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Ovarian cancer is one of the most malignant gynecological cancers around the world. In
spite of multiple treatment options, the five-year survival rate is still very low. Several
metabolism alterations are described as a hallmark in cancers, but alterations of
lipid metabolism in ovarian cancer have been paid less attention. To explore new
markers/targets for accurate diagnosis, prognosis, and therapeutic treatments based
on metabolic enzyme inhibitors, here, we reviewed available literature and summarized
several key metabolic enzymes in lipid metabolism of ovarian cancer. In this review, the
rate limiting enzymes associated with fatty acid synthesis (FASN, ACC, ACLY, SCD), the
lipid degradation related enzymes (MAGL, CPT, 5-LO, COX2), and the receptors related
to lipid uptake (FABP4, CD36, LDLR), which promote the development of ovarian cancer,
were analyzed and evaluated. We also focused on the review of application of current
metabolic enzyme inhibitors for the treatment of ovarian cancer through which the
potential therapeutic agents may be developed for ovarian cancer therapy.

Keywords: ovarian cancer, lipid metabolism, potential target, fatty acid synthesis, metabolic enzyme
INTRODUCTION

Ovarian cancer, as one malignant gynecological cancer, is the eighth leading cause in cancer-related
death around world (1). According to the latest statistical cohort from the Surveillance,
Epidemiology and End Results (SEER) in 2017, there was an annual incidence of 11.6 cases/
100,000 women per year, with an estimated 224,940 women living with this disease in the world (2).
Because of hidden symptoms and lack of effective diagnostic methods, about 70% of patients are
diagnosed in advanced stage when they receive treatment for the first time (3), which underlines the
status of ovarian cancer as a serious public health concern for women. Based on the various research
and epidemiological investigations, the pathogenesis of ovarian cancer mainly include viral
infection, endocrine disorders, genetics, and environmental pollution (4–7). Ovarian cancer is
characterized by widespread and rapid metastasis in the peritoneal cavity, which facilitates
metastatic dissemination and poor disease progression. Malignant ascites constitute a unique
tumor microenvironment providing a physical structure for the accumulation of many components.
A large number of cancer-promoting components such as cytokines, proteins, and metabolites in
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ascites are reported to promote cancer invasion and resistance to
chemotherapy through surface-specific receptors on tumor cells
(8–10). Meanwhile, the malignant progress of ovarian cancer
also brings a series of changes in its own metabolism including
glycometabolism, lipid metabolism, and amino acid metabolism,
which may further strengthen the malignancy of the disease
(11–14).

Lipids, as important nutrients for the body, are a class of
water-insoluble substances including triacylglycerol, glycerol
phosphates, sterols, and sphingolipids. In addition to providing
a large amount of energy, lipids are also widely distributed in
cellular organelles and used as biologically vital active molecules
in a variety of signaling pathways to participate in process of
inflammation, immunity, cell proliferation, and differentiation
(15, 16). Four major routes demonstrate how lipids are routed
and used in the cell: uptake, lipogenesis, storage, and
degradation. The lipogenesis refers to the fatty acid synthesis
pathway and the mevalonate pathway, the latter mainly leading
to cholesterol and isoprenoid synthesis. The important raw
material for the de novo synthesis of fatty acids is acetyl-CoA,
which comes from two approaches: one is citric acid from the
tricarboxylic acid cycle. Citrate is transported across the inner
mitochondrial membrane by the transport protein CIC (citrate
carrier) and then catalyzed by ATP-citrate lyase (ACLY) to
produce acetyl-CoA and oxaloacetate. The other is that cells
uptake acetic acid directly from the outside and catalyze the
production of acetyl CoA through acetyl CoA synthetase (17,
18). Deregulation of lipid metabolism including the increasing
de novo synthesis and degradation of fatty acid often occurs in a
variety of cancer diseases, which could provide cancer cell a
strong support for proliferation, invasion and metastasis. A large
number of studies have found that in multiple cancers, the
expression and activity of various enzymes involved in the
synthesis and catabolic pathways of fatty acids (phospholipids
and cholesterol) are significantly up-regulated. In addition, other
lipid-metabolizing enzymes such as lipoxygenase (LOX) and
cyclooxygenase (COX) gradually become cancer research
hotspots in recent years. Oncogenes highly expressed in cancer
cells can activate the PI3K/AKT/mTOR signaling pathway to
allow the related proteins such as ErbB2 and HIF-1 to promote
the expression of lipid synthetases (19–21).

Lipid droplets (LDs) occurring in specialized cytoplasm are
considered to be special lipid storage organelles because they can
synthesize and store triglycerides. LDs are composed of a core of
neutral lipids, surrounded by phospholipids and cholesterol, and
specific proteins are embedded or associated with their
surroundings. More and more evidence shows that LDs are not
only passive reservoirs of lipids, but are actually dynamic organelles
that play a central role in lipid and energy metabolism (22).

Since fatty acids are essential for cancer malignant progression,
the availability of rate limiting enzymes in lipid metabolism could
be therapeutic targets. Lipid metabolism could be regulated by
suppressing fatty acid synthesis, accelerating fatty acid degradation
via oxidation, diverting fatty acid to storage, retarding fatty
acid release from storage, and blocking fatty acids intake (23).
Limiting lipid metabolism through these mechanisms could be
Frontiers in Oncology | www.frontiersin.org 2
accomplished in alone or in a combinatorial manner, which could
pave the way for the therapy of ovarian cancer (Table 1). This
article summarizes the effects of lipid metabolism disorders in
ovarian cancer from two aspects: exogenous lipid metabolism and
endogenous lipid metabolism.
ENDOGENOUS LIPID METABOLISM

In lipid metabolism of ovarian cancer cells, many metabolic
enzymes are abnormally expressed, which can cause lipid
metabolism disorders by participating in processes that affect
lipid synthesis or degradation, thereby to provide raw materials
and energy for cancer development. At present, the combination
of inhibitors of rate limiting metabolic enzymes with first-line
chemotherapy agents has become a new strategy for treatment of
ovarian cancer.

Rate Limiting Enzymes in Fatty Acid
Synthesis
ATP-Citrate Lyase (ACLY)
ATP-citrate lyase (ACLY), the upstream enzyme in fatty acid
biosynthesis, functions physiologically to catalyze the six-carbon
citric acid from the tricarboxylic acid cycle, either from glucose
by glycolysis or glutamine, to oxaloacetate and acetyl on the
cytosolic side, which provides raw materials for the synthesis of
fat acid and cholesterol (Figure 1). Therefore, it is considered as
a bridge connecting glycometabolism and lipid metabolism (40).
The AKT-mediated phosphorylation of ACLY could promote
histone acetylation in cancer cells and immune cells to response
to the oncogenic and cytokine-induced signaling, while ACLY is
transcriptionally regulated by SREBP1 (sterol regulatory element
binding transcription protein-1) (41, 42). In addition, other
substances such as insulin, glucagon, and TGF-b can promote
the phosphorylation of ACLY.

Wang et al. found that ACLY expression was higher in malignant
tissues than that in normal ovarian tissues. Immunohistochemical
analysis showed that the increased expression level of phosphorylated
ACLY in ovarian cancer tissues was related to cancer grade, FIGO
stage, and poor prognosis. Mechanismlly, by knockdown of ACLY
expression could inhibit the proliferation of ovarian cancer A2780
cells and cause G1 phase arrest (43, 44), suggesting that ACLY
promoted cancer cell proliferation through the regulation of cell cycle.

The ubiquitin-proteasome controls protein degradation and
regulatory functions. Ubiquitin-specific proteases (USPs) are the
largest family of deubiquitin, which can catalyze the removal of
ubiquitin from different target proteins to regulate cell function.
Studies have reported that ubiquitin-specific peptidase 13
(USP13) was the main regulator of ovarian cancer metabolism
(45). ACLY can be one of deubiquitinase target proteins of
USP13, removing K48-related ubiquitination on ACLY to
improve the stability of ACLY. The in vitro experiments found
that the inhibition of USP13 expression could significantly
inhibit the progression of ovarian cancers and enhance the
sensitivity of cancer cells to treatment with PI3K/AKT
inhibitors. Therefore, the researchers proposed that ACLY may
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play an important role in the USP13-mediated deubiquitination
to promote cancer development (45, 46).

Acetyl-CoA Carboxylase (ACC)
The first committed step of fatty acid synthesis is mediated by
acetyl- ACC, which in mammals is encoded by two subtype
enzymes ACC1 (Acetyl-CoA Carboxylase Alpha) and ACC2
(Acetyl-CoA Carboxylase Beta) (47). ACC1 is generally
expressed in lipogenic tissues, and the ACC1-generated
malonyl-CoA is utilized for the synthesis of fatty acids in
cytosol. In contrast, ACC2 is highly expressed in heart and
muscle and to a lesser expressed in liver. Unlike ACC1
promoting fatty acid synthesis, ACC2 is anchored at outer
membrane of mitochondria in subcellular where localized
malonyl-CoA production blocks carnitine palmitoyltransferase-
1 (CPT1) function to prevent fatty acids from entering the
mitochondria to undergo fatty acid oxidation (48). ACC is a
biotin-dependent multi-domain enzyme, which has biotin
carboxylase (BC) and carboxyl transferase (CT) activities in
most eukaryotes. In regard to these two enzyme activities, BC
catalyzes the ATP-dependent carboxylation of biotin with
bicarbonate as a CO2 donor, and CT promotes the transfer of
carboxyl groups from biotin to acetyl CoA. In recent years, ACC
Frontiers in Oncology | www.frontiersin.org 3
activity is tightly regulated by reverse phosphorylation and gene
expression. The phosphorylation of ACC by adenosine
monophosphate-activated protein kinase (AMPK) has been
identified (49). Notably, ACC1 has been shown to be elevated
in a number of cancers, including liver cancer, lung cancer,
breast cancer, and pancreatic cancer. Inhibitors targeting ACC1
were shown to reduce cell proliferation through inhibiting fatty
acid synthesis (50, 51).

TOFA, an allosteric inhibitor of ACC1, was reported to
suppress the proliferation of ovarian cancer via arresting the cells
in G0/G1 cell cycle phase and inducing apoptosis (32). Meanwhile,
TOFA could inhibit growth of ovarian cancer xenograft in mice.
One study based on a randomized multicentre phase 3 trial
(MITO2) found that carboplatin/PLD might be more effective
than carboplatin/paclitaxel to ovarian cancer patients in the
presence of pACC overexpression, suggesting that ACC might be
a new biomarker for personalizing the choice of chemotherapy
regimen in ovarian cancer (52).

Fatty Acid Synthase (FASN)
FASN is a key enzyme for endogenous fatty acid synthesis. This
cytosolic enzyme catalyzes the synthesis of 16-carbon palmitic
acid by malonyl-CoA and acetyl-CoA under the action of
TABLE 1 | Chemical Inhibitors targeting enzymes of lipid metabolism in ovarian cancer.

Enzyme Chemical
inhibitor

Notes Pathway Models(animal/cell
line)

Reference

FASN Orlistat 1. Reduce proliferation and promotes apoptosis
2. Platinum resensitization

—– 1. Mouse
2. A2780

(24)

Compound 34 Inhibits proliferation —– A2780 (25)
Cerulenin
or C75
(A cerulenin
derived)

1. Induce apoptosis
2. Platinum resensitization

Receptor/PI3K/mTORC1 SKOV3, OVCAR3,
A2780, HOC-7

(26)
(27)

TVB-3664 1. Reduce tubulin palmitoylation
2. Inhibit proliferation

1. PI3K/AKT/mTOR
2. b-catenin signal

OVCAR5/8 (28)

C93 Induce apoptosis NAC1-FASN SKOV3, A2780,
OVCAR3

(29)

TVB-3166 Induce apoptosis and anchorage-independent cell
growth

PI3K/AKT/mTOR OVCAR5/8 (28)

SCD1 A939572 Cause cell death —— 1. SKOV3
2. Mouse

(30)

CAY10566 Reduce the lipid unsaturation levels in OC spheroids STAT/NFkB/SCD1 OVCAR5, COV362 (31)
MF-438 Induce apoptosis and ferroptosis — SKOV3 (30)
CAY10566 Induce apoptosis and ferroptosis —– SKOV3 (30)

ACC1 TOFA 1. Suppress the proliferation and induce apoptosis.
2. Inhibit growth

1. Down-regulated the expression of cyclin
D1, CDK4 and Bcl-2

2. Caspase-3 was cleaved and activated.

1. COC1
2. Mouse

(32)

MAGL JZL184 Decrease cancer cell migration —– SKOV3, OVCAR3 (33)
CPT Etomoxir Reduce tumor growth rate, ascites production —– Mouse (34)
5-LO Zileuton Reduce the MMP-7 expression and the number of

macrophages infiltrating
P38 pathway Mouse (35)

COX2 Celecoxib 1. Reduce invasion
2. Inhibit proliferation
3. Induce cell cycle arrest in G0/G1 and apoptosis
4. Inhibit tumor growth

COX2/Snail/E-cadherin 1. SKOV3, ES-2
Hey, IGROV1
2. Mouse

(36)
(37)

Berberine Inhibit the chemotherapy‐induced repopulation of
ovarian cancer cells

Caspase3/iPLA2/AA
/COX2/PGE2

SKOV3 (38)

FABP4 BMS309403 1. Reduce tumor burden
2. Increase the sensitivity of carboplatin

—– 1. Mouse
2. HeyA8, SKOV3

(39)
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reducing coenzyme II (53) (Figure 1). In normal condition, the
physiological function of FASN is to convert excess
carbohydrates into fatty acid, which will be further esterified
into triacylglycerols, and finally stored or supplied for energy
through b oxidation. As a downstream effector, FASN could be
activated by the PI3K/AKT/mTOR signaling pathway and the
transcription factors such as SREBP-1, ZBTB7A, and p53 (54,
55). FASN is highly expressed in ovarian cancer tissues and is
associated with poor prognosis and survival rate (56). Because
the majority of cancers rely on the FASN-mediated de novo fatty
acid synthesis pathway, FASN could be an attractive therapeutic
target, and inhibition of FASN has shown antitumor effects in
ovarian cancer (25, 57).

In tumor cell lines, FASN overexpression was found to cause
chemotherapy resistance induced by culture in drug-containing
media. This means that FASN may be involved in
chemoresistance of cancer cells. O Bauerschlag et al. treated
HEY cells with cerulenin, an inhibitor of FASN, and found that
cerulenin markedly decreased FASN expression and cell viability,
and induced apoptosis. Unlike combined administrations,
sequential cerulenin, and cisplatin treatment profoundly
Frontiers in Oncology | www.frontiersin.org 4
reduced cisplatin’s half maximal inhibitory concentration in a
cisplatin-resistant cell line, suggesting that cerulenin had
reinduce platinum sensitivity (26). Papaevangelou et al.
conducted a metabolite analysis and histopathology of ovarian
cancer xenograft mice treated with the combination of the anti-
obesity drugs orlistat and cisplatin, and found that orlistat
reduced cancers by inhibiting FASN. At the same time,
cisplatin reduced the b-oxidation of fatty acids, and combined
therapy delayed the cisplatin-resistant ovarian cancer cell growth
and induced apoptosis. The combination therapy of the two
drugs also reduced glycometabolism, biosynthesis of nucleotides
and glutathione, and b-oxidation of fatty acids (24).

Overexpression of FASN was also reported to be associated
with tumor cell proliferation, metastasis, poor prognosis, and
high risk of recurrence in breast cancer, prostate cancer and
gastric cancer (58–60). The FASN inhibitor TVB-3166 can
destroy the lipid structure on membrane of cancer cell, inhibit
lipid biosynthesis, and promote cancer cell apoptosis through the
PI3K-AKT-mTOR and b-catenin signaling pathways in ovarian
cancer. At the same time, this inhibitor can also block the
expression of the oncogene c-Myc (28). Some studies have
FIGURE 1 | A model showing intracellular lipid metabolism and AA metabolism in ovarian cancer. In the cytoplasm of the cell, fatty acid metabolism includes uptake,
de novo lipogenesis, and degradation. AA can be metabolized via two major pathways, namely the lipoxygenase pathway and the cyclooxygenase pathway. In
mitochondria, CIC promotes the efflux of citrate from the mitochondria to the cytosol and CACT catalyzes acylcarnitine to translocate through the inner mitochondrial
membrane.
October 2020 | Volume 10 | Article 593017
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pointed out that FASN inhibitors could also induce the cell cycle
arrest at S/G2/M and apoptosis of cancer cells, but only caused
cell cycle deceleration without apoptosis for normal cells (61).
Therefore, FASN is proposed as a metabolic marker for ovarian
cancer proliferation.

Recently, some scholars have found that the abnormal
activation of FASN can blunt the anti-tumor immunity of host
(62). The clinical data showed that, in the advanced stage of
ovarian cancer, the abnormally increased expression of FASN
was positively correlated with the state of immunosuppression.
The immunosuppression was manifested in the lower number
and dysfunction of infiltrating T cells. Mechanistic studies have
found that FASN activation in ovarian cancer cells can induce
the resulting lipid accumulation at high concentrations in the
tumor microenvironment. High expression of FASN in ovarian
cancer cells also caused defects in the ability of dendritic cells to
present antigens and prime T cells in ascites. To further explore
FASN inhibition effect in anti-tumor immune response in vivo,
the use of FASN inhibitors could partially restore the immune-
stimulating activity of Tumor-Infiltrating DCs (TIDCs) and
evoke protective anti-tumor immune responses.

Stearoyl COA Desaturase (SCD)
Stearoyl COA desaturase (SCD) is an endoplasmic reticulum
enzyme that promotes a balance of saturated fatty acids (SFA)
and mono-unsaturated fatty acids (MUFA) in cell lipids.
Specifically speaking, SCD catalyzes the synthesis of MUFA
SFA, principally stearic acid (18:0) and palmitic acid (16:0), to
their D9-monounsaturated counterparts, oleic acid (18:1) and
palmitoleic acid (16:1; ref. 8) (63). These MUFAs are major
components of cell membrane phospholipids and cholesterol
esters. Two SCD isoforms SCD1 and SCD5 have been identified
in human, whereas other four desaturases (SCD1-SCD4) share
the same enzymatic function exist in mouse (64). Among of five
isoforms, SCD1 is expressed ubiquitously among tissue with a
33-amino acid sequence at the N terminus that leads to the rapid
degradation of this enzyme via an ubiquitin-dependent
proteasome (65). It has been identified that the promoter of
SCD1 contains several binding sites with the peroxisome
proliferator-activated receptor (PPAR), NF-1, AP-2, and
SREBP. The enzyme activity of SCD1 is either promoted by
insulin, glucose, and fructose or inhibited by unsaturated fatty
acids, ethanol, TNFa, IL-11, thyroid hormones, and some steroid
hormones (66). Previous studies have shown that SCD1 was
overexpressed in many malignant cancers to regulate cell
proliferation, cell cycle, apoptosis, metastasis, and to modulate
lipid metabolism through reducing fatty acid oxidation to foster
lipogenesis (67).

Roongta et al. found that the expression of SCD1 was up-
regulated in ovarian cancer tissues and stem cells (68). Inhibition
of SCD1 expression can induce cancer cell death. Conversely,
overexpression of SCD1 or exogenous addition of palmitoleic
acid can protect cells from death. Ferroptosis is an iron-
dependent oxidative damage causing cell death that greatly
inhibits the growth of ovarian cancer cells (69). Overexpression
of SCD1 protects cells from ferroptosis through the increase of
Frontiers in Oncology | www.frontiersin.org 5
monounsaturated fatty acids, whereas inhibition of SCD1
significantly enhances the anticancer effect of ferroptosis-
inducers on ovarian cancer cell lines and xenograft mouse
tumors (30).

Scattering microscopy was used to observe an increase in
unsaturated fatty acid level in ovarian cancer stem cells, and a
significant increase in the mRNA level of SCD1 was detected by
qRT-PCR. However, when SCD1 inhibitors were used to treat
the primary ovarian cancer stem cells, the stemness markers were
down-regulated. In addition, the treatment of ovarian cancer
stem cells with SCD1 inhibitors retarded the tumor growth of
cells when injected into athymicmice. Further study demonstrated
that NF-kB may directly regulate the transcription of SCD1 (31).

Limiting Enzymes in Fatty Acid
Degradation
Cancer cells usually stimulate the degradation of fatty acids to
provide energy for proliferation, and this degradation process
can be achieved through mitochondrial b-oxidation. Within
mitochondria, fatty acids continuously undergo cyclical series
of reactions to produce acetyl-CoAs that were fed into the Krebs
cycle and supply energy to tissues in demand when glycogen
store is out of service (70).

Monoacylglycerol Lipase (MAGL)
Monoacylglycerol lipase, a member of the serine hydrolase
superfamily, mainly functions as a key enzyme to catalyze the
decomposition of monoacylglycerol into free fatty acids and glycerol
(Figure 1). Furthermore, MAGL controls several physiological
processes including pain and nociperception through hydrolysis
of the endocannabinoid 2-arachidonoylglycerol (2-AG). MAGLwas
highly expressed in ovarian and breast cancer tissues, and identified
to contribute to tumorigenesis and metastasis through up-
regulation of free fatty acids (33). MAGL also promotes epithelial-
mesenchymal transition (EMT) and may serve as a gene expression
signature for cancer stem cells (71, 72).

Other studies also found that the multiple inhibitors of
MAGL could inhibit the proliferation of ovarian cancer cells
(73, 74). The knockdown of MAGL expression inhibited the
proliferation, migration and invasion of ovarian cancer cells (33).

Carnitine Palmitoyltransferase (CPT)
When cancer cells lack glucose, energy is generated through the
increased b-oxidation. CPT is a key enzyme that catalyzes the
conversion of long-chain fatty acids into acylcarnitine, which can
be inhibited by malonyl-CoA (Figure 1). Two subtypes of CPT
(CPT1 and CPT2) differently catalyze the decomposition of
long-chain fatty acids and b-oxidation. CPT1 resides at the
outer membrane of mitochondria and transports long-chain
fatty acids into mitochondria for b-oxidation. CPT2 is located
on the mitochondrial inner membrane and catalyzes the
production of acyl-CoA from acyl-carnitine-derived acyl
groups and free coenzymes to shuttle across the inner
mitochondrial membrane CACT (carnitine acylcarnitine
translocase), which helps acylcarnitine to translocate through
October 2020 | Volume 10 | Article 593017
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the inner mitochondrial membrane and to be converted back to
acyl-CoA for b-oxidation and energy substrate generation.
Increasing studies have reported that b-oxidation abnormality
can be induced through the high expression of CPT1 to promote
cancer progression (75).

Three different CPT1 isozymes are identified. CPT1A is
widely distributed in multiple tissues with stronger enzyme
activity. CPT1B is mainly expressed in skeletal muscle cells and
cardiac muscle cells, while CPT1C is mainly found in testis and
central nervous tissues. With the improvements of metabolic
studies, it has revealed that CPT1 may promote cancer cell
proliferation and survival (76).

Shao et al. found that CPT1A was highly expressed in ovarian
cancer cell lines and primary ovarian serous carcinomas.
Analysis of database revealed that overexpression of CPT1A
was associated with poor survival in ovarian cancer patients.
Knockdown of CPT1A expression reduced the cellular level of
ATP and induced the cell cycle arrest at G0/G1 in ovarian cancer
cells, indicating that the CPT1A-mediated b-oxidation
controlled the proliferation through regulating cell cycle
process. Knockdown of CPT1A stimulated the phosphorylation
of the transcription factor FOXO through the AMPK/p38/JNK
signaling pathway and up-regulated P21 to arrest cell cycle (77).

Roy et al. found that overexpression of CPT1A can increase
the b-oxidation of fatty acids and ATP levels to promote cancer
cell proliferation. In contrast, Etomoxir, a specific inhibitor of
CPT1A, can inhibit the proliferation of ovarian cancer cells (34).

5-Lipoxygenase (5-LO)
Arachidonic acid (AA) is located in the phospholipid bilayer of
the cell membrane and the precursor of main signal molecules.
The metabolism of AA is closely associated with the
development of cancer cells (78, 79). As a member of the
arachidonic acid lipoxygenase family, 5-LO is composed of 674
amino acids and a monomeric enzyme containing iron ions.
5-LO can be transcriptionally regulated by t Egr, Sp1, nuclear
factor-kB (NF-kB), and GATA (80).

5-LO is activated by 5-LO activating protein (ALOXAP) to
catalyze AA which is released from the phospholipid bilayer by
phospholipase A2. AA is transformed to 5-hydroxyeicosatetraenoic
acid which can be metabolized by glutathione peroxidase into
5-hydroxyeicosatetranoic acid (5-HETE), which is further
converted into either 5-oxo-eicosatetraenoic acid or LTA4.
LTA4 is further converted into LTB4, LTC4, LTD4, or LTE4
depending on the different catalytic enzymes (81) (Figure 1). By
immunohistochemistry, researchers found that the expression of 5-
LO was high in epithelial ovarian cancer tissues and was associated
with poor prognosis (35).

ZWen et al. found that the high expression of 5-LO was strongly
correlated with the density of TAMs in hypoxic areas of human
ovarian tumor tissues. Leukotrienes (LTs) from 5-LO metabolites
promoted migration and invasion of macrophages, which was
mediated by up-regulation of matrix metalloproteinase-7 (MMP7)
expression (35). Zileuton, a selective and specific 5-LO inhibitor, can
reduce the expression of MMP-7 and the number of infiltrating
macrophages in xenograft tumor tissues.
Frontiers in Oncology | www.frontiersin.org 6
Cyclooxygenase-2 (COX-2)
As another rate-limiting enzyme in AA metabolism,
cyclooxygenase mainly catalyzes AA to produce prostaglandins
(PGs) (Figure 1). Cyclooxygenase includes two isozymes, COX-1
and COX-2. COX1 maintains the homeostasis, while COX-2 can
be induced by various stimulants, including cytokines, mitogens,
hormones, and hypoxia. Growing evidence proves that COX-2 is
highly expressed in cancers such as skin cancer, liver cancer, and
breast cancer. Some studies reported that COX-2 and its
derivative prostaglandin E2 (PGE2) were highly expressed in
ovarian cancer cells and might promote cancer cell proliferation
and metastasis (36, 82).

Angiogenesis is the physiological basis of solid cancer growth
and metastasis. The high expression of COX-2 and its metabolite
PGE2 promote angiogenesis through up-regulating of the
angiogenic factors such as vascular endothelial growth factor
(VEGF) and basic fibroblast growth factor (bFGF). COX-2 can
also promote the metastasis and invasion of ovarian cancer
through induction of matrix metalloproteinases (MMPs) in
extracellular matrix and the decomposition of collagen matrix
which may be involved in activation of the PI3K/AKT signaling
pathway (83). Inhibition of COX-2 with its specific inhibitor NS-
398 can increase the expression of E-cadherin and inhibit the
expression of slug, vimentin, MMP2, and MMP9, thereby to
suppress invasion and metastasis of ovarian cancer cells under
estrogen treatment (84). Moreover, overexpression of COX-2 in
ovarian cancer cells can directly up-regulate Bcl-2 expression
through the increased synthesis of PGs. Celecoxib, a selective
COX-2 inhibitor, can decrease cell growth, increase the cleaved
caspase-3 activity and induce cell cycle G1 phase arrest in a dose-
dependent manner in ovarian cancer cells (37).
EXOGENOUS LIPID METABOLISM

The interactions between ovarian cancer cells and human
peritoneal adipocytes in ascites are believed to be important for
tumor progression. Co-culture of human primary omental
adipocytes with ovarian cancer cells could transfer lipids
directly from adipocytes to ovarian cancer cells, indicating that
adipocytes may serve as an energy source for cancer cells (57).

Fatty Acid Binding Protein 4 (FABP4)
The family of FABPs is a type of intracellular lipid chaperones
that coordinate cellular lipid responses through binding to and
redistributing intracellular fatty acids, so FABPs are also called
lipid chaperone proteins (85). The function of FABP4 is to
promote the uptake of long-chain fatty acids and to participate
in lipid transport and metabolic regulation. Overexpression of
FABP4 is reported in various types of tumors such as ovarian
cancer. As a key mediator in adipocytes and cancer progression,
FABP4 can be a worthy predictor of residual disease in ovarian
cancer. Recent studies have found that miR-409-3p can target
the 3’UTR region of FABP4 and regulate the expression of
FABP4 (86).
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Nieman et cal. compared primary ovarian cancers with
corresponding omental metastatic tissues by immunohistochemical
staining, and found that FABP4was increased in ovarian cancer cells
at the adipocyte-cancer interface, but was not detected in ovarian
cancer cells and benign tissues adjacent to ovarian cancers far from
the adipocyte-cancer interface (87). Co-culture of adipocytes with
ovarian cancer cells showed that the adipocytes significantly
promoted the metastasis of the ovarian cancer cells, whereas
treatment of the co-cultured cells with FABP4 inhibitor, lipid
accumulation and adipocyte-mediated invasion of the cancer cells
were greatly reduced. In the latest research, knockdown of FABP4 in
ovarian cancer cells resulted in the increasing level of 5-
hydroxymethylcytosine, the downregulated expression of genes
was associated with metastasis and the number of clone formation.
BMS309403, a small molecule inhibitor of FABP4, was used and the
results showed that it not only significantly reduced tumor burden in
a syngeneic orthotopicmousemodel but also increased the sensitivity
of cancer cells towards carboplatin (39).

Taken together, these studies suggest that targeting FABP4 in
ovarian cancer may inhibit the ability to adapt lipid-rich cancer
microenvironment and to reduce tumor aggressiveness.

CD36
CD36 is a transmembrane glycoprotein, which is one of the most
abundantly expressed members in the class B scavenger receptor
family. CD36 not only uptakes of free fatty acids and cholesterol,
and the transfer of intracellular signals, but also pertains to the
cancer-associated antigen presentation, inflammation, and
angiogenesis (88). Studies have found that CD36 is highly
expressed in ovarian cancer tissues and also metastatic tissues,
which shows that CD36 may participate in the metastasis and
proliferation of ovarian cancer.

Ladanyi et al. found that co-culture of ovarian cancer cells with
human primary adipocytes (HPAs) increased the expression of
CD36 in ovarian cancer cells. However, the inhibition of CD36
caused a decrease in fatty acid intake of cancer cells and reduced
the accumulation of cholesterol and lipid droplets and the
intracellular reactive oxygen species (ROS) in cancer cells.
Knockdown of CD36 can also diminish adipocyte-mediated
invasion and migration of cancer cells. Intraperitoneal injection
of CD36-deficient cells significantly reduced the number of
metastatic nodules in the abdominal of xenograft mouse tumor
model (89). Thus, CD36 inhibition can effectively reduce fat acid
uptake frommicroenvironment in ovarian cancer cells to suppress
adipocyte-mediated tumor progression.

Low Density Lipoprotein Receptor (LDLR)
LDLR is a trans-membrane protein that mediates the uptake of
cellular cholesterol (90). Reports about LDLR mainly focus on
the mechanism of LDLR-mediated chemo-resistance in ovarian
cancer cells.

LDLR expression was reported to be correlated with the poor
prognosis in patients with epithelial ovarian cancer (EOCs) treated
with platinum-based drugs according to the cDNA chip database.
Knockdown of LDLR can increase the sensitivity of cells to
platinum, whereas overexpression of LDLR can promote
chemotherapy resistance. The LDLR/LPC/FAM83B/FGFRs axis
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is involved in the LDLR-mediated resistance to platinum based
chemotherapy. Zheng et al. determined that both SREBP2 and
LDLR expression levels were increased in ovarian cancer cisplatin-
resistant cell lines. Bioinformatics analysis predicts that SREBP2
may mediate ovarian cancer resistance through binding to
LDLR (91).

Lysophosphatidic Acid Receptor (LPAR)
Lysophosphatidic acid (LPA) is a kind of growth factor-like lipid
signal molecule, and is secreted from platelets, nerve cells, and
endothelial cells by endocrine and paracrine. LPA exerts its
biological function through binding to the heterotrimeric
transmembrane G protein coupled receptor (including Ga q,
Ga 12/13, Ga i/o, and Ga s) on cell surface. At least six members
of the receptor family are identified, named as LPA1-6 (92).
These LPA receptors can be divided into two subfamilies, of
which LPA1-3 are the member of vascular endothelial gene (edg)
family and LPA4-6 belong to the family of non-vascular
endothelial factors. LPA1 is widely distributed in heart, brain
and kidney; LPA2 is distributed in testis, pancreas, and prostate;
LPA3 is distributed in testis and prostate. All LPAs bind to cell
surface receptors and are quickly degraded into inactive
monoacylglycerol (MAG) and phosphatidic acid by
phospholipase (93).

Ovarian cancer cells can uptake the lysophosphatidic acid
through membrane receptors to promote proliferation (94).
Studies have found that compared with normal ovarian tissues,
LPA2 and LPA3 receptors were highly expressed in ovarian
cancer tissues, while LPA1 receptor expression was still low.
Inhibition of LPA2 or LPA3 receptor expression led to decreased
cancer cell migration and invasiveness. Treatment of cells with
LPA1 and LPA3 receptor-specific antagonist VPC32183 reduced
the uptake of LPA and caused apoptosis through inhibition of
the phosphorylation of ERK1/2. LPA and its receptors can
regulate the promoter activity of cyclin D1 through the
downstream signaling pathway of LTA receptor, which thereby
promoting cell proliferation (95).

LPA and its receptors are also involved in cancer metastasis-
related signaling pathways. Xu et al. found that the thyroid
receptor interference protein 6 (TRIP6) can affect the LPA-
induced cancer cell migration through directly binding to LPA2
receptor. The specific manifestation is that overexpression of
TRIP6 enhanced the LPA-induced cell migration, while in
contrast, inhibition of TRIP6 expression suppressed the LPA-
induced cell migration, suggesting that TRIP6 may mediate the
LPA2-induced cancer cell migration (96). Park et al. found that
LPA could activate the downstream Ga 12/13/RhoA signaling
pathway through LPA 1/2 receptor to induce the phosphorylation
of ERM proteins (Ezrin/Radixin/Moesin), which promotes the
metastasis of ovarian cancer cell line OVC-3 (97).

The combination of paclitaxel and cisplatin is a first-line
chemotherapeutic strategy for ovarian cancer treatment. The
researchers pretreated ovarian cancer cells with LPA followed by
paclitaxel and found that LPA reduced mitochondrial ROS
production while the LPA receptor agent VPC32183 increased
the content of mitochondrial ROS. Further ROS could cause
mitochondrial membrane damage and cancer cell apoptosis (98).
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CONCLUSION

Lipid metabolism of ovarian cancer is a complex process, including
lipid uptake, lipid synthesis or storage, and fatty acid degradation
by oxidation. So far, the researchers mainly clarified that the
enzymes related to fatty acid synthesis (FASN, ACC, ACLY,
SCD) and lipid degradation related enzymes (MAGL, CPT, 5-
LO, COX2), and receptors related to lipid uptake (FABP4, CD36,
LDLR) play important roles in promoting cancer development
(Figure 1). However, the study of lipid metabolomics for ovarian
cancer markers is still in the primary stage.

In this review, we systematically summarized the process
metabolism of fatty acid and the rate-limiting enzymes in this
framework. Meanwhile, a number of promising agents targeting
the lipid metabolism axis are being developed and applied in
clinical treatment, which can provide new strategies for clinical
treatment of ovarian cancer.
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SUPPLEMENTARY TABLE 1 | Abbreviation List. AA, arachidonic acid; ACC,
acetyl-CoA carboxylase; ACLY, ATP citrate lyase; CACT, carnitine-acylcarnitine
translocase; CIC, citrate carrier protein; COX2, cyclooxygenase-2; CPT1, carnitine
palmitoyl transferase 1; CPT2, carnitine palmitoyl transferase 2; DGAT,
diacylglycerol acyltransferase; ELOVL, elongation of very long-chain fatty acids
diacylglycerol acyltransferase; FADS, fatty acid desaturase; FSAN, fatty acid
synthase; FABP4, fatty acid binding protein 4; LDLR, low density lipoprotein
receptor; LTA4, lipoxin A4; LTB4, leukotriene B4; LTC4, leukotriene C4; LTD4,
leukotriene D4; LTE4, leukotriene E4; LPAR, lysophosphatidic acid receptor;
MAGL, monoacylglycerol lipase; MCD, malonyl-CoA decarboxylase; MG,
monoglyceride; MUFA, monounsturated fatty acids; PGD2, prostaglandin D2;
PGE2, prostaglandin E2; PGF2, prostaglandin F2; PGH2, prostaglandin H2; PGI2,
prostaglandin I2; PLA2, phospholipase A2; PUFA, polyunsturated fatty acids;
SCD1, stearoyl COA desaturase1; SFA, saturated fatty acids; TxA2, thromboxane
A2; 5-HETE, 5-hydroxyeicosatetraenoic acid; 5-HPETE, 5-hydroperoxy-
eicosatetraenoic acid; 5-LO, 5-Lipoxygenase.
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