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Objectives: To develop and validate a deep learning-based overall survival (OS)
prediction model in patients with hepatocellular carcinoma (HCC) treated with
transarterial chemoembolization (TACE) plus sorafenib.

Methods: This retrospective multicenter study consisted of 201 patients with treatment-
naive, unresectable HCC who were treated with TACE plus sorafenib. Data from 120
patients were used as the training set for model development. A deep learning signature
was constructed using the deep image features from preoperative contrast-enhanced
computed tomography images. An integrated nomogram was built using Cox regression
by combining the deep learning signature and clinical features. The deep learning
signature and nomograms were also externally validated in an independent validation
set of 81 patients. C-index was used to evaluate the performance of OS prediction.

Results: The median OS of the entire set was 19.2 months and no significant
difference was found between the training and validation cohort (18.6 months vs.
19.5 months, P = 0.45). The deep learning signature achieved good prediction
performance with a C-index of 0.717 in the training set and 0.714 in the validation
set. The integrated nomogram showed significantly better prediction performance than
the clinical nomogram in the training set (0.739 vs. 0.664, P = 0.002) and validation set
(0.730 vs. 0.679, P = 0.023).

Conclusion: The deep learning signature provided significant added value to clinical
features in the development of an integrated nomogram which may act as a potential
tool for individual prognosis prediction and identifying HCC patients who may benefit
from the combination therapy of TACE plus sorafenib.
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INTRODUCTION

Almost 80% of patients with hepatocellular carcinoma (HCC) are
initially diagnosed at the intermediate or advanced stage, hence
being unqualified for curative treatments such as resection and
ablation (1, 2). As demonstrated by two controlled randomized
trials and the BRIDGE study, transarterial chemoembolization
(TACE) is the most common therapeutic option for unresectable
hepatocellular carcinoma (HCC), and is recommended for
intermediate stage HCC (Barcelona Clinic Liver Cancer (BCLC)
stage B) by most guidelines (3-7). However, the release of
angiogenic factors such as vascular endothelial growth factor
(VEGF) induced by TACE may increase the recurrence and
progression rate of HCC (8, 9).

Sorafenib, a multikinase inhibitor, was the first oral molecular
targeting agent to significantly improve overall survival (OS)
and time-to-tumor progression (TTP) in patients with advanced
HCC (10, 11). Theoretically, owing to acute hypoxia triggered by
TACE which leads to the upregulation of VEGE, the combination
of TACE and sorafenib may inhibit both revascularization
and tumor proliferation (12, 13). Recently, the TACTIS trial
clearly showed that TACE plus sorafenib significantly improved
clinical outcomes in patients with unresectable HCC, which
indicated that this combination therapy was effective and
feasible in routine practice (14). However, several clinical trials
failed to contribute compelling evidence for the combination
of sorafenib and TACE, apart from the trial design which
described the duration of sorafenib administration and TACE
treatment regimen, the failure could be mainly due to the
vast heterogeneity of unresectable HCCs, leading to differences
in individual response (15-18). Therefore, a personalized
prediction biomarker or model which can identify patients
who may benefit from the combination therapy is crucial for
treatment decision. Previous studies indicated that there was
a potential link between adverse events (AEs) and favorable
outcomes, which concluded that the earlier the AEs such as
dermatological AEs and hypertension occurred, the longer the
overall survival (OS) of patients on the combination therapy (19,
20). Nevertheless, biomarkers or models which provide accurate
prognosis predictions are still lacking.

As a non-invasive examination tool used routinely in
clinical practice, medical imaging can provide comprehensive
evaluations of tumor heterogeneity, and previous studies found
that image-based deep learning technologies showed promising

Abbreviations: 95% CI, 95% confidence interval; AASLD, American Association
for the Study of Liver Diseases; AEs, adverse events; AFP, a-fetoprotein; AIC,
Akaike information criterion; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; BCLC, Barcelona Clinic Liver Cancer; CAM, class activation
map; CECT, contrast-enhanced computed tomography; C-index, concordance
index; CT, computed tomography; CTCAE, Common Terminology Criteria of
Adverse Events; EASL, European Association for the Study of the Liver; ECOG,
Eastern Cooperative Oncology Group; GAP, global average pooling; HBsAg,
Hepatitis B virus surface antigen; HBV, Hepatitis B virus; HCC, hepatocellular
carcinoma; IRBs, Institutional Review Boards; mRECIST, modified Response
Evaluation Criteria in Solid Tumors; MRI, magnetic resonance imaging; OS,
overall survival; PFS, progression-free survival; RMSE, root mean square error;
ROI, region of interest; SAEs, Severe Adverse Events; SD, standard deviation;
TACE, transarterial chemoembolization; TTP, time-to-tumor progression; VEGE,
vascular endothelial growth factor.

capabilities in the development of accurate prediction models
(21, 22). Specifically, the transfer learning strategy makes it
possible to implement deep learning on relatively small datasets
(22, 23). In this study, we conducted a multicenter study to
establish and validate a deep learning-based prognosis prediction
model for HCC patients treated with the combination of
TACE and sorafenib.

MATERIALS AND METHODS
Study Design

This retrospective multicenter study enrolled consecutive
treatment-naive HCC patients who were treated with the
combination of TACE and sorafenib between 2011 and 2016.
Data of patients from center A and B were used as the training
set for the development of the prognosis prediction model,
and data of patients from center C were used as the validation
set for independent model test. The study was approved by
the Institution Ethics Review Boards of the three mentioned
centers. The need for informed consent was waived due to the
retrospective nature of the study.

Patients

The diagnosis of HCC was confirmed according to the European
Association for the Study of the Liver (EASL) or the American
Association for the Study of Liver Disease (AASLD) criteria
(6, 7). The inclusion criteria were as follows: 1) patients were
18 years or older; 2) the Eastern Cooperative Oncology Group
(ECOG) scores were 0 or 1; 3) patients with unresectable HCC
which is clinically a heterogeneous group including those with
inter-mediate and advanced stage (6); 4) Child-Pugh class A
to B7; 5) adequate hematological, clotting, and renal function.
Patients were excluded from the study if the following criteria
were present: (1) absence of baseline imaging and clinical
data; (2) comorbidity with other primary malignancies; (3)
infiltrative HCCs with obscure borders; (4) contraindications
to TACE or sorafenib treatment; (5) having received previous
HCC-related treatment, including resection, ablation, TACE,
and radiotherapy.

Relevant information was retrieved from the clinical database,
including ECOG scores, Child Pugh class, number of tumors,
tumor size, BCLC stage, hepatitis B virus (HBV) status,
liver cirrhosis status, tumor distribution status, serum -
fetoprotein (AFP), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and hepatitis B surface antigen (HBsAg)
level. Continuous variables were transformed into categorical
variables based on recognized cutoft values (24).

Preoperative contrast-enhanced computed tomography
(CECT) scans were performed before treatment and both arterial
and portal phases of CECT were obtained.

The details of CECT protocol was showed in the supplements.

Treatment

Sorafenib (Bayer Healthcare, Leverkusen, Germany) was
administrated orally to patients within 1 week after every
session of TACE. To preserve liver function, sorafenib
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administration was stopped before the day of each TACE
session. In principle, the dose of sorafenib was 400 mg twice daily
(800 mg/day). Nevertheless, treatment interruptions and dose
reductions (400 mg once-daily, 400 mg alternated days) were
permitted for drug-related adverse events (AEs), which were
graded per Common Terminology Criteria of Adverse Events
(CTCAE) version 5.0. Patients were excluded if they did not
adhere to the regimen.

TACE was performed based on “on demand” mode. No
patients underwent TACE using drug-eluting beads. Before
chemoembolization, a diagnostic angiograph was performed to
ensure the main portal vein was unobstructed and to determine
the anatomy of the tumor vessels and hepatic artery. With a
super-selection of segment or subsegment, a 2.7 F microcatheter
(Progreat, Terumo, United States) was advanced into the
feeding vessels. As selected according to the practice of each
center, chemoembolization was performed with intra-arterial
doxorubicin (10-50 mg) and oxaliplatin (100-200 mg) mixed
with lipiodol (2-20 ml, lipiodol ultra-fluid; Guerbet, France)
followed by injection of gelfoam particles. The injection volume
of the emulsion was determined based on the tumor volume.
Before performing additional TACE sessions, good performance
status was essential. Patients would receive the best supportive
care if they were not candidates for further TACE sessions.
All TACE procedures were performed by several interventional
radiologists with more than 8 years of experience.

Clinical Endpoints and Follow-Up

The primary endpoint of the study was OS and the prediction
models, which were built based on it. OS was defined as the
time from the initial TACE treatment of HCC until any cause of
death. In surviving patients, the censoring date was defined as
the last follow-up (September 30, 2019). The secondary endpoint
was progression-free survival (PES). PES was defined as the
time from the date of TACE until the time of radiological
progression by the modified Response Evaluation Criteria in
Solid Tumors (mRECIST). Radiological progression was assessed
by two independent radiologists who were blinded to the clinical
information. In patients without death or progression, the
censoring date was defined as the last radiological assessment
date. Patients received follow-up of CECT every 4 weeks after
each TACE session and every 8-12 weeks after disease stability
has been attained. Follow-up duration was measured from the
day of diagnosis to last visit or death.

Deep Learning Signature Building

The modeling workflow of this study is shown in Figure 1.
The CECT images of the arterial and portal phases were aligned
using open-source Insight Segmentation and Registration Toolkit
(ITK, version 4.7.21)(25). The tumor region of interest (ROI)
was manually delineated in 2D slices of both AP and PVP
using MITK software (version 2016.11.3%) by a radiologist with
10 years of experience, and then confirmed by a radiologist
with 23 years of experience. The representative slices with the

'https://itk.org/
Zhttp://www.mitk.org/

largest tumor ROT were selected, and square images with the size
of 224 x 224 pixels whose center was located at the centroid
of tumor ROI were generated. All images were processed by a
z-score standardization, which consisted of subtracting the mean
intensity and division by the standard deviation of intensity.

The deep learning model was adapted to decode the
prognostic signal of tumors on CECT images. The training of
deep learning models is computationally expensive and requires
large number of images because of its millions of learnable
parameters to estimate. To address the lack of data, a highly
effective technique known as transfer learning was employed
by leveraging large data set from computer vision domain
(23). In this way, a deep learning model with DenseNet-121
architecture (26) was trained using ImageNet dataset®. DenseNet
is a state-of-the-art convolutional neural network (CNN) which
demonstrates significant improvements over traditional CNNs
on highly competitive object recognition benchmark tasks, and
it requires less computational cost and has fewer parameters
which confers the model a smaller size and easier accessibility
for application. ImageNet is a dataset for image classification
which contains more than 14 million labeled natural images. The
ImageNet dataset was used to train the DenseNet-121 model
to derive model parameters, which conferred the general ability
of image interpretation to the model, thus, the deep learning
model can recognize the unique features of a specific category of
images. In the DenseNet-121 model, the fully connected layer and
softmax layer were removed, and the feature extraction module
was used as deep image feature extractors. The DenseNet-121
model was used to extract 1024 deep image features from
CECT images at each phase, respectively. The deep learning was
implemented using Keras* in Python with TensorFlow® as the
backend. The trained DenseNet-121 model is available online®.
The technical details were described in the supplements.

An efficient two-stage modeling procedure was conducted to
build the deep learning signature. In the first stage, the deep
image features were ranked by mRMR, a multivariate ranking
method (27). In the second stage, the top-ranked features were
input into ElasticNet for the determination of feature weights
and the building of the deep learning signature (28). 5-fold cross-
validation was performed in modeling procedures to determine
the optimal parameter configuration. The technical details were
described in the supplements.

As the tumor ROI was manually delineated, the inter-observer
and intra-observer correlation coefficient (ICC) were introduced
to examine the reproducibility of deep image features in the deep
learning signature. Two radiologists with 10 years of experience
performed the same delineation of the tumor ROI for all patients:
radiologist 1 delineated the ROI twice at different times and
radiologist 2 carried out the delineation once. The deep image
features were extracted after each delineation. The inter-observer
and intra-observer ICC of deep image features were computed to
determine the reproducibility of features, and the features with

*https://www.image-net.org
*https://github.com/keras-team/keras/
*https://www.tensorflow.org/
Chttps://github.com/flyyufelix/DenseNet- Keras
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Validation

FIGURE 1 | Workflow of modeling in this study. The CECT images were preprocessed by image registration, tumor delineation and image standardization, then the
images were input into a deep learning model to build the deep learning signature. The deep learning signature and the clinical features were combined to develop
an integrated nomogram. For comparison, a clinical nomogram was also built using only the clinical features. The nomograms were externally validated in an

independent validation set.
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intra or inter-observer ICC above 0.75 were considered to have

high reproducibility.

For an intuitive understanding of mechanisms of the deep
learning signature, the strategy of class activation map (CAM)

was used to generate heat maps which could give a coarse location
of the image area relevant to unfavorable prognosis (29). The
technical details of heat map generation were documented in
the supplements.
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OS Prediction Nomogram Development

The Cox regression method was used to build the OS prediction
nomogram. The clinical features and the deep learning signature
were utilized as the candidate prognostic factors and tested by
univariate Cox regression analysis to select the factors which
were significantly correlated to OS. Then, the selected prognostic
factors were used in multivariate Cox regression analysis to
obtain an integrated nomogram by a stepwise feature selection
algorithm based on the Akaike information criterion (AIC) (30).
For comparison, a clinical nomogram was also built using only
the clinical features.

Validation and Statistical Analysis

The performance of models in predicting OS was evaluated
by calculating the C-index (31). The deep learning signature
and nomograms built on the training set were independently
tested on the validation set. The calibration of nomograms was
assessed by comparing observed and predicted survival using
root mean square error (RMSE), where a lower RMSE reflects
better agreement between observations and predictions (32).

In statistical tests, the Mann-Whitney U test was used
for numerical variables, and Fisher’s exact test was used for
categorical variables. All statistical tests were two-sided and
P < 0.05 was used to indicate statistical significance.

RESULTS

Baseline Characteristics

After enrollment, a total of 201 patients were included in this
study (center A and B as the training set: n = 120, center
C as the validation set: n = 81) (Supplementary Figure S1).
The median OS and PFS of the entire set was 19.2 months
(95% CI: 17.7-20.7) and 8.3 months (95% CI: 7.7-9.0) and
no significant difference was found between the training and
validation cohort (median OS: 18.6 (95% CI: 16.2-21.2) vs.
19.5 (95% CI: 17.8-21.9) months, P = 0.45; median PFS: 8.4
(95% CI: 7.5-9.0) vs. 8.1 (95% CI: 6.8-9.9) months, P = 0.23).
The Kaplan-Meier curves of the training and validation sets
for OS and PFS were plotted in Figures 2A,B. The detailed
demographic characteristics of the enrolled patients in both sets
were shown in Table 1.

The duration of sorafenib administration was 12.8 months
(range: 1.2-45.4 months). The dose reductions and interruptions
in 152 (75.6%) patients were mainly due to disease progression
and AEs. No combination therapy-related deaths occurred
during the follow-up. The AEs of patients were listed in
Supplementary Table S1 of the supplements.

Deep Learning Signature Building and

Validation

There were 10 deep image features in the deep learning
signature including 5 features extracted from arterial phase CECT
and 5 features extracted from portal phase CECT, the names
of the features and corresponding weights were detailed in
Supplementary Table S2 of the supplements. All deep image

features in the deep learning signature had ICC above 0.75. The
deep learning signature achieved a C-index of 0.717 (95% CI:
0.709-0.726) in the training set, and it was validated to have
good prediction performance with a C-index of 0.714 (95% CI:
0.702-0.727) in the validation set.

Heat maps were generated to provide a coarse location of
the tumor region relevant to unfavorable prognosis. Figure 3
illustrates an example of CECT images with superimposed
heat maps, where the areas in deeper red indicated a stronger
correlation with unfavorable prognosis. The core area colored
deepest red was located in the hypodense mass, and the general
red area covered almost the entire tumor.

OS Prediction Nomogram Development

and Validation

The BCLC stage, largest tumor size, AFP, ALT and deep learning
signature were identified as prognostic factors correlated to OS
in the univariate analysis (Supplementary Table S3). When only
the prognostic clinical features were used in multivariate Cox
regression analysis, BCLC stage, largest tumor size and ALT
were identified as independent prognostic factors (Table 2) and
a clinical nomogram was built (Figure 4A). By including all
prognostic factors in the multivariate Cox regression analysis,
the largest tumor size failed to remain as an independent
prognostic ability, while BCLC stage, ALT and deep learning
signature were identified as independent prognostic factors
(Table 2), and an integrated nomogram was built using these
factors (Figure 4B).

In the training set, the C-index for the integrated nomogram
(0.739, 95% CI: 0.731-0.748) for the prediction of OS was
significantly higher than that of the clinical nomogram (0.664,
95% CI: 0.654-0.673, P = 0.002). Consistent results were found
in the validation set, where the C-index remained significantly
greater for the integrated nomogram (0.730, 95% CI: 0.717-
0.742) compared with the clinical nomogram (0.679, 95% CI:
0.667-0.691, P = 0.023). The calibration plots of nomograms
were plotted in Figure 4C. In the training set, the RMSE
was 0.068 for the clinical nomogram and 0.062 for the
integrated nomogram. In the validation set, the RMSE of the
clinical nomogram was 0.192 and the RMSE of the integrated
nomogram was 0.105.

Performance of Integrated Nomogram in
Stratifying Risk of Patients

The median value of the scores predicted by the integrated
nomogram was determined as the cutoff in stratifying the patients
in the training cohort into two subgroups, where the subgroup
with scores higher than median score were classified as the high-
risk group, and the other subgroup was classified as the low-risk
group, and the patients in the low-risk group achieved better
OS than the high-risk group (P < 0.001). After applying the
same cutoff value in stratifying patients in the validation set,
stratification into high and low-risk subgroups also achieved
significantly distinct OS (P < 0.001). The Kaplan-Meier curves
of low-risk and high-risk groups in the training and validation
sets were illustrated in Figures 2C,D.
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FIGURE 2 | Kaplan—-Meier curves between training and validation cohorts. (A) OS of training set and validation set; (B) PFS of training set and validation set; (C) OS
of low-risk and high-risk groups in the training set; (D) OS of low-risk and high-risk groups in the validation set.

DISCUSSION

A multicenter study was conducted to develop and validate an OS
prediction model for HCC patients treated with a combination
of TACE and sorafenib, where an integrated nomogram which
was built by incorporating a deep learning signature and
clinical features showed significant improvement compared to
the clinical nomogram. When comparing OS of this study to
that of other trials, OS of the SPACE trial did not reach the
median value, the TACTIS trial did not analyze OS, and the target
population of the STAH and post-TACE trial was advanced stage
HCCs and unresectable HCCs with a response after TACE (14,
15, 33, 34). The median OS of this study was consistent with the
TACE-2 trial (median OS, 18.8 months), which suggested that the
cohort in the present study is representative of real-world patients
receiving TACE plus sorafenib for unresectable HCC (16).
Several clinical trials which attempted to address the
improvement in OS of the combination treatment of TACE plus
sorafenib in HCC patients have ended in failure (16, 33, 34).

The failure of the negative trials could mainly be due to the
deficiency of effective biomarkers (18). For HCC patients, it
is known that baseline a-fetoprotein concentration and other
biomarkers such as miR-26 miRNA precursor, epithelial cell
adhesion molecule are suggested to be correlated with the
outcomes (35, 36). In addition, more than 40 gene signatures
have been described in terms of molecular-guided prognosis
prediction (37). Nevertheless, none of them have yet to become a
tangible tool in clinical practice mainly due to the impact of intra-
and inter-tumor heterogeneity (38, 39). Another reason may be
that the molecular biomarkers were identified by the specimens
resected from patients at earlier stages but have not proven to be
predictors of a response to systematic therapies such as sorafenib
(37). A few studies showed that early-onset sorafenib-related AEs
may be potential biomarkers for patients undergoing treatment
with sorafenib (20, 40). Recently, the onset of hypertension
and sorafenib-related dermatological AEs were demonstrated to
be early biomarkers in patients with HCC who were treated
with TACE plus sorafenib (19). Nevertheless, on the basis of
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TABLE 1 | Baseline characteristics in the training and validation set.

Characteristic Overall Training set Validation set P
Gender 0.292
Male 175 107 68

Female 26 13 13

Age 0.475
<55 years 108 67 41

>55 years 93 53 40

Etiology

HBV 165 98 67 0.923
HCV 22 14

Others 14 8

Cirrhosis 0.384
Yes 115 72 43

No 86 48 38

Tumor distribution 0.359
Unilobar 136 78 58

Bilobar 65 42 23

Number of nodules 0.079
<3 83 56 27

>3 118 64 54

Largest tumor size, median 0.374
<5cm 76 42 34

>5cm 125 78 47

Portal vein invasion 0.146
Main portal vein 28 13 15

First branch 57 30 27

Second branch 7 5 2

No 109 72 37

Hepatic vein invasion 0.834
Yes 27 17 10

No 174 103 71

ECOG 0.157
0 180 104 76

1 21 16 5

Child-Pugh Class 0.442
A 184 108 76

B 17 12 5

BCLC stage 0.565
B 89 51 38

C 112 69 43

AST 0.313
<40 U/L 90 50 40

>40 U/L 111 70 4

ALT 0.742
<50 U/L 151 89 62

>50 U/L 50 31 19

AFP 0.229
<400 ng/ml 71 38 33

>400 ng/ml 130 82 48

TACE sessions, median 2 2 2 0.579

ECOG, Eastern Cooperative Oncology Group, BCLC, Barcelona Clinic Liver
Cancer; HBV, hepatitis B virus; HCV, hepatitis C virus; AFF, a-fetoprotein; ALT,
alanine aminotransferase; AST, aspartate aminotransferase;, TACE, transarterial
chemoembolization.

FIGURE 3 | Images of a patient with an OS of 13.6 months. (A,B) were
arterial phase and portal phase CECT images, respectively; (C,D) shows the
heat map superimposed on the arterial phase and portal phase CECT images.

TABLE 2 | Nomograms built using multivariate Cox regression analysis.

Characteristic Clinical nomogram Integrated nomogram

HR (95% CI) P HR (95% CI) P

BCLC stage

(Cvs. B)

Largest tumor size
(>5vs. <5)

ALT

(>50 vs. <50)
Deep learning - -
signature

(0.6 vs. 0.4)

1.968 (1.307-2.964) 0.001 1.540 (1.016-2.334)  0.041

1.896 (1.222-2.949) 0.004 - -
1.931 (1.245-2.993) 0.003 1.703 (1.099-2.639) 0.017

2.688 (1.970-3.668) <0.001

HR, Hazard Ratio, Cl, Confidence Interval.

complexity of the histopathological and biological heterogeneity
of HCC, the multi-target treatment mechanisms of sorafenib in
addition to the factors mentioned above, these biomarkers are
unable to strongly predict the outcomes of patients with HCC
who were treated with TACE plus sorafenib (41).

The image-based deep learning technology enabled the
development of powerful prognosis biomarkers to predict
outcomes in malignant tumors such as lung cancer (42),
nasopharyngeal carcinoma (43) and gliomas (44). With the
transfer learning strategy, the deep learning model was employed
to build the deep learning signature in this relatively small data
set. The entire modeling procedure was efficient and easy to
implement with open-source programs. As shown in the results,
the deep learning signature was highly correlated to OS. In the
heat map, it was indicated that the deep learning signature could
capture local features, where the deepest red areas identified were
associated with the hypodense mass which may refer to necrosis
(Figure 3). The arterial flow may decrease due to larger tumor
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FIGURE 4 | Nomograms and calibration curves. (A) Clinical nomogram; (B) Integrated nomogram; (C) Calibration curves of nomograms in the training set and
validation set.

growth, further dedifferentiation and progression to poorly
differentiated HCC (45). Moreover, in very advanced HCCs,
compression closure of tumor capillaries and the diminishing of
newly developed blood vessels occurred due to the increasing

interstitial pressure caused by rapid cell proliferation in the tumor
center (46). Given these factors, necrosis may emerge in HCCs,
which might make it a predictor of prognosis. In the heat map, the
general red area almost covered the entire tumor, which suggested
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that the deep learning signature could capture global features
including the tumor size, which is a predictor of poor prognosis
in HCC (47, 48).

As presented in the study, a clinical nomogram was built,
which included the BCLC stage, largest tumor size and ALT
to predict individual outcomes. The BCLC stage relies on a
composite of tumor burden, degree of liver damage, and cancer-
related symptoms, providing a useful framework for clinical
practice (6). Numerous studies have shown that larger tumor
sizes are predictors of poor prognosis in HCC (47, 48). Moreover,
ALT which was often utilized in the evaluation of liver function
in clinical practice, was demonstrated to be linked with survival
in patients with HCC (49). These were also true in our cohort
where larger tumor sizes, higher ALT levels and BCLC C stage
were associated with poor OS. An integrated nomogram was
built by incorporating clinical features and a deep learning
signature, where the integrated nomogram achieved a higher
C-index and lower RMSE than that of the clinical nomogram,
which indicated that the deep learning signature provided
significant added value to clinical features. The reason may be
because the deep learning signature could make predictions by
capturing both the global and local features of tumors, and it
comprehensively reflected on the tumor size and heterogeneity
which were established prognostic factors (39, 50). This may
also explain the exclusion of largest tumor size as a prognostic
factor, as the deep learning signature has already contained
the information of tumor size which belongs to the tumor
global feature, which was consistent with the demonstration
in the heat map.

Some limitations of this study should be acknowledged.
First, because of its retrospective nature, selection bias may
have existed and the cohort may not represent the entire
population of patients with unresectable HCC. Nevertheless,
there were no significant differences in the baseline characteristics
between the three centers. Second, in this study, sequential
administration rather than concurrent administration of the
combination treatment may limit the efficacy of treatment.
However, physicians preferred the sequential approach to avoid
possible AEs in clinical practice. Third, because of the limited
data, the study population included BCLC C stage HCC, where
TACE is not routinely recommended. Hence, further study
of BCLC B stage population is warranted. Last but not least,
the entire modeling procedure was not fully automatic, and
tumor delineation was required to reduce the image size and
to eliminate background noise which ensured that the deep
learning model could focus on the signal of the tumor. In the
future, it is hoped that an end-to-end deep learning model can
be trained on a large scale of dataset without the need for
pre-processing procedures.

CONCLUSION

In conclusion, the current study demonstrated that the CECT-
based deep learning signature could be used as a novel
biomarker for OS prediction in patients with HCC undergoing
TACE plus sorafenib treatment. Additionally, we built an

integrated nomogram combining the clinical features and the
deep learning signature to further improve the prediction
of OS which could thereby act as a potential tool for the
development of individual treatment strategies and identifying
potential patients with HCC who may benefit from such a
combination therapy.
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