 2% in HPV-negative and 2.7% in HPV-positive, and
BAP1 for 2.4% in HPV-negative and 0 in HPV-positive.
Interestingly, there is no samples overlapped. Concerning the
mutation type, one missense mutation in UCH-domain of
UCHL3, two missense mutations in UCHL5, two missense
mutations and one truncating mutation in BAP1. A web-based
tool GEPIA (164) analysis revealed UCHL1 gene expression in
Frontiers in Oncology | www.frontiersin.org 7
HNSCC tissues is significantly elevated as compared to normal
tissues, which is different from the previous studies in
nasopharyngeal carcinoma (71) (Figure 3A). Survival analyses
based on gene expression levels was also applied to evaluate the
clinical relevance of UCHs family genes (Figures 3B, C). The quartile
cut-off method was determined depending on the optimization and
visualization of the online web tool. However, numerous problems
remain unsolved. We were not able to divide the cohort into two
subtypes due to the incompleteness of the HPV status information.
More specific subgroups of HNSCC patients for certain phenotypes
need to be discovered depending on the protein expression patterns
of UCHs family, which may contribute to illuminate the clinical
relevance of UCHs family for HNSCC patients. Moreover, the gene
networks regulated by UCHs family genes should be identified by
analyzing the RNA-sequencing profiling data. Novel signaling
pathways and biological processes related to UCHs family in
HNSCC are urgent to be clarified. Functional proteomics
represents a useful approach to investigate the UCHs family
activity-related biological processes in different subtypes of HNSCC.
Only BAP1 protein expression data by reverse-phase protein arrays
(RPPAs) are available in the TCPA dataset, where BAP1 serves as a
strong prognostic predictor for female-related cancer cohorts
including samples of invasive breast carcinoma, Ovarian serous
cystadenocarcinoma, Uterine Corpus Endometrial Carcinoma (25).
More large-scale proteomic profiling data on the other UCHs
members are urgent to be produced.
A

B

FIGURE 2 | Overview of genetic changes of UCHs family in TCGA HNSCC patients. (A) Oncoprint shows altered UCHs family genes. The colors are associated
with one class of variants, and the percentage (%) of patients affected is shown on the graph. (B) cBioPortal predicted mutation maps showing the positions of
mutations on the functional domains of UCHL3, UCHL5, and BAP1 proteins.
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Therapeutic Implications for HNC
Targeting UCHs members
Research on targeting UCHs members in HNSCC therapy is still
in the initial period. To our knowledge, there are no studies
focusing on UCHs family molecular inhibitors or drugs for
clinical trials, which reflects the lack of theoretical and
preclinical research. Encouragingly, UCHs family has been
shown to predict therapeutic sensitivity and clinical outcomes
for various tumors. For example, UCHL1 strengthens tumor cells
chemosensitivity in melanoma and colorectal cancer by
stabilizing NOXA (165). BAP1 was also reported to modulate
cancer cell sensitivity to radiotherapy and the molecular
inhibitors including PARP (olaparib) or histone deacetylase
inhibitors (panobinostat), which may become potential
therapeutic strategies (87, 166). The small molecule b-AP15 as
a previously unidentified class of proteasome inhibitor abrogates
the activity of two 19S regulatory-particle-associated
deubiquitinases, UCH37/UCHL5, and USP14 (167). In vivo b-
AP15 prevents tumor progression in four different solid tumor
models, including HNSCC, indicating deubiquitinating activity
of UCH37/UCHL5 represents a novel therapeutic target for
cancer (167).

Over the last decade, the high-risk HPV infection in HNC
plays a critical role in staging and prognosis, which promotes
personalized therapy and the de-intensification of currently
established treatment protocols based on HPV status (168).
Frontiers in Oncology | www.frontiersin.org 8
The underlying mechanisms of UCHs family in HPV-related
carcinogenesis remains an enigma. It is worth mentioning that
UCHL1 was specifically up-regulated by high-risk HPV in
primary keratinocytes to escape innate immunity. Therefore,
the precious functions of UCHL1 and other UCHs family
members in HPV-related HNSCC need to be disclosed. One of
the current therapeutic challenges is to find more suitable
biomarkers or surrogate markers for the identity and selection
of subpopulation, which would benefit from personalized and
therapy. Response rates of HNSCC patients to cetuximab, the
only FDA-approved molecularly target-EGFR monoclonal
antibody, are only 10% (169). UCHs members have been
described to interact with EGFR (170), suggesting the potential
of combination therapy with UCHs members for cetuximab
treatment in HNSCC.

HNSCC, l ike other human mal ignancies , i s an
immunosuppressive disease. Therefore, immunomodulatory
treatment to overcome immune suppressive phenotypes in
HNSCC patients has emerged as novel and effective strategies,
which include cancer vaccines (e.g., HPV vaccines, tumor
peptide antigens), cytokines (e.g., IL2, IFNg, TNFa), specific
monoclonal antibodies (e.g., anti-PD1/PD-L1, CTLA-4
antibodies) (171). Over the past 10 years, the most remarkable
therapeutic advances have been achieved in immune checkpoint
blockade in HNSCC. FDA approved several target immune
checkpoint agents for the treatment of patients with HNSCC.
A

B

C

FIGURE 3 | Differential expression analysis of UCH family genes between tumor tissues and normal tissues in the TCGA-HNSC cohort (A). Kaplan-Meier plots
analyses show overall (B) and disease-free (C) survival compared by log-rank test. The Cox proportional hazard ratio (HR) is shown in the survival plots.
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However, the patients revealed different responses to these
agents, with only less than 20% of the responder (172, 173).
There are many challenges for the immunotherapy of HNC in
the future, such as the selection of responding patients,
integration into the spectrum of conventional treatment,
reduction of immunosuppression in non-responding patients
(174). The DUBs are involved in the regulation of innate and
adaptive immune response, which sheds light on the
immunoregulatory of UCHs family for combination
immunotherapy in HNSCC (114, 175). In addition, a variety of
patented compounds targeting UCHs members have been
developed, which would prepare a path toward the outstanding
achievement of genuinely personalized medicine for the
treatment of cancers (176–179).
CONCLUSION AND PERSPECTIVE

In summary, an increasing number of studies suggest that
members of UCHs family exert distinct functions in a variety
of human malignancies. However, available studies on UCHs in
head and neck cancer are limited. It is an exciting time for
HNSCC research based on the comprehensive genomic data, as
the molecular landscape and altered signaling pathways has been
synthetically described. But there are no genetic and proteomic
screening tests routinely incorporated into the HNSCC clinically.
Emerging evidence has revealed the members of UCHs are
associated with the pathogenesis and clinical prognosis of
HNSCC, which highlights the prognostic and therapeutic
implications of UCHs for patients with HNC. Based on the
available data, we have launched a joint project on the expression
and function of UCHs in HNSCC, which aims to provide more
evidence that UCHs might be the novel prognostic marker and
therapeutic target. There are some emerging unresolved issues in
HNSCC, such as: what are the precise substrates and regulators
of the UCHs family? What are genetic or epigenetic events, and
signaling pathways relevant to the UCHs family? Are UCHs
family members able to serve as biomarkers for identifying a
subset of patients to receive the optimal treatment? Can the
Frontiers in Oncology | www.frontiersin.org 9
agents targeting UCHs family become one of the novel treatment
regimens? Optimization of combination regimens of immune
checkpoint inhibitors and the agents targeting UCHs family may
be a remarkable challenge for immunotherapy of HNSCC.
Finally, whether and how the UCHs family members can be
translated into the clinical management of HNC remains a
formidable mission for the future.
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