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Missense mutations in the TP53 gene are among the most frequent alterations in human
cancer. Consequently, many tumors show high expression of p53 point mutants, which
may acquire novel activities that contribute to develop aggressive tumors. An unexpected
aspect of mutant p53 function was uncovered by showing that some mutants can
increase the malignant phenotype of tumor cells through alteration of the mevalonate
pathway. Among metabolites generated through this pathway, isoprenoids are of
particular interest, since they participate in a complex process of posttranslational
modification known as prenylation. Recent evidence proposes that mutant p53 also
enhances this process through transcriptional activation of ICMT, the gene encoding the
methyl transferase responsible for the last step of protein prenylation. In this way, mutant
p53 may act at different levels to promote prenylation of key proteins in tumorigenesis,
including several members of the RAS and RHO families. Instead, wild type p53 acts in the
opposite way, downregulating mevalonate pathway genes and ICMT. This oncogenic
circuit also allows to establish potential connections with other metabolic pathways. The
demand of acetyl-CoA for the mevalonate pathway may pose limitations in cell
metabol ism. L ikewise, the dependence on S-adenosy l meth ion ine for
carboxymethylation, may expose cells to methionine stress. The involvement of protein
prenylation in tumor progression offers a novel perspective to understand the antitumoral
effects of mevalonate pathway inhibitors, such as statins, and to explore novel
therapeutic strategies.

Keywords: metastasis, carboxymethylation, actin cytoskeleton, CAAX proteins, cancer, methionine restriction,
methionine stress
INTRODUCTION

TP53, the gene encoding the tumor suppressor p53, is one of the most frequently mutated genes in
human cancer (1). More than 70% of TP53 alterations are missense mutations, leading to the
conspicuous presence of p53 point mutants in tumors (2). Mounting evidence has supported the
notion that these mutants cooperate with tumorigenesis though the acquisition of novel activities
(3). Particularly, animal models provided compelling proof of the ability of p53 point mutants to
promote the development of aggressive tumors. Intense research on the mechanisms underlying this
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effect has revealed a complex scenario (4). Mutant p53 can be
considered as a pleiotropic factor that affects cell behavior by
altering the function of different interactors. In this context, the
presence of specific arrays of interactors combined with patterns
of active signaling pathways may explain the manifold activities
described for p53 mutants (5). Most mutations are found in the
DNA Binding Domain, and a few codons concentrate the highest
mutation frequencies. Although the development of aggressive
tumors appears as a common biological outcome of most p53
mutants, some differences were also reported (6). The ability to
cooperate with oncogenic mechanisms and the exclusive
presence in tumor cells make mutant p53 an attractive
therapeutic target. Therefore, much effort is concentrated in
the study of its function. In this regard, the unexpected finding
that mutant p53 alters the expression of mevalonate (MVA)
pathway genes (7) opened new avenues to understand the
importance of metabolism in tumor cell biology.
TAKING CONTROL OF THE MEVALONATE
PATHWAY, MUTANT VS WILD TYPE P53

The pathological role of alterations on the MVA pathway was
initially proposed based on the observation that inhibitors of the
enzyme that catalyzes the rate-limiting step (3-hydroxy-3-
methyl-glutaryl-CoA reductase, HMGCR), known as statins,
reduced the proliferation of tumor cells (8, 9). This pathway
allows the biosynthesis of cholesterol and isoprenoids from
acetyl-CoA (Figure 1). The isoprenoid intermediates farnesyl
and geranylgeranyl may be covalently attached to cysteine
residues on the carboxyl terminus of proteins, in the first step
of the protein prenylation pathway, a complex mechanism of
posttranslational modification (10). The connection between
mutant p53 and the MVA pathway was unveiled following the
observation that several p53 point mutants promoted an
aggressive phenotype in three-dimensional (3D) cultures of
breast cancer cells (7). The finding that endogenous p53R273H
enhanced the expression of at least 17 MVA pathway genes,
along with evidence from elegant pharmacologic manipulation
of the pathway, led to propose that enhanced flux through the
MVA pathway was responsible for the phenotype associated to
mutant p53. The expression of MVA pathway genes is under
control of Sterol Responsive Element Binding Proteins
(SREBPs), which induce transcription in response to low
cholesterol levels (11). The recruitment of mutant p53 on the
promoters of MVA pathway genes in the vicinity of Sterol
Responsive Elements (SREs) as well as the ability of p53R273H
to interact with SREBPs suggest that mutant p53 acts as a
transcriptional co-activator. Supporting the idea that MVA
pathway alteration cooperates with tumor progression, high
expression of MVA pathway genes was correlated with poor
clinical outcome in breast cancer patients (7).

Protein geranylgeranylation appears to be crucial in the effect of
mutant p53. Inhibition of geranylgeranyl transferase I (GGTaseI)
attenuated the invasive morphology of MDA-MB-231 cells in 3D
cultures, similar to endogenous mutant p53 downregulation. In
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contrast, inhibition of enzymes that derive the flux of the pathway to
other molecules, such as squalene synthase (SQS) and farnesyl
transferase (FTase), had no effect. Moreover, addition of
geranylgeranyl diphosphate (GGPP) recovered the invasive
morphology in cells where mutant p53 was downregulated (7).
Furthermore, mutant p53 depletion or HMGCR inhibition by
statins reduced the nuclear localization and activity of Yes-
Associated Protein (YAP) and Transcriptional coactivator with
PDZ-binding motif (TAZ) (12), the transcriptional module of the
Hippo pathway, through a mechanism that involves Ras homolog
family member A (RHOA) prenylation. Hyperactivation of YAP
and TAZ has been increasingly associated to proliferation and
metastasis (13). Similarly, YAP/TAZ inactivation was not
observed upon inhibition of SQS and FTase, but was
phenocopied by GGTaseI inhibition. Moreover, adding GGPP
reverted the effect of upstream inhibition of the MVA pathway (12).

The finding that wild type p53 (wt p53) repressed the
expression of MVA pathway genes provides strong support to
the idea that alteration of this pathway may be a critical event in
tumor progression. In this case, an indirect mechanism was
described, involving inhibition of SREBP-2 maturation (14). This
effect was mediated by the transcriptional induction by wt p53 of
ATP binding cassette subfamily A member 1 (ABCA1), which
encodes a protein involved in the retrograde transport of
cholesterol from the plasma membrane to the endoplasmic
reticulum (ER). SREBPs are produced as inactive precursors
anchored to the cytosolic side of the ER. Maturation can be
stimulated by low cholesterol levels in the ER, which triggers a
complex process that leads to proteolytic cleavage and nuclear
import of SREBPs (15, 16). Analysis of cancer databases showed
that ABCA1 expression was lower in colon, breast and liver
carcinomas comparing with normal tissues. Likewise, Abca1
inactivation enhanced tumorigenesis in an experimental model
of hepatocellular carcinoma (HCC). Additional evidence from
animal models strongly supports the notion that ABCA1 is
relevant for the tumor suppressive function of wt p53 (14).
Noteworthy, wt p53 was also reported to repress the expression of
SREBP1-c, suggesting that the interplay between the p53 pathway
and SREBPs is even more complex (17, 18).
POST PRENYLATION PROCESSING AND
THE P53 PATHWAY

The posttranslational processing pathway known as prenylation
involves three stages (Figure 1). First, the addition of farnesyl or
geranylgeranyl, to a cysteine residue close to the carboxyl
terminus of proteins (19), catalyzed by FTase or GGTaseI,
respectively. The prenylated cysteine is typically part of a
CAAX motif (C: cysteine; A: aliphatic amino acid; X: any
amino acid), although other motifs such as CXC can also be
targeted (20). Second, the terminal amino acids following the
prenylated cysteine are removed by the specific peptidase RAS
Converting Endoprotease 1 (RCE1) in the ER (21). Third,
Isoprenylcysteine Carboxyl Methyltransferase (ICMT), also an
integral membrane protein of the ER, catalyzes the methylation
November 2020 | Volume 10 | Article 595034
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of the free carboxyl terminus on the cysteine. This modification
provides an uncharged hydrophobic carboxyl terminus,
which increases protein interaction with biological membranes
and/or modifies its ability to interact with other proteins (22).
Only one member of the ICMT methyltransferase class is
encoded in mammalian genomes and lacks homology to other
methyltransferases (23). Interestingly, methylation of prenylated
proteins is absent in ICMT-/- cells, which indicates that ICMT is
the only enzyme able to catalyze this reaction (24). A connection
between the p53 pathway and post-prenylation processing was
established by showing that wt and mutant p53 regulate ICMT
expression (25). Several p53 point mutants induced ICMT
expression in breast, colon, and lung cancer cell lines. This
effect was associated to transcriptional activation, since mutant
p53 was recruited on the ICMT promoter and was able to
Frontiers in Oncology | www.frontiersin.org 3
enhance its activity. Moreover, promoter activation and
enhanced endogenous gene expression were observed in p53
null cells, showing that this activity is a novel function acquired
by mutants. In contrast, wt p53 was also found on the ICMT
promoter but repressed promoter activity and reduced mRNA
and protein levels. Interestingly, the effects of wt and mutant p53
were shown to depend on different promoter regions, indicating
that they act through different mechanisms. This evidence
suggests that the acquisition of missense mutations on TP53
may exert a strong effect on ICMT expression by complementary
mechanisms. The repressive function of wt p53 may be lost upon
mutation of TP53, while the presence of point mutants may
enhance gene expression by wt p53-independent mechanisms.
Underlining the clinical relevance of the connection between the
p53 pathway and post-prenylation processing, ICMT expression
FIGURE 1 | Overview of metabolic pathways connected to protein prenylation. Citrate generated from glutamine or the tricarboxylic acid cycle (TCA cycle) is cleaved
by ATP-citrate lyase (ACLY) to acetyl-CoA and oxaloacetate. Acetyl-CoA can also be synthesized by cytoplasmic acetyl-CoA synthetase (ACSS2) from exogenous
acetate. Acetyl-CoA, can be carboxylated to malonyl-CoA, to produce fatty acids (FA). Lipids can also be incorporated through exogenous uptake. Alternatively,
acetyl-CoA enters the mevalonate pathway, where three molecules are condensed in a two-step reaction to produce 3-hydroxy-3-methylglutaryl CoA (HMG-CoA).
HMG-CoA is then reduced by 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) to produce mevalonate. Mevalonate is then converted into isopentenyl-
diphosphate (IPP) through a series of enzymatic steps. IPP serves as a monomeric unit for the consequent synthesis of farnesyl diphosphate (FPP), geranylgeranyl
diphosphate (GGPP) and other downstream metabolites (cholesterol, dolichol, coenzyme Q10, heme A, etc.). The isoprenoid moiety of FPP or GGPP may be
covalently attached to cysteine residues on the carboxyl terminus of some proteins, in the first step of the protein prenylation pathway. For example, the activity of
RHOA is regulated by geranylgeranylation, which localizes RHOA to the plasma membrane. RHOA promotes the nuclear localization and activity of the Yes-
associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). Gain of function p53 mutants (mut p53) functionally interact with sterol
regulatory element binding proteins (SREBPs) to drive increased expression of mevalonate pathway genes. In contrast, wild type p53 (wt p53) represses the
mevalonate pathway genes through inhibition of SREBP-2 maturation, as a consequence of transcriptional induction of ATP binding cassette subfamily A member 1
(ABCA1). Additionally, p53 point mutants can induce isoprenylcysteine carboxymethyltransferase (ICMT) expression, while wt p53 exerts the opposite effect, through
transcriptional repression. ICMT catalyzes protein carboxymethylation, the last step of the protein prenylation pathway. The methyl donor in this reaction is S-
adenosyl methionine (SAM), which is produced from the essential aminoacid methionine in the rate-limiting reaction catalyzed by methionine adenosyl transferase
(MAT). SAM is transformed into S-adenosyl homocysteine (SAH), which can be used to regenerate methionine through the methionine cycle. Homocysteine can be
derived to the transsulfuration pathway (TSP) to synthesize glutathione (GSH). Dashed arrows represent multiple enzymatic steps. Indications on reversibility of
enzymatic reactions and subcellular localization of some enzymes have been omitted for simplicity. Enzymes known to be regulated by SREBPs are shown in blue.
IDH1, isocitrate dehydrogenase 1; a-KG, a-ketoglutarate; FFTase, farnesyl transferase; GGTaseI, geranylgeranyl transferase 1; RCE1, RAS converting enzyme 1;
AHCY, adenosylhomocysteinase; MS, methionine synthase; 5-MTHF, 5-methyltetrahydrofolate; GSSG, oxidized glutathione; TF, transcription factors.
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was found to be significantly reduced in patients classified as wt
p53, but was increased in mutant p53 patients (25). The discussed
evidence suggests that deregulated expression of ICMT may
cooperate with tumor progression. In support to this idea, high
ICMT levels were found in hepatocellular carcinoma patients and
ICMT overexpression enhanced proliferation and migration in
normal liver cells (26). Similarly, ICMT overexpression in H1299
non-small cell lung carcinoma (NSCLC) cells increased clonogenic
potential in vitro and tumorigenesis in a xenograft model.
Moreover, analysis of breast and lung cancer databases showed
that high ICMT expression was correlated with reduced
survival (25).
ICMT TARGETS IN ONCOGENESIS

ICMT substrates are distributed among different families (Table 1),
complicating the rationalization of its pathological effects. In
addition to RAS and RHO families of GTPases, more than 200
CAAX proteins have been predicted based on structural analysis
(70, 71). Polypeptides ending in CXC, as the doubly
geranylgeranylated RAB family, are also modified by this
pathway. The identification of RAS family members as ICMT
substrates reinforced the notion that protein prenylation may play
a role in cancer (72, 73). Deletion of Icmt reduced KRAS-induced
transformation in vitro (74) and neoplastic lesions in a mouse
model of myeloproliferative syndrome (75). Moreover, genetic
ablation of ICMT in RAS-transformed human breast primary
cells and human breast cancer cell lines harboring mutant RAS,
reduced tumor formation in xenograft models (76). Intriguingly,
Icmt inactivation in a KRAS-driven mouse model of pancreatic
carcinoma increased the number of pancreatic neoplasias and
promoted tumor progression (77). Impairment of Notch signaling
through deregulation of RAB7 and RAB8 was suggested as
responsible for this effect. Considering the impact of mutant p53
as a promoter of pancreatic cancer (78), It will be interesting to
explore the interplay between the MVA pathway and protein
prenylation in this pathology.

The deregulated action of ICMT on RHO GTPases may
promote invasiveness and metastasis through alteration of
cytoskeleton remodelling and cell motility. Accordingly,
ICMT inhibition reduced migration and invasion in MDA-
MB-231 cells (53), concomitant with decreased RHOA and
RAC1 activity. The ability of miR-100 to attenuate lamellipodia
formation, matrix metallopeptidase 2 (MMP2) activation and
metastasis in hepatocellular carcinoma cells was associated to
ICMT-RAC1 signaling inhibition (79). Likewise, reduced
migration, invasion and metastasis were observed in HT-
1080 fibrosarcoma cells upon ICMT inhibition (80),
which was associated to RAB4A impaired function. ICMT
overexpression in H1299 cells significantly affected actin
cytoskeleton, suggesting an effect on RHO GTPases (25).
Interestingly, some evidences reported differential effects of
ICMT on subcellular localization and/or expression levels of
protein substrates, arguing for a role in the concerted regulation
of prenylated proteins. For example, ICMT inhibition reduced
Frontiers in Oncology | www.frontiersin.org 4
RHOA half-life, but enhanced RAS stability (74, 81). Lack of
ICMT had different effects on the subcellular localization of
RAS and RHO family members (49), and on the localization
and stability of RALA and RALB. Dynamic regulation of
protein carboxymethylation may have relevant consequences
TABLE 1 | List of prenylated proteins and ICMT substrates.

Protein Name CAAX
motif

Prenyl
Group

ICMT
substrate

Reference

G protein-coupled receptor
kinase 1 (GRK1)

CLVS 15C Yes (27, 28)

G protein subunit gamma
transducin 1 (GNGT1/GNG1)

CVIS 15C Yes (29, 30)

G protein subunit gamma 2
(GNG2)

CAIL 20C Yes (29, 30)

Lamin B1 (LMNB1) CAIM 15C Yes (31–33)
Lamin A (LMNA) CSIM 15C Yes (34, 35)
ERAS CSVA 15C Yes (36)
HRAS CVLS 15C Yes (37, 38)
KRAS4A CIIM 15C Yes (24, 37, 38)
KRAS4B CVIM 15C Yes (24, 37, 38)
NRAS CVVM 15C Yes (37, 38)
RAB3B CSC 20C Yes (39)
RAB3D CSC 20C Yes (39)
RAB4A CGC 20C Yes (40, 41)
RAB6A CSC 20C Yes (39)
RAB7A CSC 20C Yes (41)
RAB8A CVLL 20C Yes (41, 42)
RAB13 CSLG 20C Yes (41, 42)
RAB18 CSVL 20C Yes (41)
RAB23 CSVP 20C Yes (41)
RAB27A CGC 20C Yes (41)
RALA CCIL 20C Yes (43–45)
RALB CCLL 20C Yes (44, 45)
RHEB1 CHLM 15C Yes (36, 46)
RHEB2 CSVM 15C Yes (36, 46)
RHOA CLVL 20C Yes (47, 48)
RHOB CKVL 15C/20C * Yes (49–51)
RHOC CPIL 20C Yes (49, 51)
RHOD CVVT 15C Yes (49)
RHOH CKIF 15C/20C * Yes (49)
CDC42 CCIF 20C Yes (37, 52)
RAC1 CLLL 20C Yes (53, 54)
RAC2 CSLL 20C Yes (37, 43, 55)
RAC3 CTVF 20C Yes (54, 56)
Phosphodiesterase 6A
(PDE6A/PDEa)

CCIQ 15C Yes (28, 57, 58)

Phosphodiesterase 6B
(PDE6B/PDEb)

CCIL 20C Yes (28, 57, 58)

Lamin B2 (LMNB2) CYVM 15C Methylation (33, 59)
RAB3A CAC 20C Methylation (20, 60)
RAP1A CLLL 20C Methylation (61)
RAP1B CQLL 20C Methylation (62)
STK11/LKB1 CKQQ 15C ND (63)
PTP4A1/PTPCAAX1 CCIQ 15C/20C* ND (64)
PTP4A2/PTPCAAX2 CCVQ 15C/20C* ND (64)
RAP2A CNIQ 15C ND (65)
RAP2B CVIL 20C ND (65)
RAP2C CVVQ 20C ND (66, 67)
PPP1R16B/TIMAP CRIS 15C ND (68, 69)
Novem
ber 2020 | V
olume 10 | A
The specific CAAX or CXC motifs and the type of isoprenoid (15C farnesyl group; 20C,
geranyl-geranyl group), are indicated. Cases where there is experimental evidence on the
involvement of ICMT are indicated. Methylation: proteins shown to be carboxymethylated
but without evidence on the involvement of ICMT. ND, not determined. (*) Proteins
reported to be farnesylated or geranyl-geranylated.
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as suggested by the identification of carboxylesterase 1 (CES1),
a carboxylesterase affecting the methylation status of RHOA.
Interestingly, RHOA activity and cytoskeleton organization in
breast cancer cells were similarly affected by CES1 silencing and
ICMT overexpression (82).
ACETYL-COA AND METABOLIC STRESS
IN TUMOR CELLS

Availability of acetyl-CoA may be a critical aspect in tumor cells
that sustain aggressive phenotypes by exploiting the
MVA pathway. Acetyl-CoA is the starting point of the MVA
pathway; however, it is also required for other important
pathways, as fatty acids (FA) biosynthesis (Figure 1). An
important source of acetyl-CoA is citrate produced in the
mitochondria by the tricarboxylic acid (TCA) cycle, which
can be converted in the cytosol into oxaloacetate and
acetyl-CoA by ATP citrate-lyase (ACLY) (83). In addition,
exogenous acetate may be directly converted into acetyl-
CoA by cytoplasmic acetyl-CoA synthetase (ACSS2) (84).
Glutamine uptake also allows the indirect production of
acetyl-CoA through a series of reactions that take place in
the cytosol (85, 86). A strong requirement of acetyl-CoA
may expose tumor cells to the dependence on specific
metabolic capabilities, forcing cells to shape their metabolism.
Accordingly, there is evidence showing enhanced activity
of ACLY (87) and ACSS2 (88) in cancer cells, as well as of
isocitrate dehydrogenase 1 (IDH1) (89, 90), which catalyzes
reductive carboxylation in the conversion of glutamine into
acetyl-CoA. Expression of these genes is regulated by SREBPs
suggesting the intriguing possibility that they may be induced
by mutant p53 and repressed by wt p53 (91–95). Oxygen
availability is frequently limited in the tumor microenvironment
and nutrient uptake is highly conditioned by the degree of
neovascularization (96). Entry of pyruvate into the mitochondria
may be inhibited under hypoxic conditions (97), downregulating
the TCA cycle and citrate production. Under these conditions,
acetate and glutamine as alternative sources of acetyl-CoA may
become critical. Moreover, if uptake of exogenous lipids is not able
to satisfy the high demand in proliferating cells, active FA
biosynthesis may be expected to compete with the MVA
pathway for acetyl-CoA. In this scenario, strategies aimed at
interfering with alternative acetyl-CoA sources may be effective
to counteract cancer cell proliferation.
ICMT LINKS THE MEVALONATE PATHWAY
WITH METHIONINE METABOLISM

The methyl donor in protein carboxymethylation is S-adenosyl
methionine (SAM), which is produced from the essential aminoacid
methionine, in a reaction catalyzed by methionine adenosyl
transferase (MAT). SAM is also the methyl donor in other
reactions, including methylation of DNA, RNA, non-prenylated
Frontiers in Oncology | www.frontiersin.org 5
proteins and in polyamine biosynthesis. Upon methylation, SAM is
transformed into S-adenosyl homocysteine (SAH), which can be
used to regenerate methionine through the methionine cycle (98)
(Figure 1). This cycle is closely interconnected with two other
metabolic processes. Hydrolysis of SAH, catalyzed by
adenosylhomocysteinase (AHCY), produces homocysteine, which
can react with 5-methyl-tetra-hydrofolate (5-MTH) generated in
the folate cycle, giving back methionine. Alternatively,
homocysteine can be diverted to the transsulfuration pathway
that ultimately leads to the synthesis of glutathione (GSH).
Alteration of methionine cycle enzymes were related to cancer.
For example, MAT2A and MAT2B, the genes coding for the
subunits of the most abundant MAT isoenzyme, were found
upregulated in tumors and cancer-initiating cells (99, 100). The
close connection between SAM and the one-carbon metabolic
network suggests that cell context and nutritional state may affect
ICMT activity. Methionine availability may decrease SAM levels,
thereby limiting ICMT catalyzed carboxymethylation. Therefore,
limiting methionine uptake may have a selective inhibitory effect on
cancer cells that benefit from ICMT hyperactivation. Accordingly,
pioneering observations reported a marked requirement of
methionine on transformed rat and human cells (101). Moreover,
dietary methionine restriction reduced tumor growth and
metastasis in animal models, and increased sensitivity to
chemotherapeutic agents (98). Nevertheless, the molecular
mechanisms underlying these effects are not yet clear.

Homocysteine is a key molecule in the one-carbon network,
since it connects the methionine cycle with the folate cycle and GSH
production. Under strong oxidative stress conditions, high
availability of GSH may be required and, therefore, homocysteine
may be preferentially driven to the transsulfuration pathway,
precluding the possibility to regenerate methionine. Therefore,
enhanced ICMT activity in cells under oxidative stress may
further increase the dependency on methionine. Moreover, SAH
acts as a negative feedback inhibitor of ICMT (102). Treatment with
the AHCY inhibitor adenosine dihaldeyde (AdOx) produced
accumulation of SAH (103) and reduced in vitro invasion and
migration of cancer cell lines (104).
DISCUSSION

Several metabolites produced by the MVA pathway may affect
cell behavior, however, the positive effect of mutant p53 on the
expression of MVA pathway genes and ICMT underline the
relevance of isoprenoids in cancer. Conversely, the negative
regulation exerted by wt p53 on SREBP-2 maturation
and ICMT expression indicates that MVA pathway and
carboxymethylation of prenylated proteins should be strictly
regulated under physiological conditions. The concerted effects
of mutant p53 on MVA and prenylation pathways allow tumor
cells to connect both pathways, thereby fostering full
modification of prenylated proteins playing key roles in
oncogenesis. Still, selective alteration of each pathway may be
enough to promote tumor progression. In this way, mutant p53
may activate alternative mechanisms useful to promote
November 2020 | Volume 10 | Article 595034

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Borini Etichetti et al. Mutant p53 Alters Protein Prenylation
tumorigenesis in different contexts. Since exogenous isoprenoids
may be incorporated into cancer cells and phosphorylated
(105), the intriguing possibility that protein prenylation
may be exploited by tumors independently from the MVA
pathway may also be considered. Noteworthy, exogenous
supplementation of geranylgeraniol counteracted the
antitumoral effect of pitavastatin in a xenograft model of
ovarian cancer cells (106). The correlation of ICMT expression
with clinical outcome and the pro-oncogenic effects observed in
experimental systems point at ICMT overexpression as a relevant
event in tumor progression. Consequently, the potential of
ICMT as a therapeutic target encouraged the identification of
inhibitors. Isoprenylated cysteine analogs inhibited ICMT
activity and showed antiproliferative effects, however, their
mechanism of action is not clear since some of them act as
modulators of RAS chaperones (107, 108). Indole-based
molecules were also proposed, such as Cysmethynil (109), a
competitive inhibitor with respect to isoprenylated cysteine and a
non-competitive inhibitor with respect to SAM, which showed
antitumor activity in vitro and in vivo (10, 110, 111). In
summary, alteration of MVA pathway and protein prenylation
by mutant p53 revealed interesting connections to explore.
Understanding the role of less studied ICMT substrates in
cancer and the study of mechanisms that regulate ICMT
activity will be critical to dissect the molecular mechanisms
underlying ICMT pathological effects.
Frontiers in Oncology | www.frontiersin.org 6
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100. Murıń R, Vidomanová E, Kowtharapu BS, Hatok J, Dobrota D. Role of S-
adenosylmethionine cycle in carcinogenesis. Gen Physiol Biophys (2017)36
(5):513–20. doi: 10.4149/gpb_2017031

101. Hoffman RM, Erbe RW. High in vivo rates of methionine biosynthesis
in transformed human and malignant rat cells auxotrophic for
methionine. Proc Natl Acad Sci USA (1976) 73(5):1523–7. doi: 10.1073/
pnas.73.5.1523

102. Wnuk SF, Yuan CS, Borchardt RT, Balzarini J, De Clercq E, Robins MJ.
Anticancer and antiviral effects and inactivation of S-adenosyl-L-
homocysteine hydrolase with 5’-carboxaldehydes and oximes synthesized
from adenosine and sugar-modified analogues. J Med Chem (1997) 40
(11):1608–18. doi: 10.1021/jm960828p

103. Patel-Thombre U, Borchardt RT. Adenine Nucleoside Dialdehydes: Potent
Inhibitors of Bovine Liver S-Adenosylhomocysteine Hydrolase. Biochemistry
(1985) 24(5):1130–6. doi: 10.1021/bi00326a010

104. Kim JH, Kim JH, Kim SC, Yi YS, Yang WS, Yang Y, et al. Adenosine
dialdehyde suppresses MMP-9-mediated invasion of cancer cells by blocking
the Ras/Raf-1/ERK/AP-1 signaling pathway. Biochem Pharmacol (2013)
86:1285–300. doi: 10.1016/j.bcp.2013.08.022

105. Onono F, Subramanian T, Sunkara M, Subramanian KL, Peter Spielmann H,
Morris AJ. Efficient use of exogenous isoprenols for protein isoprenylation by
MDA-MB-231 cells is regulated independently of the mevalonate pathway.
J Biol Chem (2013) 288(38):27444–55. doi: 10.1074/jbc.M113.482307

106. De Wolf E, Abdullah MI, Jones SM, Menezes K, Moss DM, Drijfhout FP,
et al. Dietary geranylgeraniol can limit the activity of pitavastatin as a
Frontiers in Oncology | www.frontiersin.org 9
potential treatment for drug-resistant ovarian cancer. Sci Rep (2017) 7
(1):5410. doi: 10.1038/s41598-017-05595-4

107. Yang WS, Yeo SG, Yang S, Kim KH, Yoo BC, Cho JY. Isoprenyl carboxyl
methyltransferase inhibitors: a brief review including recent patents. Amino
Acids (2017) 49(9):1469–85. doi: 10.1007/s00726-017-2454-x

108. Kloog Y, Elad-Sfadia G, Haklai R, Mor A. Ras chaperones: New targets for
cancer and immunotherapy. Enzymes (2013) 33 Pt A:267–89. doi: 10.1016/
B978-0-12-416749-0.00012-9

109. Winter-Vann AM, Baron RA, WongW, dela CJ, York JD, Gooden DM, et al.
A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase
with antitumor activity in cancer cells. Proc Natl Acad Sci USA (2005)
102:4336–41. doi: 10.1073/pnas.0408107102

110. Zhu Y, Hu Q, Li H. Isoprenylcysteine carboxylmethyltransferase is associated
withnasopharyngeal carcinoma chemoresistance and Ras activation. Biochem
Biophys Res Commun (2019) 516(3):784–9. doi: 10.1016/j.bbrc.2019.06.074

111. Liu Q, Chen J, Fu B, Dai J, Zhao Y, Lai L. Isoprenylcysteine
carboxylmethyltransferase regulates ovarian cancercell response to
chemotherapy and Ras activation. Biochem Biophys Res Commun (2018)
501(2):556–62. doi: 10.1016/j.bbrc.2018.05.038

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Borini Etichetti, Arel Zalazar, Cocordano and Girardini. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
November 2020 | Volume 10 | Article 595034

https://doi.org/10.1038/s41568-019-0187-8
https://doi.org/10.1038/s41591-019-0423-5
https://doi.org/10.4149/gpb_2017031
https://doi.org/10.1073/pnas.73.5.1523
https://doi.org/10.1073/pnas.73.5.1523
https://doi.org/10.1021/jm960828p
https://doi.org/10.1021/bi00326a010
https://doi.org/10.1016/j.bcp.2013.08.022
https://doi.org/10.1074/jbc.M113.482307
https://doi.org/10.1038/s41598-017-05595-4
https://doi.org/10.1007/s00726-017-2454-x
https://doi.org/10.1016/B978-0-12-416749-0.00012-9
https://doi.org/10.1016/B978-0-12-416749-0.00012-9
https://doi.org/10.1073/pnas.0408107102
https://doi.org/10.1016/j.bbrc.2019.06.074
https://doi.org/10.1016/j.bbrc.2018.05.038
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Beyond the Mevalonate Pathway: Control of Post-Prenylation Processing by Mutant p53
	Introduction
	Taking Control of the Mevalonate Pathway, Mutant vs Wild Type p53
	Post&nbsp;Prenylation&nbsp;Processing&nbsp;and the p53 Pathway
	ICMT&nbsp;Targets in Oncogenesis
	Acetyl-CoA and Metabolic Stress in Tumor Cells
	ICMT Links the Mevalonate Pathway With Methionine Metabolism
	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


