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Background: Cervical cancer continues to be a major public health problem worldwide,
and Cisplatin is used as first-line chemotherapy for this cancer; however, malignant cells
exposed to ClISplatin (CIS) become insensitive to the effects of this drug. PenToXifylline
(PTX) is a xanthine that sensitizes several types of tumor cells to apoptosis induced by
antitumor drugs, such as Adriamycin, Carboplatin, and CIS. The effects of PTX on tumor
cells have been related to the disruption of the NF-kB pathway, thus preventing the
activation of cell survival mechanisms such as the expression of anti-apoptotic genes, the
secretion of proinflammatory interleukins, and growth factors.

Objective: In this work, we studied the antitumor proprieties of PTX in human SiHa
cervical carcinoma cells resistant to CIS.

Materials and Methods: SiHa and Hela cervical cancer cells and their CIS-resistant
derived cell lines (SiHaCIS-R and HelLaCIS-R, respectively) were used as in-vitro models.
We studied the effects of PTX alone or in combination with CIS on cell viability, apoptosis,
caspase-3, caspase-8, and caspase-9 activity, cleaved PARP-1, anti-apoptotic protein
(Bel-2 and Bcl-xL) levels, p65 phosphorylation, cadmium chloride (CdCl,) sensitivity,
Platinum (Pt) accumulation, and glutathione (GSH) levels, as well as on the gene
expression of GSH and drug transporters (influx and efflux).

Results: PTX sensitized SiHaCIS-R cells to the effects of CIS by inducing apoptosis,
caspase activation, and PARP-1 cleavage. PTX treatment also decreased p65
phosphorylation, increased Pt levels, depleted GSH, and downregulated the expression
of the ATP7A, ATP7B, GSR, and MGSTT1 genes.
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Conclusion: PTX reverses the acquired phenotype of CIS resistance close to the
sensitivity of parental SiHa cells.

Keywords: pentoxifylline, cervical cancer cells, chemoresistance, cisplatin, NF-KappaB

INTRODUCTION

Cervical cancer is a health problem worldwide and is the most
frequent cause of cancer-related death in women despite advances
in screening, prevention, and treatment (1). The prognosis of
patients with advanced/recurrent cervical cancer is particularly
poor, and their chance of a 1-year relative survival rate is only
10-20% (2, 3). Cisplatin cis-diamminedichloroplatinum (II) is the
principal chemotherapeutic agent used in the treatment of a wide
variety of solid tumors (4). CISplatin (CIS) is the most effective drug
against cervical cancer in neoadjuvant and salvage therapy, but its
administration is severely hindered by the occurrence of resistance.
The development of intrinsic and acquired drug resistance in cancer
after cycles of treatment is relatively common and remains a major
challenge for CIS-based anticancer therapy. There are many
mechanisms underlying CISplatin-Resistance (CIS-R). However,
increasing drug efflux, elevated intracellular glutathione levels
(detoxification), inhibition of apoptosis, and alterations in the
expression of BCL-2 family members are the most consistent
characteristics that contribute to the CIS-R phenotype in cervical
cancer (5, 6). Resistance to chemotherapy has been reported to
promote tumor cell progression and metastasis (7). Thus, it is
important to develop novel therapeutic modalities. Based on the
mechanisms underlying CIS-R, the administration of CIS, in
combination with other drugs, has been proposed to overcome
resistance in cervical cancer. The pharmacological reduction of
resistance is a preferred approach in targeting malignant cells and
can provide new directions in cancer therapy based on the concept
of chemotherapy with a rational molecular basis (8). We have
previously reported that PenToXifylline (PTX) in combination with
CIS significantly increases the induction of apoptosis and inhibits
cell proliferation by suppressing Nuclear Factor kappa B (NF-xB) in
human cervical cancer cells (9). PTX is a xanthine and a non-
specific Phosphodiesterase inhibitor, which can act as a potent
tumor necrosis factor alpha (TNF-o)) inhibitor and can reduce
inflammation through the inhibition of IxB phosphorylation in
serines 32 and 36 (8, 10, 11). It has been demonstrated that PTX, in
combination with some antitumor drugs, significantly increases cell
apoptosis in several types of human cancer cell lines, such as cervical
cancer cells (HeLa and SiHa) (9), retinoblastoma cells (Y79) (12),
leukemia cells (U937) (13), and breast cancer cells (MCF-7 and
MDA-MB-231) (14). Additionally, our earlier studies demonstrated
that L5178Y lymphoma-bearing mice treated with PTX +
ADRyamicin (ADR) survived more than 1 year after receiving
only one half of the standard therapeutically active ADR dose,
compared to single treatments of ADR (8). In the clinic, PTX has
demonstrated to induce remission and increase apoptosis in
pediatric patients with acute lymphoblastic leukemia during the
steroid-window phase (15). Moreover, PTX enhanced the action of
Gemcitabine in the treatment of pancreatic xenograft tumors in a

BALB/c-nu/nu mouse model (16). Although PTX is reported to be
an efficient sensitizing agent, its cytotoxic effect against CIS-resistant
cervical cancer cells has not, to our knowledge, been described
previously. Therefore, the aim of the present study was to determine
the effect of PTX, either alone or in combination with CIS, on
human cervical carcinoma cells with acquired resistance to CIS.

METHODS

Cell Culture Lines

The human cervical cancer cell lines used in this study were SiHa
(Human Papilloma Virus, HPV16") and HeLa (HPV18+). They
were kindly provided by Prof. Frank Roesl (DKFZ, Heidelberg,
Germany). Both cell lines were authenticated utilizing the
Multiplex Cell Authentication system by Multiplexion GmbH
(Friedrichshafen, Germany). The presence of the HPV type was
confirmed by the Linear Array HPV Genotyping test (Roche).
These cell lines were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM; GIBCO Invitrogen, Carlsbad, CA, USA),
supplemented with 10% heat-inactivated fetal bovine serum
and antibiotics (Penicillin-Streptomycin; GIBCO Invitrogen).
The medium is referred to as DMEM-S. The cells were grown
at 37°C in a humidified atmosphere of 95% air and 5% CO,, The
cells were passaged once they reached 75-85% confluence. Prior
to the initiation of all experiments, cell viability was determined
with Trypan Blue (Sigma-Aldrich, St. Louis, MO, USA) (viability
>95%). The cell lines were tested for mycoplasma contamination
employing the Universal Mycoplasma Detection Kit (ATCC,
Manassas, VA, USA); the cells were negative throughout
the study.

Drugs

CIS was purchased from PISA Laboratories, Guadalajara, Jalisco,
Mexico. A stock solution (400 uM) of CIS was prepared by
dissolving the powder in a 0.9% NaCl solution and was stored at
—4°C in the dark. PTX (Sigma-Aldrich, St. Louis, MO, USA) was
dissolved in the DMEM-S culture medium to obtain a 250-mM
stock solution and was stored at —4°C. Cadmium chloride
(CdCl,; Sigma-Aldrich, St. Louis, MO, USA) was dissolved in
type-1 Milli-Q® water and then filtered using 0.45-um filters. A
500-uM stock solution was then prepared in DMEM-S. The
different solutions were stored separately prior to performing the
experiments in cervical cancer cells and were discarded after that
they were utilized in each assay.

Establishment of Cisplatin-Resistant
Human Cervical Cancer Cell Lines

To induce CIS resistance in parental HeLa and SiHa cell lines
(HeLaP and SiHaP), the cells were exposed repeatedly to
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increasing concentrations of CIS during 12 months (17). First,
the cells were exposed to 0.01 uM CIS; subsequently, the
concentration of CIS was increased every four passages, from
1, 10, 20, 50, 75, to 200 uM CIS. The resulting CIS-resistant cells
were denominated HeLaCIS-R and SiHaCIS-R, respectively. To
maintain the CIS phenotype, these cells were grown in DMEM-S
culture medium with CIS at 1 uM.

Experimental Conditions

Human cervical cancer cell lines were seeded into flasks and
maintained in DMEM-S culture medium to 80-90% confluence.
The cells were then harvested with the Accutase® Cell
Detachment solution (GIBCO Invitrogen Corp.) and were
seeded (10 x 10°) in 150-mm tissue culture dishes to evaluate
Platinum (Pt) content, GSH, Poly (ADP-Ribose) Polymerase
(PARP-1), Bcl-2, Bcl-XL, the phosphorylation of NF-xB/p65,
and caspase-3, -8, and -9 activity. To assess cytotoxicity, viability,
and apoptosis (DNA fragmentation), 2 x 10* cells/well/200 pl
(final volume) were cultured in 96-well plates. For the evaluation
of different genes (ATP7A, ATP7B, CTRI, MRP-2, GSR, GSS,
MGSTI, GPX, and RPL32) by quantitative real-time PCR, the
cells were seeded at a density of 3 x 10° cells/ml in 100-mm tissue
culture dishes. In all cases, the cells were maintained in DMEM-S
medium and cultured overnight at 37°C in a humidified
atmosphere of 95% air and 5% CO,. Afterward, the medium
was replaced with fresh culture medium (DMEM-S). Then the
cells were either not treated (Untreated Control Group [UCG])
or treated with PTX, CIS, or PTX in combination with CIS
(PTX + CIS). In the case of the PTX + CIS group, the cells were
first exposed to PTX for 1 h; after this time CIS was added to the
cell cultures.

Dose-Response Curves for IC50
Determination

Dose-response curves were generated for CIS and PTX to
determine the inhibitory concentration to achieve 50% cell
death (IC50 value) for each cervical cancer cell line.
Cytotoxicity was determined by TOX6-1KT SulfoRhodamine B
(SRB) Cell Cytotoxicity Commercial Kit (Sigma-Aldrich)
following the manufacturer’s instructions. Briefly, the cells
were incubated in the absence or presence of different
concentrations of CIS (1, 10, 50, 100, and 200 pM) or PTX (2,
4, 6, 8, 10, and 12 mM) for 24, 48, 72, and 96 h; after this, we
evaluated the cytotoxicity. Then, absorbance was measured at
510 nm in a microplate reader (Synergy HT Multi-Mode
Microplate Reader; Biotek, Winooski, VT, USA). All
experiments were carried out in triplicate. IC50 values were
calculated based on concentration—effect of the relationships
generated by Prism GraphPad software (ver. 8). The Resistance
ratio (Rr) was calculated utilizing the following formula: Rr =
IC50 of drug-resistant cells/IC50 of parental cells. The IC50
values were derived from the dose-response profile.

Cell Viability

Parental and resistant cervical cancer cell lines were seeded on
96-well plates (2 x 10* cells/well) and treated with PTX (4 mM),
CIS (30 uM), or PTX + CIS (4 mM + 30 uM) for 24 h. According

to the manufacturer’s instructions, cell viability was assessed
using the WST-1 assay (Commercial Kit; Sigma-Aldrich). The
WST-1 reagent was added 3 h before the end of the incubation
period. Absorbance was measured at 450 nm in a microtiter plate
reader. All of the readings were normalized to the UCG, and the
UCG was considered as 100% live cells.

Assessment of Apoptotic DNA
Fragmentation in SiHaP and SiHaCIS-R
Cells

Apoptotic DNA fragmentation is a crucial feature of
apoptosis. Therefore, internucleosomal DNA fragmentation
was quantitatively assayed by the antibody-mediated capture
and detection of cytoplasmic mononucleosome- and
oligonucleosome-associated histone-DNA complexes (Cell
Death Detection ELISA™"YS Kit; Sigma-Aldrich). Briefly, SiHaP
and SiHaCIS-R cells were cultured in 96-well plates and treated
with CIS (30 uM), PTX (4 mM), or PTX + CIS (4 mM + 30 pM)
for 24 h. Afterward, the cell culture supernatants were removed.
The cells were resuspended in 200 pl of the lysis buffer " and
lysed directly in the wells. Cell lysates were then centrifuged
(1,200 rpm, 10 min), and the cytoplasmic fraction (20 pl) was
employed to determine DNA fragmentation according to the
manufacturer’s standard protocol. Subsequently, absorbance was
measured at 405 nm (490-nm filter as a reference wavelength) in
a microplate reader. In the DNA fragmentation test, the rate of
apoptosis is reflected by the enrichment (fold increase) of mono-
and oligonucleosomes accumulated in the cytoplasm. DNA
fragmentation was calculated according to the following
formula: Rate of Apoptosis = Absorbance of Sample Cells/
Absorbance of UCG.

Determination of Caspase-3, Caspase-8,
and Caspase-9 Activity in SiHaP and
SiHaCIS-R Cells

To evaluate caspase-3, -8, and -9 activity in SiHaP and SiHaCIS-
R cells after the cells were treated with PTX (4 mM), CIS
(30 uM), or PTX + CIS (4 mM + 30 uM) for 24 h, caspase-8
activity was determined by flow cytometry using the M30
CytoDEATHTM monoclonal antibody (Roche Mannheim,
Germany). In brief, the cells were harvested and stained with
the M30 antibody according to the manufacturer’s instructions.
For each sample, at least 20,000 events were acquired in a
FACSAria I Cell Sorter (BD Biosciences, San Jose, CA, USA),
and the data were analyzed with FlowJo ver. 7.6.5 software (Tree
Star, Inc., OR, USA). Caspase-3 and -9 activities were measured
using the active Caspase-3 and Caspase-9 ELISA Kit (Abcam,
Cambridge, UK). After 24 h of treatment, the cells were
harvested and washed twice with PBS. According to the
manufacturer’s instructions, the cells were resuspended in lysis
buffer (Standard Cell Fractionation Buffer; Abcam, Cambridge,
UK) containing a cocktail of protein inhibitors (Complete
Mini, EDTA-Free; Roche-Diagnostics). Protein concentrations
were determined using the Bradford assay (Bio-Rad). An equal
amount of protein (100 pg) from each sample was analyzed
according to the manufacturer’s instructions. Finally, absorbance
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was measured at 405 nm in a microplate reader. The results of
caspase-3, -8, and -9 activity are expressed as fold changes in
comparison with UCG.

Determination of the Cleavage of PARP-1
in SiHaP and SiHaCIS-R Cells

SiHaP and SiHaCIS-R cells were treated with PTX (4 mM), CIS
(30 uM), or PTX + CIS (4 mM + 30 pM) for 24 h. After the
incubation period, the cells were harvested and washed with PBS
twice. Then we added 300 ul of RIPA buffer (0.5% deoxycholate,
0.5% NP-40, 0.5% SDS, 50 mM Tris pH 8.0, and 150 mM NaCl)
with the Complete Mini EDTA-free Protease Inhibitor Cocktail
(Roche Applied Science, Penzberg, DE, USA), and cell
suspensions were incubated on ice for 30 min. The lysates were
sonicated (5 min, high level, 30 s on-off time interval) with the
Bioruptor Sonicator (Diagenode, Liége, Belgium). Protein extracts
were obtained after 30 min of incubation at 4°C and 12 min of
centrifugation at 12,000 rpm/4°C. The Bradford Assay Kit (Bio-
Rad) was used to determine the concentration of proteins in the
samples. PARP-1 was evaluated in the cell proteins by Western
blotting according to the following protocol. Samples containing
40 pg of total protein were resolved utilizing 14% SDS-PAGE. For
immunoblot analyses, the proteins were transferred onto a PVDF
membrane (0.2-um pore) and then blocked with 1 x Western
Blocking Reagent (OdysseyTM) under agitation for 1 h at room
temperature. The immunodetection of PARP-1, PARP-1 cleavage
fragments, and P-actin was performed using anti-PARP-1
(1:1,000). The PARP-1 antibody detects endogenous levels of
full-length 116 kDa PARP-1, as well as the large 89-kDa fragment
(Cell Signaling Technology®, Danvers, MA, USA), and the anti-
B-actin antibody (1:1,000, Abcam) overnight at 4°C under
agitation and protected from light. The membranes were
washed and probed with LI-COR IRDye 800 secondary
antibodies for 1 h at room temperature. Then the washed
membranes were scanned with an Odyssey' " Infrared Imagin
System (LI-COR Biotechnology, Lincoln, NE, USA). The Optical
Density (OD) of each Western blot lane was measured using
Image Studio Lite ver. 5.2.5; a correction was made among the
actin values according to the LI-COR standardization guide. The
density of PARP-1 bands (total PARP-1 and PARP-1 cleavage
fragments) was normalized with their corresponding B-actin
value. To determine the fold change, the results of total PARP-1
or PARP-1 fragments were divided by the values of the
UCG group.

Assessment of Bcl-2, Bcl-XL,

and the Phosphorylation of p65 in SiHaP
and SiHaCIS-R Cells

To determine the expression of Bcl-2, Bcl-XL, and the
phosphorylation of p65, SiHaP and SiHaCIS-R cells were treated
with PTX (4 mM), CIS (30 uM), or PTX + CIS (4 mM + 30 uM) for
1 h (to measure phosphorylated p65) or for 24 h (to evaluate Bcl-
XL and Bcl-2 expression). The staining procedures were performed
according to the protocol for the detection of proteins or of
activation of the phosphorylation state by flow cytometry. We
used the following antibodies: Alexa Fluor-647 mouse anti-human

Bcl-2; Alexa Fluor-647 mouse anti-human Bcl-XL proteins (Santa
Cruz Biotechnology, Santa Cruz, CA, USA), and Alexa Fluor-647
mouse anti-human NF-xB p65 (BD Biosciences). Appropriate
isotype controls were used for each parameter to adjust
background fluorescence. The results are represented as the
Mean Fluorescence Intensity (MFI) of Bcl-2, Bc-XL proteins,
and phosphorylated p65. For each sample, at least 20,000 events
were acquired in a FACSAria I Cell Sorter (BD Biosciences), and
data were analyzed with FlowJo ver. 7.6.5 software.

Cadmium Chloride Cytotoxicity Assay

The cytotoxic activity of CdCl, was determined using the SRB assay.
In brief, SiHaP and SiHaCIS-R cells were seeded in 96 multi-well
plates with DMEM-S medium and allowed to attach to the wells
overnight. After 24 h, the medium was replaced with fresh medium
(DMEM-S) and the cells were either not treated or treated with
4mM PTX. These cells were then exposed to different concentrations
of CdCl, (0, 5,20, 50, 70, 85,100, 150, and 200 pM) and incubated for
96 h. Afterward, absorbance was measured at 510 nm using a
microplate reader. Each experiment was performed in triplicate
and repeated more than three times. IC50 values were calculated
based on the concentration—effect relationships generated by Graph
Pad Prism GraphPad software (ver. 8). The Resistance ratio (Rr) was
calculated utilizing the following formula: Rr = IC50 of drug-
resistant cells/IC50 of parental cells.

Evaluation of GSH Levels in SiHaP

and SiHaCIS-R Cells

Cellular GSH content in SiHaP and SiHaCIS-R cells was
determined using the GSH Assay Kit (BioVision, Mountain
View, CA, USA) according to the manufacturer’s instructions.
Briefly, SiHaP and SiHaCIS-R cells were treated with PTX (4
mM), CIS (30 uM), or PTX + CIS (4 mM + 30 uM) for 24 h. After
each treatment, the cells were harvested with PBS containing 5
mM EDTA and washed with ice-cold PBS twice. Cellular GSH
was then extracted using 1 ml of ice-cold glutathione buffer™
and incubated on ice for 10 min. Then cold 5% sulfosalicylic acid
(1,000 ul) was added, followed by a 10-min incubation step at
4°C with occasional shaking. After homogenization, the solution
was centrifuged at 1,200 rpm for 10 min at 4°C. Sulfosalicylic
acid was removed, and total GSH in the cell extracts was
measured (17). Protein concentration was determined using
the Bradford assay (Bio-Rad Laboratories, Inc., CA, USA).
Finally, absorbance was measured at 412 nm in a microplate
reader (Synergy HT Multi-Mode Microplate Reader). GSH
concentration was determined by comparison with a standard
curve and expressed as ng of GSH/10° cells.

Platinum Accumulation in SiHaP

and SiHaCIS-R Cells

The accumulation of Pt in SiHaP and SiHaCIS-R cells was
assessed by Quantitative-Inductively Coupled Plasma-Mass
Spectrometry (Q-ICP-MS, VGElemental PQ3, Institute of
Geophysics, National Autonomous University of Mexico,
UNAM). Briefly, SiHaP and SiHaCIS-R cells were incubated
with CIS (100 uM), PTX (4 mM), or their combination PTX +
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CIS (4 mM + 100 uM) for 5, 30, or 60 min. Immediately after this
time, the cell monolayers were washed three times with ice-cold
PBS (pH 7.6). The cells were then scraped and washed with PBS
prior to resuspension in 1 ml of PBS and then placed on ice. The
samples were then digested in 70% HNO; before measuring the
concentration of Pt. Pt levels were normalized to the protein
content. Determination of the protein content was assessed using
the Bradford method (Dc Protein Kit; BioRad Laboratories, Inc.,
Hercules, CA, USA). The cellular concentration of Pt is
expressed as Pt ng/mg total protein.

Determination of Gene Expression by
qPCR in SiHaP and SiHaCIS-R Cells

For the qPCR analysis of gene expression (GSH, and efflux and
influx drug genes), SiHaP and SiHaCIS-R cells were treated with
PTX (4 mM), CIS (30 uM), or PTX + CIS (4 mM + 30 uM) for
4 h. Afterward, total RNA was extracted using the GeneJET™
RNA Purification Kit (Thermo Scientific, Waltham, MA, USA)
following the manufacturer’s instructions. Complementary DNA
(cDNA) was synthesized from 5 ug of total RNA using the
Transcriptor First Strand cDNA Synthesis Kit (Roche Applied
Science, Mannheim, Germany). qPCR reactions were conducted
in a System Light Cycler® 2.0 apparatus (Roche Applied Science)
employing the DNA Master Plus SYBR Green I Kit (Roche
Applied Science), as recommended by the manufacturer, with
the addition of specific primers (5 pg of each, forward and
reverse). The PCR program consisted of an initial 10-min step at
95°C, and 40 cycles of 15 sec at 95°C, for 5 sec at 60°C, and 15-sec
cycles at 72°C. Analysis of the PCR products was performed
using LightCycler® software ver. 4.1 (Roche Applied Science).
Data are expressed as relative normalized fold-change values
following the E**“P algorithm. The Ribosomal Protein 132
(RPL32) gene was used as reference gene. All reactions were
performed in triplicate to avoid changes introduced by the
operator. Sequences of the oligonucleotides used to amplify

TABLE 1 | Primer pair sequences.

human ATP7A, ATP7B, CTRI1, MRP-2, GSR, GSS, GPX,
MGST1, and RPL32 are shown in Table 1. They were designed
using Oligo software ver. 6.0 (OLIGO, Colorado Springs, CO,
USA) and commercially synthetized (Integrated DNA
Technologies, Inc., Coraline, IA, USA). Gene sequences were
obtained from the GenBank Nucleotide Database of the National
Center for Biotechnology Information (NCBI) (http://www.ncbi.
nlm.nih.gov).

Statistical Analysis

All experimental procedures were performed in triplicate and
were repeated at least three times. The values represent the mean +
Standard Deviation (SD) of the obtained values. Statistical analysis
was performed using the non-parametric Mann-Whitney U test to
compare two groups. Differences were considered significant when
p values were <0.05. Significant variations in gene-expression
levels were considered when values were >30%. Data were
analyzed using Prism ver. 8 GraphPad statistical software.

RESULTS

Cytotoxicity and IC50 Determination

The CIS and PTX half maximal Inhibitory Concentration (IC50) in
parental and CIS-R cervical cancer cells and the Rr are summarized
in Tables 2A and 2B. The IC50 value for CIS was higher in
SiHaCIS-R cells than in HeLaCIS-R cells. Also, resistance to CIS
increased approximately 2.98- to 3.68-fold at 24 and 96 h,
respectively, in SiHaCIS-R cells (Table 2A). In contrast, the IC50
for PTX (Table 2B) was similar in parental HeLa and SiHa cell lines
(4.50 and 4.30 mM, respectively, at 24 h) as well as in their resistant
cell lines (4.44 and 4.50 mM, respectively, at 24 h). Furthermore, it
is noteworthy that CIS-resistant cell lines (HeLa and SiHa cells) did
not show resistance to PTX; the cytotoxic effect of this drug was

Primer pair sequences

GenBank Accession No.

Gene Direction
ATP7A Forward
Reverse
ATP7B Forward
Reverse
CTR1 Forward
Reverse
MRP-2 Forward
Reverse
GSR Forward
Reverse
GSS Forward
Reverse
GPX Forward
Reverse
MGST1 Forward
Reverse
RPL32 Forward
Reverse

5CTG AAATCT ATG GCC TTAGAA G 3
5CAT TGC TACCCG TTT CC &

5CTT GGG ATACTG CACGGACTTC &
5CCT CAG CCA CTC ACG GTT TC 3
5TTG GCT TTAAGA ATG TGG ACC T 3
5GAC TTG TGA CTT ACG CAG CA &

5GCT GGT GGC AAC CTG AGC ATAG &

5TGC AGT GGG CGAACT CGT TT &
5CGA TGT ATC ACG CAG TTACCAA 3
5GGG TGA ATG GCG ACT GTG 3
5CTG CCC CTAGCC GGT TTG &
5GCT CTG AAATGC ACT GGACCAC &
5GGC CCA GTC GGT GTATGC 3
5TCT CTT CGT TCT TGG CGT TCT C 3
5TAT TCATGG CTT TTG CAT CCTA &
5GGC TCT GCG TACACG TIC TA &
5GCATTIG ACAACAGGG TTCGTAG 3
5'ATT TAA ACA GAAAAC GTG CACA 3’

NM_000052.7

NM_000053.4

NM_001184221.1

NM_001316390.1

NM_001195102.2

NM_000178.4

NM_001329790.2

NM_0012600511.1

NM_000994.4
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TABLE 2A | IC50 values for CIS (uM) in cervical cancer cells determined by the SRB assay.

Cell Lines Time 24 h Rr Time 48 h

HeLaP? 14.00 + 2.56 17.88 £ 5.21
HeLaCIS-R 22.85 + 1.98 1.63* 17.47 £ 3.70
SiHaP? 33.20 +2.97 26.51 + 4.33
SiHaCIS-R® 99.00 + 2.87 2.98* 80.00 + 6.42

Rr Time 72 h Rr Time 96 h Rr
15.60 + 4.07 7.66 £2.78
0.97 15.23 +2.80 0.97 7.83+4.11 1.02
18.82 £ 3.07 10.50 + 3.13
3.02* 70.77 + 4.80 3.76* 38.74 £ 3.75 3.68*

The ICso for CIS (uM) was determined by the SRB assay after drug treatment for 24, 48, 72, and 96 h. Resistance ratios (Rr) were calculated as the ICs values of resistant cell line/ICs value
of the parental cell line. Each value is the mean + Standard Deviation (SD) of three independent experiments, each performed in triplicate. “p < 0.05 between HelaP and HelaCIS-R;
D < 0.01 between SiHaP and SiHaCIS-R cells. P2, Parental cells; CIS-RP, CIS-Resistant cells.

TABLE 2B | IC50 values for PTX (mM) in cervical cancer cells determined by SRB assay.

Cell Lines Time Rr Time
24 h 48 h
HeLaP? 450 +0.12 4.44 £0.18
HeLaCIS-RP 444 +0.18 0.98 3.88 + 0.05
SiHaP? 4.30 + 0.07 4,05 +0.15
SiHaCIS-R® 4.50 + 0.01 1.04 4.25 +0.04

Rr Time Rr Time Rr
72h 96 h
2.40 + 4.07 2.00+2.78
0.87 2.25 +2.80 0.93 210 £ 4.11 1.05
3.50 £ 3.07 2.75+3.13
1.13 3.00 + 4.80 0.85 2.00 £ 3.75 0.72

The ICs, for PTX (mM) was determined by the SRB assay after treatment with the drug for 24, 48, 72, and 96 h. Resistance ratios (Rr) were calculated as the ICs, values of the resistant cell
line/ICsp value of the parental cell line. Each value is the mean + Standard Deviation (SD) of three independent experiments, each performed in triplicate. P?, Parental cells; CIS-R?,

CIS-Resistant cells.

similar in both cell lines. Together, these results demonstrated that
SiHaCIS-R cells were more resistant to CIS than HeLaCIS-R cells,
while no resistance to PTX was observed in either cell line
(Supplementary Figures 1 and 2).

Pentoxifylline Alone or in Combination

With Cisplatin Decreased Cell Viability

in HeLaCIS-R and SiHaCIS-R Cervical
Cancer Cells

To assess whether PTX, CIS, or their combination (PTX + CIS)
exertan effect on cell viability in parental and CIS-resistant cells, we
performed the WST-1 assay. To this end, the cells were exposed to
PTX or CIS alone, or in combination (PTX + CIS). We selected
drug concentrations based on the IC50 values obtained for each cell
line. According to our results, 4 mM PTX substantially decreased
cell viability in HeLaCIS-R and SiHaCIS-R cell lines when
compared to their respective UCG (Figures 1A, B; p < 0.01).
Likewise, CIS reduced cell viability in HeLaP and SiHaP cells, but it
had no effect on their CIS-resistant lines. However, when both cells
lines were treated with the drugs in the combination (PTX + CIS),
we observed a significant decrease in cell viability compared to their
UCG or to the cells treated with either PTX or CIS alone (p < 0.01).
Our results indicated that PTX possess a potent cytotoxic effect in
HeLa cell lines compared to that which we observed in SiHa cells.
Furthermore, parental and resistant SiHa cells revealed a higher
and more stable CIS-resistant level in comparison with HeLa cells.
Therefore, SiHa and SiHaCIS-R cells were used as a final model.

PTX-Induced Sensitization of SiHaP

and SiHaCIS-R Cells to Apoptosis

and Caspase Activity

We then wanted to evaluate whether pretreatment with PTX
induced apoptosis in SiHaCIS-R cells. Thus, we measured DNA

fragmentation and caspase-3, -8, and -9 activation in SiHaP and
SiHaCIS-R cells treated with PTX, CIS, or PTX + CIS. According
to the results shown in Figure 2A, when we exposed the cells to
CIS, we observed that SiHaCIS-R cells were more resistant to
DNA fragmentation in comparison to SiHaP cells. However, the
treatment with PTX alone or in combination with CIS (PTX +
CIS) increased DNA fragmentation in SiHaCIS-R cells in
comparison with the treatment with CIS alone (p < 0.001).
Regarding caspase activities (Figure 2B), we observed that CIS
did not induce caspase-9 activation in SiHaCIS-R; while PTX
alone or in combination with CIS induced higher activity of
caspase-9 in SiHaP and SiHaCIS-R cells compared to the UCG or
CIS treatment (p < 0.001). In contrast, PTX, alone or in
combination, did not affect caspase-8 activity (Figure 2C) in
SiHaCIS-R cells compared to the UCG. The increased activity of
caspase-3 (Figure 2D) was also observed in both cells treated
with PTX or PTX + CIS (p < 0.001) compared to the UCG or the
CIS-treated group. Interestingly, when we only exposed the cells
to CIS, we observed a considerably lesser activity of caspase-3 in
SiHaCIS-R cells compared to parental cells also treated with CIS
alone. Overall, these results suggested that PTX induced SiHaP
and SiHaCIS-R cells sensitization to apoptosis, and that this
pathway was mediated mainly by caspase-9 and -3 activation.

PTX in Combination With CIS
Strengthened PARP-1 Cleavage
in SiHaCIS-R Cells

Caspase-3 plays a central role in the execution phase of apoptosis
and is primarily responsible for the cleavage of PARP-1 during
cell death. Caspase-3 activity and the cleavage of PARP-1
indicate the extent of apoptosis. Due to that the treatment with
PTX or its combination with CIS increased caspase-3 activation,
we evaluated the cleavage of PARP-1 in SiHaP and SiHaCIS-R
cells treated with PTX, CIS, or PTX + CIS. According to the
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FIGURE 1 | PTX decreases viability and induced sensitization to CIS
treatment in resistant cervical cancer cell lines. Cell viability was assessed
using the WST-1 assay (A). HeLaP and HelLaCIS-R cell lines were treated
with CIS (20 uM), PTX (4 mM), or PTX + CIS (4 mM + 20 uM) for 24 h
(B). SiHaP and SiHaCIS-R cells were treated with CIS (30 uM), PTX (4 mM),
or PTX + CIS (4 mM + 30 uM) for 24 h. Data are expressed as the
percentage of cells relative to the UCG. *p < 0.01 = statistical significance
after comparison among the PTX, or CIS, or PTX + CIS groups in HeLaCIS-R
cells or SiHaCIS-R vs. parental cells. @ p < 0.01 PTX + CIS vs. PTX group or
CIS group in parental or resistant cells. UCG, Untreated Control Group; CIS,
Cisplatin; PTX, PenToXifylline.

results depicted in Figures 3A-C, only the combination of
PTX + CIS induced PARP-1 cleavage in SiHaP cells, while in
SiHaCIS-R, PARP-1 cleavage was induced by the treatment with
PTX or CIS alone and the combination of both (PTX + CIS).
However, the most significant effect was observed when
SiHaCIS-R cells were treated with PTX + CIS. These results
indicate that PARP-1 cleavage comprises a critical pathway in
the induction of apoptosis in resistant SiHa cells.

PTX Decreased the Phosphorylation of
P65 (NF-xB Subunit), Bcl-2, and Bcl-XL
Anti-apoptotic Proteins Induced by
Cisplatin Treatment in SiHaCIS-R Cells

The anti-apoptotic functions of NF-kB, Bcl-2, and Bcl-XL play
an important role in the development of resistance to cancer
therapy. Therefore, we analyzed p65 phosphorylation (NF-«B
subunit), Bcl-2, and Bcl-XL anti-apoptotic proteins in SiHaP and

SiHaCIS-R cells treated with CIS, PTX, or PTX + CIS. As
illustrated in Figures 4A, B, we observed that CIS induced an
increase in p65 phosphorylation in SiHaP and SiHaCIS-R cells,
this being more marked in SiHaCIS-R cells, whereas the opposite
effect was observed in the cells treated with PTX or PTX + CIS
(p < 0.001). PTX reduced constitutive activation of the p65
subunit in comparison with CIS or the UCG group (p < 0.001).
A similar effect was observed in Bcl-2 and Bcl-XL anti-apoptotic
proteins when SiHaP and SiHaCIS-R cells were treated with
PTX or PTX + CIS (Figures 4C-F; p < 0.001). While CIS
induced the expression of these anti-apoptotic proteins, PTX
reduced it.

SiHaClIS-R Is Cross-Resistant to Cadmium
Chloride

Next, we evaluated whether SiHaCIS-R cells were cross-resistant
to CdCl, (Table 3). For this purpose, SiHaP and SiHaCIS-R cells
were exposed to increasing concentrations of CdCl, (5, 20, 50,
70, 85,100, 150, and 200 uM) for 96 h. SRB assays showed that
SiHaCIS-R cells were cross-resistant to CdCl,. The IC50 values
for CdCl, in SiHaP and SiHaCIS-R cells were 65.53 and 191.00
uM, respectively. Thus, our results revealed that SiHaCIS-R cells
were about 2.91-fold more resistant to CdCl, compared to the
SiHaP cell line, suggesting that these resistant cells may possess
higher levels of metallothionein-like proteins. Likewise, the cells
were treated with CdCl,, either alone or in combination with 4
mM PTX (PTX was added 1 h prior to CdCl, exposure). Our
data showed that the IC50 values were significantly lower in the
PTX group than in the exclusively CdCl,-treated group. The Rr
decreased from 65.53 to 1.75 pM in SiHaP cells and from 191.0 to
2.30 uM in SiHaCIS-R cells (p < 0.001). The Rr between both
treated cells after CdCl, exposure was only 1.31-fold. These
results revealed that SiHaP and SiHaCIS-R cells responded
similarly to PTX pretreatment, significantly reducing CdCl,
resistance (p < 0.001). Taken together, these data strongly
indicate that pretreatment with PTX resensitized SiHaCIS-R
cells to the effects of CIS and CdCl,, and they also suggest that
PTX may be potentially used as a novel treatment strategy to
overcome CIS resistance in cervical cancer.

PTX Decreased the Glutathione Levels
Induced by CIS in Parental and
Chemoresistant SiHa Cells

To study the mechanisms implicated in the sensitization of CIS-
resistant SiHa cells to CIS treatment after PTX exposure, we
decided to evaluate the intracellular levels of total GSH in
parental SiHa cells and in CIS-resistant SiHa cells. As
presented in Figure 5, baseline GSH levels were higher in
SiHaCIS-R cells than in SIHaP cells. However, when both cells
were exposed to 30 UM CIS for 24 h, we observed an increase in
GSH levels compared with the UCG (p < 0.001). Contrariwise, it
is important to note that when the cells were treated with PTX
alone or in combination with CIS (PTX + CIS), we observed a
significant reduction in GSH levels (p < 0.001). These results
demonstrated that high GSH activity provides an additional basis
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FIGURE 2 | PTX-induced apoptosis and caspase activities in SiHaP and SiHaCIS-R cells. SiHaP and SiHaCIS-R cells were treated with CIS (30 uM), PTX (4 mM), or
PTX + CIS (4 mM + 30 uM) for 24 h; then, apoptosis (DNA fragmentation (A), caspase-9 (B); caspase-8 (C), and caspase-3 (D) activity were determined. Data are
expressed as fold change relative to the UCG. *p < 0.001 = statistical significance after comparison among PTX, or PTX + CIS groups vs. CIS or UCG in SiHaP cell
or SiHaCIS-R cells. +p < 0.001 CIS group vs. UCG in SiHaP cells. @ p < 0.001 PTX + CIS group vs. PTX in SiHaCIS-R cells. UCG, Untreated Control Group; CIS,
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for resistance to CIS and that PTX reduced GSH levels, thus
sensitizing SiHaCIS-R cells to cell death.

PTX Increased the Accumulation of Pt in
SiHaP and SiHaCIS-R Cells

Pt drugs are the most powerful and commonly used cancer
chemotherapeutics. However, the reduction of Pt accumulation
is an important factor associated with the reduced efficiency of
Pt-based drugs. Therefore, we wanted to know whether PTX
could modify Pt accumulation after exposure to 100 uM CIS.
Table 4 presents the time-course and accumulation of Pt in
SiHaP and SiHaCIS-R cells. In SiHaP cells, Pt accumulated time
dependently until 1 h after drug exposure.

In comparison with parental cells, the accumulation of Pt in
SiHaCIS-R cells did not achieve significant increase after 1 h of
exposure to the drug (p < 0.001). Our results showed a significant
reduction in the cellular retention of Pt in SiHaCIS-R cells

compared to SiHaP cells. Moreover, it is important to stress
that when SiHaP and SiHaCIS-R cells were preincubated with 4
mM PTX (prior to CIS treatment), we observed that the
accumulation of intracellular Pt increased similarly in both cell
lines. When we compared Pt accumulation in the cells treated
with CIS alone vs. the cells treated with the combination of
PTX + CIS, we also observed significant differences in the
accumulation of Pt (p < 0.001) (Table 4). These findings
suggest that PTX increased cellular Pt accumulation in
SiHaCIS-R as compared to the parental cells.

PTX Downregulated Efflux Pump,
Multidrug Resistance, and Glutathione
Genes in SiHaP and SiHaCIS-R Cells

To determine the possible involvement of the mechanisms

associated with CIS resistance in SiHaCIS-R cells, we evaluated
the expression pattern of efflux (ATP7A, ATP7B, and MRP-2),
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FIGURE 3 | PTX in combination with CIS increased PARP-1 cleavage in
chemoresistant SiHa cells. Western blot analysis of PARP-1 in SiHaP and
SiHaCIS-R cells were treated with CIS (30 uM), PTX (4 mM), or PTX + CIS for
24 h. Then, PARP cleavage was evaluated by Western blot (A). Densitometric
analysis of total PARP-1 (B) and the cleavage of PARP (C) are shown.
Relative density was calculated using Image Studio Lite ver. 5.2.5 (LI-COR
Biotechnology) software. A representative example of three assays performed
in triplicate is shown. B-Actin was used as a loading control. UCG, Untreated
Control Group; CIS, ClSplatin; PTX, PenToxXifylline.

influx (CTRI), and GSH (GSR, GSS, GPX, and MGST1) genes by
qPCR. All of these genes were readily detectable in both cells, with a
differential expression between SiHaCIS-R and SiHaP cells
(Supplementary Table 1). The results revealed that, under
baseline conditions, the ATP7A, ATP7B, CTRI, MRP-2, GSR,
GSS, GPX, and MGST1 genes are significantly overexpressed (p <
0.05) in SiHaCIS-R cells (values comprise those between 1.4- and
2.5-fold), compared to parental cells. These data indicate that Pt
transporters and GHS are probably involved in the resistant
phenotype of SiHaCIS-R cells and in the remaining drug efflux
pumps such as MRP-2. However, when the cells were treated with
PTX, this drug induced the downregulation of the ATP7A, ATP7B,
CTRI, MRP-2, and GSR genes in both cervical cancer cell lines
(Figures 6A, B). It is important to note that, when we used PTX +
CIS in SiHaCIS-R cells, we observed a stronger downregulation of
the ATP7A, ATP7B, CIRI, MRP-2, GSR, and MGST1 genes (p <
0.05). These results indicate that these genes were differentially
expressed in parental and chemoresistant SiHa cells, and that PTX
treatment induced the downregulation of the genes related to CIS
chemoresistance (Figures 6C, D).

DISCUSSION

CIS remains one of the most utilized and effective anticancer
drugs for the treatment of recurrent and advanced cervical
cancer. However, over time, resistance can be developed even
when the tumors are initially susceptible to this drug (3). Several
mechanisms are involved in the development of Cisplatin
resistance, such as decreased cellular drug accumulation,
enhanced drug inactivation, and augmented DNA repair (18).
These mechanisms are intrinsic or acquired after treatment
cycles and confer the Cisplatin-resistant phenotype of cancer
cells (19). Therefore, to overcome CIS resistance in cervical
cancer, it is important to develop novel therapeutic modalities.
Among the different options, the administration of CIS, in
combination with other drugs that help to reverse the CIS-
resistant phenotype, may be a promising alternative for
patients who exhibit resistance.

In the present study, we selected two cervical cancer cell lines,
HeLa and SiHa, as our initial model to generate CIS resistance.
They are derived from human cervical carcinomas, and although
both cell lines resulted from HPV-mediated transformation
(HeLa is HVP-18 positive, whereas SiHa is HPV-16 positive),
the levels of CIS resistance observed after exposure to the drug
were different. We found that the SiHaCIS-R cell line was more
resistant to the effects of CIS than HeLaCIS-R cells. Likewise,
several studies have shown that chemoresistance is intimately
linked to cell type and to the inherent self-response capacity of
the cells in terms of prolonged exposure to the drug. These
findings are consistent with those of a previous study where was
reported that HeLa cells are more sensitive to Cisplatin than are
CaSki cells and SiHa cells (20).

Therefore, we decided to use only the SiHaCIS-R cell line as a
final model to evaluate the effects of PTX. However, despite the
agreement in our results herein, there may be some possible
limitations in this study. HeLaCIS-R cells did not maintain a
completely stable resistance despite having been subjected to the
same protocol as SiHa cells; thus, we selected SiHa cell lines to
work. Interestingly, HeLaCIS-R cells were sensitive to the effects
of PTX alone or in combination with CIS in a similar manner to
that of SiHaCIS-R cells. Together, these observations suggest that
PTX could improve the sensitivity of CIS in different types of
cervical cancer cell lines that are less sensitive to CIS.

In this study, we showed that SiHa cells with an acquired CIS-
resistant phenotype were refractory to CIS effects in vitro.
Opverall, our data revealed that the acquisition of CIS resistance
is correlated with Pt accumulation, elevated GSH expression,
phosphorylation of NF-xB/p65, and the inhibition of apoptosis.
In this respect, our results are consistent with those of other
authors who have also demonstrated that resistance to CIS in
SiHa cells is caused by the overactivation of the pathways that
regulate the intracellular drug uptake and the inhibition of
apoptosis. It was reported that the simultaneous administration
of two or more chemotherapeutic drugs with different
mechanisms of action minimized the development of CIS
resistance by targeting different signal transduction cascades or
enabling the incorporation of CIS (21). In previous studies, we
evaluated the effect of PTX treatment on cervical cancer cells and
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FIGURE 4 | PTX decreased NF-kB/p65 phosphorylation and Bcl-2 and Bcl-XL anti-apoptotic proteins in SiHaP and SiHaCIS-R cells. SiHaP and SiHaCIS-R cells
were treated with CIS (30 uM), PTX (4 mM), or PTX + CIS (4 mM + 30 uM) for 24 h to determine Bcl-XL and Bcl-2 expression. For the assessment of p65
phosphorylation, the cells were treated for 1 h. Data are expressed as the Mean Fluorescence Intensity (MFI) of p65 phosphorylation (A, B), Bcl-XL (C, D), and Bcl-2
(E, F) anti-apoptotic proteins. *p < 0.001 = statistical significance after the comparison between PTX group or the PTX + CIS group vs. CIS group or UCG groups in
SiHaP cells or SiHaCIS-R cells. @ p < 0.001 CIS group vs. UCG group in SiHaP cells or SiHaCIS-R cells. UCG, Untreated Control group; CIS, ClSplatin; PTX,

observed that PTX sensitizes HeLa and SiHa cells to the
antitumor effects of CIS by the inhibition of NF-xB (22).
However, whether PTX can resensitize CIS-resistant cells
remained to be determined. In the present study, we found
that PTX, per se, reversed CIS resistance in SiHaCIS-R and
HeLaCIS-R cervical cancer cells. This reversal of CIS resistance
was more evident when the cells were pretreated with PTX prior

to administering CIS; the effect was even higher than that
observed when both molecules were administered.

The primary mechanism by which CIS exerts its action
through the formation of adducts with DNA. However, it was
reported that, once inside the cells, CIS interacts with other
molecules in addition to DNA, including sulfur-containing
macromolecules such as MetalloThioneins (MT) and GSH,
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TABLE 3 | Resistance to Cadmium Chloride in SiHaP and SiHaCIS-R cervical
cancer cell lines.

TABLE 4 | Accumulation of Platinum (Pt) in SiHaP and SiHaCIS-R cervical
cancer cell lines exposed to Cisplatin and pretreated or not with PenToXifylline.

Cell Lines CdCl, (ICso M) Rr  CdCl, (IC50 ;M) + PTX4mM  Rr
SiHaP? 65.53 + 2.33 1.75 £ 0.02*
SiHaCIS-R®  191.00 + 0.28*  2.91 2.30 +0.18* 1.31

Resistance ratios (Rr) were determined as the ICs values of the resistant cell line/ICso
value of the parental cell line. Each value is the mean + Standard Deviation (SD) of three
independent experiments, each performed in triplicate. *p < 0.001 SiHaP and SiHaCIS-R
cells treated with PTX vs. SiHaP cells or SiHaCIS-R cells not treated with PTX; **p < 0.05
SiHaCIS-R cells vs. SiHa" cells. P2, Parental cells; CIS-RP, CIS-Resistant cells.
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FIGURE 5 | PTX decreased glutathione levels induced by CIS in parental and
chemoresistant SiHa cells. SiHaP and SiHaCIS-R cells were treated with CIS
(80 uM), PTX (4 mM), or CIS + PTX for 24 h; then, the glutathione levels were
determined. Data are expressed as ng of GSH/10° cells. *p < 0.001 =
statistical significance after the comparison between PTX group or PTX + CIS
group vs. CIS group or UCG in SiHaCIS-R cells. + p < 0.001 PTX group or
PTX + CIS group vs. CIS group in SiHaP cells. **p < 0.001 PTX + CIS group
vs. PTX group in SiHaCIS-R cells. @ p < 0.001 CIS group vs. UCG group in
SiHaCIS-R or SiHaP cells. UCG, Untreated Control Group; CIS, ClSplatin;
PTX, PenToXifylline.

which sequester CIS and remove it from the cells, leading to the
development of CIS resistance. Thus, to elucidate the role of MT
in the acquisition of CIS resistance, we analyzed sensitivity to
CdCl, in the cell lines, due to that cells containing excessive
amounts of MT are more resistant to CdCl, toxicity (23, 24). In
our study, we observed that SiHaCIS-R cells were more resistant
to CdCl, (about 2.91-fold) compared to the SiHaP cell line. It is
well known that MT binds to CdCl,. Thus, the overexpression of
MT results in tolerance to Cadmium toxicity. It was also reported
that GSH can participate in resistance to heavy-metal toxicity
(25), due to that GSH depletion has been associated with
increased Pt accumulation (26). When we evaluated the
accumulation of Pt in SiHaP and SiHaCIS-R cells, we observed
that SiHaCIS-R cells exhibit a decrease in Pt accumulation; this
can explain their reduced susceptibility to Pt uptake. According
to our results, baseline GSH levels were higher in SiHaCIS-R cells
than in SiHaP cells.

Cell Line Cisplatin Pt concentration ng/mg total Fold p
exposure time protein mean = SD
PTX (=) PTX 4 mM (+)
SiHaP?
5 986.19 + 8.3 586.40 £+ 5.1  0.60 <0.001
307 440.00 £ 2.9 936.20+7.1 213 <0.001
60’ 1016.00 + 6.2  1457.00 + 15.2 1.43 <0.001
SiHaCIS-R”
5 573.47 + 4.1 506.00 + 3.7  0.88 <0.001
30 492.00 £ 3.2 908.00 £ 5.6 1.84 <0.001
60 670.00 £ 0.03 1340.00 = 11.1  2.00 <0.001

SiHaP and SiHaCIS-R cells were incubated during 1 h with CIS (equimolar 100 uM), and
total intracellular levels of Pt were determined by ICP-MS. The results represent the mean
+ Standard Deviation (SD) of three independent experiments, each performed in triplicate.
p < 0.001 SiHaP or SiHaCIS-R cells pretreated with 4 mM PTX vs. SiHaP or SiHaCIS-R
cells not pretreated with PTX. The Mann-Whitney U test was used to compare differences
between the groups. P2, Parental: CIS-RP, CIS-Resistant cells.

Interestingly, when we treated the cells with PTX, we observed
that GSH levels were reduced in resistant and parental SiHa cells.
However, this effect was more evident in the groups of cells treated
with both drugs (PTX + CIS). In this regard, it was reported that
PTX induces the depletion of intracellular GSH (27). It is also
known that the biosynthesis of GSH is ATP-dependent. The
inhibition of phosphodiesterase activity by PTX decreases the
levels of 5"AMP, limiting the formation of ATP. This may
explain the reduction in GSH levels observed in SiHaP and
SiHaCIS-R treated with PTX alone or in combination with CIS.

Furthermore, these results suggest that PTX can regulate the
balance of GSH. It is important to note that we demonstrated
that the treatment with PTX alone or in combination with CIS
induced a significant increase in Pt accumulation (2-fold), as well
as a significantly lower level of resistance to CdCl,. These data
showed that MT and GSH could act as a line of defense that
protects resistant cells against CIS cytotoxicity, playing an
important role in drug efflux.

The NF-xB signaling pathway has been also implicated in
chemoresistance (28) and in the positive regulation of the anti-
apoptotic proteins Bcl-2 and Bcl-XL (29). Many reports have
demonstrated the importance of these anti-apoptotic proteins in
the development of resistance to CIS (30-32). However, we
observed that Bcl-XL and Bcl-2 proteins were not related with
resistance to CIS in cervical cancer cells, since the expression of
Bcl-XL was even higher in parental SiHa cells than in resistant
SiHa cells, whereas Bcl-2 expression was similar in both cell
lines. However, it is noteworthy that PTX alone or in
combination with CIS induced the reduction of both proteins
in SiHaCIS-R cells and SiHaP cells. Interestingly, under baseline
conditions, we observed an increase in p65 phosphorylation in
SiHaCIS-R cells compared with parental SiHa cells. In this
respect, it was shown that NF-xB is overactivated in cancer,
and can regulate the pathways that mediate tumor-cell
proliferation, survival, and angiogenesis (33). We also found
that PTX treatment alone or in combination with CIS reduced
the phosphorylation of p65 in both cell lines (parental or
resistant SiHa cells). Additionally, we observed that the
treatment with PTX + CIS increased PARP-1 cleavage in
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FIGURE 6 | PTX downregulated efflux pump, multidrug resistance, and glutathione genes in SiHaP and SiHaCIS-R cells (A, B). SiHaP and SiHaCIS-R cells
were treated with CIS (30 uM), PTX (4 mM), or PTX + CIS (4 mM + 30 uM) for 4 h. Efflux (ATP7A, ATP7B, and MRP-2), influx (CTR1), and Glutathione genes
(GRS, GSS, GPX, and MGST1) were evaluated by gPCR. RPL32 was used as a reference gene. “p < 0.05 = statistical significance, comparisons were
performed between PTX or PTX + CIS vs. CIS or UCG groups. Data are expressed as fold changes relative to the UCG of SiHaP cells (C, D). Heat Maps of
efflux (ATP7A, ATP7B, and MRP-2), influx (CTRT1), and glutathione genes (GRS, GSS, GPX, and MGST1) expressed in SiHaP and SiHaCIS-R cells treated with

SiHaP and SiHaCIS-R cells, which potentiates the apoptotic
effects of these drugs, due to that these mechanisms are involved
in the induction of apoptosis in human cervical cancer cells (34).
PTX exerts similar effects on other types of cancer, for example,
on lymphocytes from patients with chronic lymphocytic
leukemia, PTX induces DNA fragmentation and caspase-3
activation, and decreases NF-kB/p65 phosphorylation (35).
Similarly, in triple-negative MDA-MB231 breast cancer cells,
PTX induces apoptosis through NF-«B suppression (14). These
data suggest that, in SiHaCIS-R cells, NF-xB/p65 survival
pathways, together with elevated levels of GSH, could protect
CIS-resistant cells from cell death. Our results are consistent
with those of other studies that consider NF-xB inhibitors as
valid drug targets in resistant cells (33, 36, 37). In general,
our findings demonstrated that PTX sensitized SiHa cells that
were chemoresistant to CIS treatment by destabilizing the
mitochondrial pathway, which induced caspase-9 activation.
We also found an important induction of caspase-3 activity
with an increase in DNA fragmentation when resistant and
sensitive cells were treated with PTX or with PTX + CIS.
Likewise, NF-kB can promote the modulation of several genes
related to chemoresistance (MRP-2), the efflux of drugs (ATP7A
and ATP7B genes) (38, 39), or GSH systems (GSR, GPX, GSS,
and MGST1 genes) (40, 41). Our data revealed that messenger
RNA (mRNA) expression levels of genes involving copper

homeostasis (ATP7A, ATP7B, and CTRI) were significantly
higher in SiHaCIS-R cells than those in parental cells.

This result suggests that ATP7A and ATP7B may contribute
to CIS resistance in SiHaCIS-R cells. It was previously reported
that the overexpression of ATP7A and ATP7B renders human
cells resistant to copper and CIS (42). ATP7A and ATP7B are two
copper-transporting P-type ATPases that participate in copper
homeostasis and that have been implicated in Pt efflux (18, 43).
Similarly, GSR, GSS, and GPX are involved in GSH systems.
Their upregulation is associated with chemoresistance (44, 45).
CTRI is related to a greater influx of CIS into the cells; our results
indicated that there is a balance between the expression of
ATP7A/B and CTRI. Furthermore, the downregulation of
ATP7A/B genes observed in SiHaCIS-R cells treated with PTX
may contribute to the sensitization of cells that are resistant to
CIS, due to that PTX alone or in combination with CIS induced
DNA fragmentation and caspase activity, as well as the decrease
in the phosphorylation of p65 and in anti-apoptotic proteins
(Blc-2 and Bcl-XL).

CONCLUSIONS

PTX induced the sensitization of CIS-resistant SiHa cells to
apoptosis by activating caspase-9 and -3 activity, reducing NF-
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kB/p65 phosphorylation, and increasing PARP-1 cleavage. In
addition, we observed that the PTX effect decreased GSH levels
and downregulated the expression of ATP7A/B and GSR genes.
These results are consistent with our previous observations and
confirm the concept of chemotherapy with rational basis.
Therefore, PTX may be a potential candidate for use in
cervical cancer therapy in combination with CIS, particularly
in the treatment of patients who exhibit resistance.
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