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The metabolism of cancer cells is an issue of dealing with fluctuating and limiting levels of
nutrients in a precarious microenvironment to ensure their vitality and propagation.
Glucose and glutamine are central metabolites for catabolic and anabolic metabolism,
which is in the limelight of numerous diagnostic methods and therapeutic targeting.
Understanding tumor metabolism in conditions of nutrient depletion is important for such
applications and for interpreting the readouts. To exemplify the metabolic network of
tumor cells in a model system, the fate 13C6-glucose was tracked in a breast cancer cell
line growing in variable low glucose/low glutamine conditions. 13C-glucose-derived
metabolites allowed to deduce the engagement of metabolic pathways, namely
glycolysis, the TCA-cycle including glutamine and pyruvate anaplerosis, amino acid
synthesis (serine, glycine, aspartate, glutamate), gluconeogenesis, and pyruvate
replenishment. While the metabolic program did not change, limiting glucose and
glutamine supply reduced cellular metabolite levels and enhanced pyruvate recycling as
well as pyruvate carboxylation for entry into the TCA-cycle. Otherwise, the samemetabolic
pathways, including gluconeogenesis, were similarly engaged with physiologically
saturating as with limiting glucose and glutamine. Therefore, the metabolic plasticity in
precarious nutritional microenvironment does not require metabolic reprogramming, but is
based on dynamic changes in metabolite quantity, reaction rates, and directions of the
existing metabolic network.

Keywords: nutrient deprivation, 13C-glucose tracing, glycolysis, glutamine, TCA-cycle, anaplerosis, pyruvate
replenishment, metabolic network
INTRODUCTION—CANCER CELLS IN A LIMITING NUTRITIONAL
MICROENVIRONMENT

Cancers consist of a plethora of cells with different metabolic phenotypes in a microenvironment of
fluctuating nutrient availability, along with other changes in physico-chemical variables supporting
or jeopardizing cell survival (Figure 1). This cellular heterogeneity poses a challenge for metabolic
imaging, diagnosis and chemo-therapeutic targeting in the clinic. It is also a challenge for designing
analytical conditions, namely, appropriate cell cultivation systems laid out for drug screening and
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preclinical testing. It is thus imperative from different
perspectives to understand how the metabolism of cancer cells
responds to changes in a precarious microenvironment (3).

Considering that numerous views and reviews have been
written on cancer metabolism (3–6), each highlighting a
different angle of the biochemistry and molecular biology of
uncontrollable growth of cancer cells—which new perspective
will be taken here? Our basic understanding of cancer
metabolism has been shaped by studying cancer cells cultured
mainly in saturating nutrient conditions, i.e. those resembling a
well-fed, even diabetic physiology. However, metabolic plasticity
of cancer cells is a feature for adapting to varying, often limiting
levels of nutrients. How does a limiting supply of nutrients affect
cancer metabolism? Is it a matter of metabolite quantity or of
metabolic reprogramming?

In physiological conditions, blood contains about 0.6 mM
glutamine and 5–11 mM glucose, depending on the nutritional
state (7, 8). Within most cancers, and also in many normal tissues,
these levels markedly decrease with increasing distance from a
blood vessel and consumption by neighboring cells (Figure 1). On
the other hand, cells may release metabolic products, e.g. amino
acids and lactate, useful to neighboring cells. Even though the
“Warburg effect”, i.e. aerobic glycolysis producing lactate, is
considered to be one of the hallmarks of cancer (9), it is not
unique to tumor cells, being also typical of several other cell types
with high energy metabolism and/or proliferative propensity (10).
Moreover, deviant glycolytic activity leading to excess lactate
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production is not the only inception for metabolic rearrangement
in tumor cells. Metabolic plasticity is a survival trait for tumor cells
in a microenvironment becoming increasingly depleted of
nutrients. Few studies have addressed effects of glucose and
glutamine deprivation in this context, and these indeed show that
the limitation of either glucose or glutamine has profound effects on
cancer cell growth (11), depending on the cell type and its
oncogenic genotype, such as the expression of the tumor
suppressor gene CC3/TIP30 (12), c-myc expression (13), and
K-ras transfection (14). Also, a misbalance of glucose and
glutamine levels adversely impacts glycolysis and can jeopardize
cell viability (15), as will be further elucidated below.

The question here is thus: how does the metabolic phenotype
change in tumor cells when both glucose and glutamine are
limiting, as may occur in a precarious tumor microenvironment?
In this review, I will track the fate of 13C6-labeled glucose and its
derived metabolites in conditions of different levels of glutamine
in MCF-7 cells, a low-malignant cell line expressing estrogen and
progesterone receptors as well as the oncogenes p53 and c-myc
(16, 17). Metabolite detection by gas chromatography with mass
spectrometry (GC-MS) allows to identify and semi-quantify a
number of metabolites with regards to 1) their cellular levels;
2) their 13C-enrichment, which is a product of the metabolite
pool and metabolic flux; and 3) 13C-isotope profiles, which
provide information on different metabolic roads taken by
13C-glucose-derived metabolites (18–21). These analyses attest
pyruvate a key role in metabolic plasticity.
FIGURE 1 | Gradients microenvironmental variables affecting metabolism of tumor cells. Note that the gradients are unlikely to be linear. Values are taken from
references (1, 2).
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THE GLYCOLYTIC ROAD TO THE
PYRUVATE JUNCTION

Glucose and Glutamine—A Metabolic
Affair
The degradation of glucose to pyruvate requires nine enzymatic
steps. Firstly, however, glucose must be taken up by the cell.
MCF-7 cells express the glucose transporters GLUT1 and
GLUT3, whose levels are increased in hypoglycemic conditions
and are rate limiting for glycolysis (22). GLUT1 is prominent in
most cells, having a KM in the range of 2–3 mM in MCF-7 cells
(23). The high affinity of this transporter ensures that low glucose
is taken up avidly. The first intracellular enzyme encountered is
hexokinase (KM = 0.1 mM), which rapidly phosphorylates
glucose and is one of the flux-controlling enzymes of glycolysis
(24). Maximal glycolytic activity is thus initiated with glucose
well below normal physiological blood concentrations. The
glycolytic flux is further regulated by the rate-limiting enzymes
phosphofructokinase and, ultimately, monocarboxylate
transporter 4 (MCT4) (24), responsible for expelling excess
lactate out of the cell (25, 26). The observation that the
expression of lactate dehydrogenase (LDH) did not show a
flux-regulating effect is supported by data showing that its
activities correlate poorly with other glycolytic parameters [see
below (15, 27)].

Even though glutamine is not an essential amino acid for
human cells, its extracellular level has a profound influence on
glucose metabolism (28), and the balance of extracellular glucose
to glutamine is a fundamental metabolic parameter (15). In cell
cultures, the amount of glucose removed from the medium is a
measure for cellular consumption, which depends on glucose
availability as well as the cell’s metabolic demand; and this is co-
dependent on the concentration of glutamine. Compared to
other limiting conditions, MCF-7 cells were more viable with a
balanced combination of low glutamine (0.1 mM) and 2.5 mM
glucose than with the misbalanced combination of saturating
glutamine (1 mM) and 1 mM glucose; the latter attenuated
glycolytic activities, reduced NAD+/NADH ratio, and resulted in
cell death (15). Therefore, coherent with a similar observation
with MDA-MB231 cells (14), glutamine could not rescue these
cells from glucose deprivation. Thus, an imbalance of glycolysis
and glutaminolysis invokes metabolic distress.

Turnoff to Serine and Glycine Synthesis
Along the glycolytic path, 3-phosphoglycerate is at the turn off to
serine and glycine synthesis, which is intimately related to
glycolytic activity (29). The extracellular level of serine (in cell
culture medium) is usually 400 µM, and thus saturating for its
transporter ASCT2, which has a KM of approximately 20 µM
(30); intracellular and extracellular concentrations are reported
to be in equilibrium (31). Nevertheless, the intracellular levels of
serine and glycine in MCF-7 cells varied depending also on the
combinations of low glucose/glutamine. Notably, the serine pool
was not any higher with 25 mM than with 2.5 mM glucose.
However, the 13C-labeling of serine and glycine from 13C6-
glucose indicates that they are also synthesized de novo, albeit at a
Frontiers in Oncology | www.frontiersin.org 3
very low level of1%–3%(27),whichmaybeessential for one-carbon
metabolism (29). Moreover, the enrichment of 13C-glycine stands
out in that it is 3–5-fold higher in the saturating than in low glucose
conditions, which may reflect the enhanced requirements for one-
carbon metabolism of proliferative cells in high glucose/glutamine
conditions. Altogether, these results illustrate how the availability of
glucose and glutamine affect serine synthesis (32).

The Pyruvate Junction
The end product of glycolysis is pyruvate (Figure 2A). The final
enzymatic step converting phosphoenol pyruvate (PEP) to
pyruvate is controlled by pyruvate kinase (PK), the reaction
being virtually irreversible due its ATP production. Increased
expression of the PKM2 isoform is found in many cancer cells,
albeit often in its dimeric less active state (33); and being an
allosteric enzyme, several metabolites regulate its activity,
including alanine and serine (29, 34). In extracts of MCF-7
cells, PK activity was about 2-3 fold lower in limiting than in
saturating glucose/glutamine conditions (27). However, cells in
low (2.5. mM) glucose had a higher PK activity with 0.1 mM than
with 1 mM glutamine. This is again evidence for glutamine in
misbalance with glucose suppressing glycolysis (15).

In comparison to a range of other glucose-derived metabolites
in MCF-7 cells, the level of pyruvate in cell extracts was
remarkably low, estimated at 10–100 µM (35), with little
variation in the different limiting conditions, but being about
3-fold higher in the 25 mM glucose conditions (27). However,
upon incubation with 13C6-glucose,

13C-enrichment of pyruvate
amounted up to about 60% in the different low glucose/
glutamine conditions (Figure 2B), with the exception of the
misbalanced 1 mM glucose/1 mM glutamine combination, where
13C-enrichment was only about 30%. The unexpectedly low 13C-
enrichment with 25 mM 13C6-glucose is explained by a high
intracellular metabolite level and thus limited glucose uptake.
The differences in 13C-enrichment values corresponded well with
the respective PK activities (27). Thus at the terminus of
glycolysis, enrichment of 13C3-pyruvate reflects differences in
glycolytic flux resulting from differences in low glucose and
glutamine concentrations.
METABOLIC DECISIONS AT THE
PYRUVATE JUNCTION

Pyruvate constitutes a metabolic junction with different options:
1) NADH-mediated reduction to lactate, 2) glutamine-mediated
amination to alanine, 3) carboxylation to oxaloacetate, and 4)
decarboxylation to acetyl-CoA (Figure 2A). The road taken will
depend on the metabolic needs of the cell, thereby endowing the
cells with high metabolic plasticity.

Conversion to Lactate
In cancer cells, most of the glycolytic pyruvate is rapidly
converted to lactate in the cytosol, catalyzed by lactate
dehydrogenase of type A (LDH-A). However, the metabolic
differences of MCF-7 cells in the different glucose/glutamine
December 2020 | Volume 10 | Article 596197
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FIGURE 2 | Metabolic flux and pathways to and from the pyruvate junction depend on glucose/glutamine concentrations. (A) Pathways of 13C-glucose-
derived metabolites and the pyruvate junction. (B) 13C-enrichment of pyruvate, lactate, and alanine pools; (C) changes in the fraction of 13C-isotopologue
profiles of lactate (left) and alanine (right) derived from either glycolytic (m+3) or replenished (m+2,1) 13C-pyruvate; (D) 13C-enrichment of pyruvate, malate
and citrate pools; (E) changes in the ratio of 13C3-pyruvate carboxylation versus decarboxylation as indicated by the 13C-malate m+3/13C-citrate m+2 ratio.
The figure is based on data obtained following a 2h 13C6-glucose incubation, retrieved and calculated from (27). Detected 13C-labeled metabolites are
framed. ALT, alanine aminotransferase; LDH, lactate dehydrogenase; ME, malic enzyme; PDH, pyruvate dehydrogenase complex; PC, pyruvate carboxylase;
PK, pyruvate kinase.
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conditions were not mirrored in their LDH-A activity. Moreover,
in MCF-7 cells, activity of LDH-A was lower than that of
pyruvate kinase—an observation which cannot be generalized
for other cell types. Indeed, LDH-A is not considered to be a flux
controlling enzyme in glycolysis and for lactate export (24).
Instead, MCT4 appears to be the controlling element for lactate
release (26) and responsible for maintaining a constant
intracellular lactate level. The amounts of lactate released in
the different conditions (within 72 h) showed only small
variations, ranging from about 0.5 to 0.8 µmol/10e5 cells for
media initially containing 1 to 5.6 mM glucose, respectively (27);
this amounted to an accumulation of lactate between 1 and 5
mM, increasing with the cell number. Thus, lactate release is not
affected by its extracellular level, but rather managed by the efflux
activity of MCTs (26).

In the intracellular compartment, the level of lactate was
about 45- to 70-fold higher than that of pyruvate, depending on
the glucose/glutamine combination. Lactate maintained a basal
level of about 2–4 mM, showing little variation with respect to
different limiting glucose/glutamine conditions, with the
exception of temporal increases up to 20 mM with the
balanced combination of 2.5 mM glucose/0.1 mM glutamine.
Also, in saturating conditions (25 mM glucose) the basal lactate
level of MCF-7 cells was enhanced up to about 40 mM (27),
which might be explained by the saturation of export capacity for
lactate in relation to its production rate. Notably, there appears to
be no direct quantitative relationship between available glucose
and the corresponding intracellular lactate levels.

The 13C-enrichment of 13C-lactate was very similar to that of
13C-pyruvate, as to be expected for its rapid turnover by LDH-A
(Figure 2B). This suggests that pyruvate is a metabolite which is
not stored by the cell and fosters the idea that lactate serves as a
reservoir for rapidly providing pyruvate when needed (27). The
13C-tracer experiments indicate that the main flux of 13C-
pyruvate was to 13C- lactate, but this depended on the levels of
glucose and glutamine. Moreover, analyzing the 13C-
isotopologues m+3,2,1 (m = number of 13C per molecule)
showed that in standard high glucose conditions, 99% of
13C-lactate was m+3, that is, derived from 13C3 –pyruvate
directly from glycolysis (denoted here as “glycolytic pyruvate”).
In contrast, in the most precarious conditions (1 mM glucose/0.1
mM glutamine) only 75% of 13C3- lactate came from glycolytic
pyruvate (Figure 2C). The increased fraction of the pyruvate and
lactate isotopologues with m+2,1, however, indicates that these
molecules were no longer a direct product of glycolysis. Instead,
13C2-pyruvate can result from a 1. round of the TCA-cycle
providing 13C2-malate, which is decarboxylated to 13C2-
pyruvate via the mitochondrial malic enzyme (36).
Isotopologues of m+1 can also evolve depending on the
availability of 13C-pyruvate or 13C-oxaloacetate in further
TCA-cycles. Either way, glycolytic pyruvate can be replenished
via the TCA-cycle.

Conversion to Alanine
The direct amination of pyruvate via the (glutamine-dependent)
alanine aminotransferase (ALT) leads to alanine. Its cellular
levels were generally much lower than those of lactate, but very
Frontiers in Oncology | www.frontiersin.org 5
sensitive to different low glucose/glutamine concentrations; also,
alanine was 10-fold higher in the standard than the most limiting
glucose conditions (27). Remarkably, 13C- enrichment of alanine
derived from 13C6-glucose did not reflect that of 13C-pyruvate, as
might be expected from a direct amination reaction (Figure 2B).
With increasing nutrient availability 13C-alanine enrichment
showed only moderate increases, implying that sufficient
alanine levels could be achieved with low glucose and
glutamine. Interestingly, in conditions with 0.1 mM glutamine,
the 13C-enrichment kinetics of alanine (up to 20 h) resembled
those of 13C-labeled TCA-metabolites (27), suggesting its
conversion via the mitochondrial ALT2, which has high
pyruvate affinity (37). At higher glutamine concentrations,
however, 13C-alanine flux resembled that of pyruvate and
lactate, suggesting a cytosolic conversion by ALT1. The
isotopologues profiles of alanine with a low fraction of m+3,
particularly in limiting glutamine conditions (Figure 2C),
suggests that glycolytic pyruvate may not be the major
precursor for alanine (Figure 2C), as will be discussed
further below.

Decarboxylation to Acetyl-CoA
The most efficient way for pyruvate serving the cells’ energy and
anabolic needs is its entry into the TCA cycle (Figure 2A). The
mitochondrial import carrier (MPC) has a KM for pyruvate of
about 150 µM (38), and for its decarboxylation the allosteric
enzyme complex pyruvate dehydrogenase (PDH) has a KM of
17–36 µM (39), suggesting that pyruvate uptake is not rate-
limiting for PDH activity. The level of citrate was found to be
similarly low as that of pyruvate, being almost invariable in the
different conditions (27). In contrast, the flux of 13C- metabolites
in the TCA cycle was both glucose and glutamine dependent
(Figure 2D), 13C-enrichment being up to 20% with low glucose/
glutamine conditions, but < 10% with saturating glutamine
conditions. Such reduced 13C-levels were most evident for 13C-
glutamate, 13C-succinate, 13C-fumarate, 13C-malate and 13C-
aspartate, indicative of glutamine anaplerosis via alpha-
ketoglutarate. Moreover, similarities in glucose/glutamine
dependent 13C-enrichment patterns for these metabolites
suggest that there is no reprogramming of the canonical
progression through the TCA-cycle, but rather a change in the
flux rate depending on metabolite levels. Analyzing the 13C-
isotopologues from the 1. round TCA-cycle revealed that in the
various limiting conditions about 35%–48% of citrate (m+2)
came from glycolytic pyruvate (m+3), while in saturating
conditions the utilization of the glycolytic pyruvate for citrate
exceeded 60% (27). This increased demand for glycolytic
pyruvate could be explained by a higher metabolic flux for
oxidative and anabolic metabolism to support enhanced
cell proliferation.

Carboxylation to Oxaloacetate
Another function of pyruvate is to feed the TCA-cycle by being
carboxylated to oxaloacetate via the mitochondrial pyruvate
carboxylase (PC), thereby also contributing the precursor for its
acetylation to citrate as well as for other metabolic pathways (40).
Since oxaloacetate was not detectable in the experimental setup,
December 2020 | Volume 10 | Article 596197
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13C- glucose-derived oxalate was estimated indirectly via 13C-
malate, (Figure 2D) (27). 13C-enrichment of malate was almost
20% in conditions with 0.1mMglutamine, in contrast to ≤ 10% for
cells with higher glutamine levels, reflecting the influence of
glutamine anaplerosis. However, isotopologue profiling, showed
that 13C-malate hadnot only the expectedm+2 signature, but also a
higher fraction of m+3 isotopologues than 13C-succinate. This
indicates carboxylation of glycolytic 13C3-pyruvate (Figure 2A).

Both pyruvate carboxylation and decarboxylation taking
place in the mitochondria calls for a metabolic decision. In this
cellular model, the 13C-isotopologue profiles of citrate and
malate revealed that pyruvate decarboxylation to acetyl-CoA
was preferred over pyruvate carboxylation to oxaloacetate by a
factor of about 4–10, whereby cells in limiting glucose/glutamine
had a 2-fold higher preference for channeling glycolytic pyruvate
to oxaloacetate than the satiated cells (Figure 2E). This illustrates
how nutritional availability can change the port of entry for
pyruvate into the TCA-cycle.
ROUNDABOUTS FOR GLUCOSE-DERIVED
METABOLITES

Pyruvate Replenishment
Not only glycolytic 13C3-pyruvate but also 13C-pyruvate
replenished from the TCA-cycle can serve as a substrate for
13C-alanine and 13C-lactate (27). The isotopologue fractions
m+2,1 of 13C-lactate and 13C-alanine varied between 5% and
45%, depending on the glucose/glutamine conditions (Figures
2C, D). While over 95% of 13C-lactate came directly from
glycolytic 13C-pyruvate in saturating conditions, this applied to
only 70% in the most limiting glucose/glutamine conditions.
Even more pronounced, in limiting glucose/glutamine
conditions over 60% of 13C- alanine originated from
replenished pyruvate (Figure 2C), while in saturating
conditions, it was less than 20%. There are various reports
suggesting a metabolic compartmentation of pyruvate (41, 42);
the differential conversion of pyruvate supports such a concept.
Moreover, the isotopologue profiles suggest that pyruvate comes
from different metabolic backgrounds. Thus pyruvate
metabolism is at the hub of metabolic plasticity.

Gluconeogenesis
Recent work has established gluconeogenesis as a fundamental
element of glucose metabolism in cancer cells, with the activity of
phosphoenolpyruvate kinase (PEPCK) converting oxaloacetate to
phosphoenolpyruvate (PEP), especially with glucose deprivation
Frontiers in Oncology | www.frontiersin.org 6
(43–46) (Figure 2A). Evidence for gluconeogenesis being involved
in different nutrient conditions is provided by the isotopologue
distribution of 13C-serine which, along with the expected glycolytic
m+3, has an approximately 50% fraction of m+2,1 (27). This
corroborates reports on gluconeogenesis contributing to serine
synthesis (46, 47). The highest value of the combined m+2,1
fractions of over 70% was actually found with high glucose
conditions, suggesting that the reversal of the glycolytic pathway
is not reserved for precarious nutrient conditions.
CONCLUDING THOUGHTS

This narrative of tracking the fate of 13C-glucose illustrates how
tumor cells in a microenvironment of fluctuating glucose and
glutamine levels can employ a remarkably conservative metabolic
program, but use it with high flexibility when rapidly adapting to
limiting nutrient conditions. This adaptation employs dynamic
modes in tuningmetabolite levels, enzyme activities, flux rates, and
bi-directionality of metabolic pathways. Here, pyruvate is a central
metabolite for different metabolic paths, with pyruvate anaplerosis
and replenishment having key roles by sustaining and regulating
processes for a coordinated glucose and glutamine metabolism.
Such metabolic plasticity constitutes a challenge for developing
targeted and reliable diagnostic tools and therapeutic strategies
in cancer.
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