
Frontiers in Oncology | www.frontiersin.org

Edited by:
John Maher,

King’s College London,
United Kingdom

Reviewed by:
Marie-Andree Forget,

University of Texas MD Anderson
Cancer Center, United States

Manisha Singh,
University of Texas MD Anderson

Cancer Center, United States

*Correspondence:
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Immunotherapy has emerged as an effective and life-changing approach for several types
of cancers, both liquid and solid tumors. In combination with traditional treatments such
as radiotherapy and/or chemotherapy, immune checkpoints inhibitors have improved
prognosis and overall survival of patients with advanced melanoma and many other
cancers. Among adoptive cell therapies (ACT), while chimeric antigen receptor T cell
therapies have demonstrated remarkable efficacy in some hematologic malignancies,
such as B cell leukemias, their success in solid tumors remains scarce due to the
characteristics of the tumor microenvironment. On the other hand, ACT using tumor-
infiltrating lymphocytes (TILs) is arguably the most effective treatment for metastatic
melanoma patients, but even if their isolation has been achieved in epithelial tumors,
their success beyond melanoma remains limited. Here, we review several aspects
impacting TIL- and gene-modified “synthetic” TIL-based therapies and discuss future
challenges that must be addressed with these approaches.

Keywords: cancer immunotherapy, adoptive cell therapy, tumor-infiltrating lymphocytes, genetically engineered
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INTRODUCTION

Adoptive Cell Therapy in Cancer
The spectrum of cancer treatments has been increasing in recent years with the incorporation of
different immunotherapy strategies that take advantage of the effectiveness and potential of the
immune system to fight cancer cells. Cancer immunotherapy has been named 2013 “Breakthrough
of the year” by the prestigious Science journal (1). Different immunotherapy approaches are
currently under development aiming to improve outcomes for cancer patients, such as immune
checkpoint inhibitors [CTLA4 and PD-1/PD-L1 axis (2–5)], monospecific (6) and bispecific (7)
Abbreviations: ACT, adoptive cell therapy; CAR, chimeric antigen receptor; ETC, endogenous T cell therapy; IL-2, inteleukin-
2; mAb, monoclonal antibody; MHC, major histocompatibility complex; MM, metastatic melanoma; NeoR, bacterial gene for
neomycin-resistance; NFAT, nuclear factor of activated T cells; PBMC, peripheral blood mononuclear cells; preREP, pre-Rapid
Expansion Protocol; RCC, renal cell carcinoma; REP, rapid expansion protocol; TAA, tumor-associated antigen; TIL, tumor-
infiltrating lymphocyte; TCR, T cell receptor; TNF, tumor necrosis factor; TRAIL, TNF-related apoptosis-inducing ligand;
ZFN, zinc finger endonucleases.

February 2021 | Volume 10 | Article 5938481

https://www.frontiersin.org/articles/10.3389/fonc.2020.593848/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.593848/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.593848/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lav.imas12@h12o.es
https://doi.org/10.3389/fonc.2020.593848
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.593848
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.593848&domain=pdf&date_stamp=2021-02-16
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monoclonal antibodies, immune-stimulatory agents such as
BCG (8), cancer vaccines (9), and the adoptive transfer of
tumor-reactive immune cells (10).

Adoptive cell therapy (ACT) is a personalized strategy that
involves infusion of ex vivo-expanded endogenous (pre-existing)
tumor-reactive T cell repertoires, such as tumor-infiltrating
lymphocytes (TILs) (11), and endogenous T cell therapy (ETC)
(12), or the generation of artificial tumor-reactive T cells (13),
such as engineered T cells expressing transgenic T cell receptors
(TCR) or chimeric antigen receptors (CAR) (14). While TILs are
tumor-specific lymphocytes directly isolated from tumor
resections, ETC are tumor-reactive T cells isolated from the
peripheral blood of patients (15). Engineered TCR- and CAR-T
cells are leukapheresis blood-derived T cells genetically modified
ex vivo in order to specifically recognize a tumor-associated
antigen (TAA) viamRNA electroporation (16), lentiviral (17) or
retroviral (18) transduction, transposon mediated modification
(19) or via CRISPR/Cas9 gene editing (20).

Tumor-Infiltrating Lymphocytes
TILs are T cells isolated from tumor fragments, ex vivo-expanded and
reinfused back into pre-conditioned patients under a non-
myeloablative lymphodepletion chemotherapy with high doses of
interleukin-2 (IL-2) (21). TILs have shown impressive results in
patients with metastatic melanoma (MM), where objective response
rates of 40%–50% including complete tumor regression in 10%–20% of
treated patients have consistently been reported by several independent
centers (22–27). Although TILs can also be obtained from epithelial
cancers (11, 28) such as breast (29, 30), ovarian (31), renal (32),
gastrointestinal (33), pancreatic (34), cervical (35) or prostate (36)
tumors, the reported response rates have been very modest (37).

In CAR-T-based ACT the major histocompatibility complex
(MHC)-restricted peptide presentation is bypassed, but only a
user-defined cell surface TAA can be recognized by the CAR.
However, the use of CAR-T cells in solid tumors has been limited
by organ toxicities related to activation of T cell effector functions
through the CAR, since most TAAs are also found in normal
tissues, raising the risk of on-target off-tumor toxicities (38). In
contrast, TILs products are highly polyclonal; thus TIL-based
ACT benefits from a multitarget T cell attack directed against
multiple different and largely unknown antigens (39). Due to the
complexity of identifying the antigen repertoire present in every
tumor for which TIL detection has been reported it has been
difficult to assess the specific antigens that are detected by TILs,
but cloning studies have divided them into non-self and self-
antigens, which can be further divided into another 3 major
groups: cancer germline antigens (developmental proteins that
are re-expressed in some cancerous but not adult/normal
tissues), differentiation antigens (which can also be present in
normal tissues but in a limited distribution) and foreign antigens
(that arise from viral proteins in viral-associated cancers) (39).
Nevertheless, several studies demonstrated that the effectiveness
of TIL-based ACT in MM is based on the specific recognition of
neoantigens (nonsynonymous somatic mutations) (40, 41).

Although TIL therapy is not yet approved by the FDA, several
clinical trials are being performed (mainly for MM) (42), and
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current efforts for its approval are focused on optimizing the
manufacturing process (43), and its application to other cancer
types. In contrast to MM, the effectiveness of TIL-based ACT
relies on the fact that the number of TILs isolated from other
tumor types is lower and difficult to expand, as well as on the
mutational burden and the characteristics of the tumor
microenvironment (44). The “standard TIL” isolation protocol
(“selected TILs”), is based on an initial pre-Rapid Expansion
Protocol (preREP) stage which comprise the resection of fresh
tumor specimens into small segments, their fragmentation and
culture under high-dose IL-2 (6,000 IU/ml) conditions for 3–5
weeks (45). The outcome of this first expansion phase is rather
variable, since the number of TILs present in the original tumor
does not always correlates with the efficiency of the preREP
process (46). Following this preREP step, individual TIL micro-
cultures are assayed with IFN-g ELISA/ELISPOT for the ability
to recognize autologous tumor cells or HLA-A matched
allogeneic melanoma cell lines (43). TIL micro-cultures
displaying tumor reactivity against HLA-matched or
autologous tumor cells are selected and expanded further in
the REP stage under an allogeneic feeder co-culture with healthy
donor irradiated (40 Gy) peripheral blood mononuclear cells
(PBMC) in a 1:200 ratio with 30 ng/ml anti-CD3 (clone OKT3)
and 6,000 IU/ml IL-2. After this REP stage, expanded TILs are
transferred into culture bags, prepared and reinfused back into the
patient. In addition to the manufacturing obstacles derived from
TIL therapy, —it is an extremely personalized therapy which
required specialized personal to manage pre- and REP stages as
well as highly controlled conditions that guarantee their clinical
use—, TIL expansion is a time-consuming protocol that in some
cases is not viable due to the rapid clinical deterioration of some
melanoma patients from which those TIL were initially isolated.
Due to the limitations of the selected TIL method, a modified TIL
production protocol was developed and tested in clinical trials
both at the Surgery Branch, NCI and the Sheba Medical Center,
Israel (47–49). With this modified method, named the “young
TIL” protocol, all TIL micro-cultures generated from individual
fragments are pooled together as one single bulk TIL culture,
eliminating the tumor-reactivity assay (50).

Along with other limitations that TIL-based ACT implies, such
as their reduced proliferative capacity and in vivo persistence after
the reinfusion to the patient, TILs are in essence highly differentiated
effector cells (39), which differentiate from a T effector phenotype to
late-stage effector memory cells (51–53). Current efforts also implies
selection of tumor-reactive TILs with the co-stimulatory marker
4-1BB/CD137 (34, 54–59) and alternatively, with PD-1/CD279 (60–
62), although these approaches remain to be evaluated under
clinical trials (63).

The success of TIL-based ACT in MM is based mainly in the
high mutational burden and neoantigen emergence rates and in
the sustained antitumor reactivity exhibited by this type of
cancer (42). However, these characteristic are usually absent in
most epithelial tumors such as those mentioned above. In
contrast to MM, other solid tumors from which TIL isolation
and production have been achieved lack a high mutational load
or neoantigen burden and exhibit a scarce antitumor reactivity,
February 2021 | Volume 10 | Article 593848
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which combined to the heterogeneous CD4+ or CD8+

lymphocyte or innate-like and myeloid infiltrates, and the wide
variety of metastases types, are currently hindering the
applicability of TIL-based ACT (64). In this context,
genetically-modified TILs, named “synthetic TILs”, could
emerge as an effective ACT beyond MM.

Synthetic TILs in Cancer Therapy
Given the therapeutic potential of TIL-based ACT, almost in
parallel with de development of TIL protocols, the genetic
modification of TILs has been explored in order to improve
their tumor-homing ability after ex vivo expansion and
reinfusion into patients (Table 1). In early 90’, feasibility of
TIL gene transfer after transduction with the retroviral vector N2
encoding the bacterial gene for neomycin-resistance (NeoR) was
analyzed, concluding that those NeoR-TILs could be used for
studying TIL trafficking and survival in vivo with no growth
detriment or cytokine mRNA pattern alterations (65). Based on
these results, the same group studied the safety of reinfusion of
genetically modified NeoR-TILs in five MM patients. No adverse
effects were reported, PCR analysis detected NeoR-TILs in the
circulation after three weeks and in the tumor deposits after 64
days (66, 80), and long-term viable NeoR-TILs after cell infusion
were observed (67).

However, not only MM-derived TILs have been explored for
gene modification. Transduced CD4+ and CD8+ TILs with the
G1Na retroviral vector (encoding for NeoR) have been used to
study the in vivo trafficking of ovarian-derived TILs (68).
SYNTHETIC TILS WITH INCREASED
CYTOTOXIC POTENTIAL

Other approaches have explored the genetic engineering of TILs
with secreted proteins such as tumor necrosis factor (TNF). Hwu
et al. (69) demonstrated that TILs could be retrovirally
Frontiers in Oncology | www.frontiersin.org 3
transduced with TNF-a, and although the secreted levels in
vitro were lower than expected, these levels could be increased by
replacing the transmembrane region of TNF with the IFN-g
signal peptide or after treatment with retinoic acid (70).

TNF-related apoptosis-inducing ligand (TRAIL) and IL-2 have
also being transfected into TILs isolated from renal cell carcinoma
(RCC) resulting in improved cytotoxicity activity (71). A clinical
trial explored whether retrovirally transduced IL-2 secreting MM-
derived TILs could enhance their in vivo survival after adoptive
transfer. IL2-secreting synthetic TILs improved their in vitro survival
in the absence of added IL-2, but the in vivo survival or clinical were
not enhanced (72). The potential of IL-12 as a putative enhancer of
antitumor activity has been studied in TILs isolated from MM
patients. Based on previous studies showing tumor cell toxicity
associated with constitutive IL-12 secretion (81), Zhang et al. (73)
developed a system in which a single-chain human IL-12 driven by
a nuclear factor of activated T cells (NFAT) inducible promoter was
selectively secreted at the tumor site after the TCR engagement.
However, although objective responses were observed, the clinical
toxicities likely associated with IL-12 secreted by syntheticNFAT.IL-
12-TILs makes it imperative to improve the approach before
undertaking further studies.
SYNTHETIC TILS WITH ENHANCED
TUMOR HOMING ABILITY

Once proved that TILs can be efficiently engineered using
different strategies, recent studies have been focusing on
improving TIL migration toward tumor sites after re-infusion
(Figure 1). With this aim, several groups have explored the
generation of synthetic TILs expressing chemokine receptors for
different chemokines secreted by tumor cells, such as CXCR2,
which is the receptor for several chemokines such as CXCL1 and
CXCL8. Initial studies demonstrated that recombinant as well as
tumor cell line-derived CXCL1 induced chemoattraction in vitro
TABLE 1 | Synthetic tumor-infiltrating lymphocytes (TILs) in cancer therapy.

Objective Gene Modification Vector/Genetic Technology TumorType # Patients Reference

TIL trafficking NeoR RV M 6 (65)
NeoR RV MM 5 (66)
NeoR RV MM

MRCC
3
2

(67)

NeoR RV EOC ND (68)

Improvement of TIL cytotoxicity TNFa RV ND 15 (69)
TNFaa) RV MM 11 (70)
TRAIL+IL2 MEV RCC 10 (71)
IL2 RV MM 13 (72)*
NFAT. IL-12 RV MM 33 (73)*

Enhancement of TIL homing toward tumor sites CXCR2 RV M 10 (74)
CXCR2 LV MM ND (75)
CXCR2 RV MM 10 (76, 77)*
CXCR1 BEV MM 40 (78)

Prevention of TIL exhaustion PD-1 ZFN-mediated gene editing MM 3 (79)
February 2021
 | Volume 10 | Art
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M, Melanoma; MM, Metastatic Melanoma; MRCC, Metastatic Renal Cell Carcinoma; ND, Not Determined; RV, Retroviral Vector; *Clinical Trial (https://clinicaltrials.gov).
Summary of the different strategies undergone to date for the generation of genetically modified TILs.
icle 593848

https://clinicaltrials.gov
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
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and IFN-g secretion of CXCR2-engineered T cells (74). In vivo
studies in two xenograft tumor models have also shown that
melanoma antigen-specific CXCR2-engineered T cells improved
tumor migration and antitumor activity in mice bearing MC38/
gp100 tumors or CXCL1-expressing tumors (82). These findings
have been validated in NOG mice bearing subcutaneous human
melanoma xenografts, in which increased tumor homing and
infiltration by CXCR2-engineered T cells was observed (75). In
addition, a clinical trial with CXCR2-engineered in MM patients
is currently ongoing (76). The methodology developed for this
clinical trial has been described by Forget et al. (77) and includes
retroviral transduction and TIL expansion (83). Another
chemokine studied as a possible target for synthetic TIL
generation is CXCR1, which in contrast to CXCR2, is
expressed at low levels in MM-derived TILs. Sapoznik et al.
(78) demonstrated that CXCR1-engineered TILs migrated in
vitro more efficiently toward melanoma or recombinant CXCL8
without altering effector function of migrating TILs.
Frontiers in Oncology | www.frontiersin.org 4
REDUCING T CELL EXHAUSTION WITH
SYNTHETIC TILS

One of the critical challenges that must be solved for clinical
approval of TIL-based ACT concerns the durability of TIL
responses (Figure 1). PD-1 ligands, PD-L1/L2 are expressed in
several tumor types, and the interaction with its receptor triggers
effector T cell function inhibition and T cell exhaustion,
developing a suppressive microenvironment which prevents
antitumor activity. Rosenberg’s group had previously described
that isolated tumor-reactive TILs from MM patients expressed
PD-1 (61, 84), so they analyzed whether a permanent inhibition
of PD-1 in engineered-TILs through zinc finger endonucleases
(ZFN) gene-editing technique could improve the effectiveness of
TIL after infusion. Beane et al. (79) demonstrate a significant
decrease in the number of tumors after treatment with ZFN-PD-
1 KO TILs as well as an improved in vitro effector function
through TNF-a, GM-CSF and IFN-g secretion after co-culture
FIGURE 1 | Synthetic TILs manufacturing. After initial TILs isolation from fresh tumor fragments, retroviral or lentiviral vectors are used to genetically modified TILs in
order to improve cytotoxicity, enhance tumor homing or reduce T cell exhaustion. Then, synthetic TILs are ex vivo expanded for 14 days in the presence of
allogeneic irradiated peripheral blood mononuclear cells, soluble anti-CD3 antibodies and IL-2. Prior to synthetic TIL infusion, the patients receive lymphodepleting
chemotherapy to ensure TIL persistence and expansion. CRC, Colorectal Cancer. LC, Lung Cancer. MM, Metastatic Melanoma..
February 2021 | Volume 10 | Article 593848
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with tumor cells, with a predominant effector memory-like
phenotype in engineered TILs, and no detectable proliferative
defects or tumor formation in NSG mice (79). Nevertheless,
safety and efficiency for clinical treatment remains to be tested.
CONCLUSIONS AND FUTURE
PERSPECTIVES

TIL-based ACT in combination with high-dose IL-2 have been
shown to be an effective clinical strategy in MM patients, and to a
lesser extent, in other tumors. Although many issues remain to be
addressed, especially regarding the relatively long generation
process and the requirement for GMP facilities and trained
personnel, the early-treatment costs are considerably lower than
those of anti-CTLA4 mAb in MM (85). Given than TILs are
naturally infiltrating cells, they can also serve as biomarker to
predict the clinical efficacy of immunotherapies enhancing
antitumor adaptive responses (86) Interestingly, different
approaches have recently demonstrated that during the ex vivo
process necessary for TIL generation, these tumor-specific T cells
can be efficiently genetically modified in order to enhance their
cytotoxicity, tumor homing or to reduce T cell exhaustion. The
resulting cellular product, called synthetic TILs in this review, is at
the very beginning of their evolution and could eventually
transform the current immunotherapy landscape. By using
different genetic engineering strategies and/or gene editing
systems, we can speculate that it will be possible to generate
personalized synthetic TIL-based ACTs addressing the
Frontiers in Oncology | www.frontiersin.org 5
particular tumor characteristics, with the aim of counteracting
the specific tumor evasion mechanisms that are operative in a
given patient, or redirecting other immune cells against the tumor.
Furthermore, the identification of the TIL mutanome, the specific
mutated neoantigens recognize by TILs (86), will provide rationale
to develop “à la carte” neoantigen-specific synthetic TILs, or
combinations thereof that could be significantly more effective
than populations of potentially tumor-reactive TILs obtained by
conventional enrichment protocols.
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