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Background: Previously, we characterized subtypes of pancreatic ductal
adenocarcinoma (PDAC) on computed-tomography (CT) scans, whereby conspicuous
(high delta) PDAC tumors are more likely to have aggressive biology and poorer clinical
outcomes compared to inconspicuous (low delta) tumors. Here, we hypothesized that
these imaging-based subtypes would exhibit different growth-rates and distinctive
metabolic effects in the period prior to PDAC diagnosis.

Materials and methods: Retrospectively, we evaluated 55 patients who developed
PDAC as a second primary cancer and underwent serial pre-diagnostic (T0) and
diagnostic (T1) CT-scans. We scored the PDAC tumors into high and low delta on T1
and, serially, obtained the biaxial measurements of the pancreatic lesions (T0-T1). We
used the Gompertz-function to model the growth-kinetics and estimate the tumor growth-
rate constant (a) which was used for tumor binary classification, followed by cross-
validation of the classifier accuracy. We used maximum-likelihood estimation to estimate
initiation-time from a single cell (10-6 mm3) to a 10 mm3 tumor mass. Finally, we serially
quantified the subcutaneous-abdominal-fat (SAF), visceral-abdominal-fat (VAF), and
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muscles volumes (cm3) on CT-scans, and recorded the change in blood glucose (BG)
levels. T-test, likelihood-ratio, Cox proportional-hazards, and Kaplan-Meier were used for
statistical analysis and p-value <0.05 was considered significant.

Results: Compared to high delta tumors, low delta tumors had significantly slower average
growth-rate constants (0.024 month−1 vs. 0.088 month−1, p<0.0001) and longer average
initiation-times (14 years vs. 5 years, p<0.0001). a demonstrated high accuracy (area under
the curve (AUC)=0.85) in classifying the tumors into high and low delta, with an optimal cut-off
of 0.034 month−1. Leave-one-out-cross-validation showed 80% accuracy in predicting the
delta-class (AUC=0.84). High delta tumors exhibited accelerated SAF, VAF, and muscle
wasting (p <0.001), and BG disturbance (p<0.01) compared to low delta tumors. Patients
with low delta tumors had better PDAC-specific progression-free survival (log-rank,
p<0.0001), earlier stage tumors (p=0.005), and higher likelihood to receive resection after
PDAC diagnosis (p=0.008), compared to those with high delta tumors.

Conclusion: Imaging-based subtypes of PDAC exhibit distinct growth, metabolic, and
clinical profiles during the pre-diagnostic period. Our results suggest that heterogeneous
disease biology may be an important consideration in early detection strategies for PDAC.
Keywords: pancreatic cancer, early detection, computed tomography, mathematical modeling, tumor metabolism
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the fourth most
common cancer in the United States, with 57,600 new cases and
47,050 deaths projected annually (1). More than 80% of the new
cases are either at regional or distant spread stage by the time of
initial diagnosis, and without breakthroughs in therapeutics and
early detection strategies, PDAC will become the second leading
cause of cancer-related deaths in the US by 2030 (2, 3). Compared
to other cancers, efficient imaging-based screening methods for
PDAC are lacking (4, 5). While significant efforts have turned to
defining high risk cohorts for screening efforts, most cases of early
PDAC diagnosis are incidental findings on computed tomography
(CT) or magnetic resonance (MR) scans that are performed for
reasons other than the suspicion of PDAC (6, 7). Even in high risk
cohorts, metastatic PDAC can develop while a subject is on
surveillance (7). This highlights the need to identify ways to
personalize screening strategies based on disease biology.

Multiple groups have recognized that the pre-diagnostic
period for PDAC exhibits measurable changes that have given
new insight into the systemic effects of the disease before it is
clinically detected and diagnosed. For example, using pre-
diagnostic images and blood tests, investigators showed that
the emergence of PDAC is associated with muscle and fat
wasting and changes in the glucose, protein, and lipid profiles
(8–10). Large cohort studies and hospital systems have
represented the main sources of data to date. Another source
of patients in whom a pre-diagnostic period for PDAC could be
studied is those who develop PDAC as a second primary
malignancy. Second primary cancers constitute 16% of the
newly diagnosed cancers in the United States, and second
primary pancreatic cancer represents 6.3% of all new
diagnosed pancreatic cancers, with a median interval of 8.4
2

years from the prior cancer (11–14). Many of these cancers are
diagnosed by serial follow up scans performed for the purpose of
management or surveillance of the first primary cancer. These
scans can offer a unique opportunity to study the evolutionary
nature of PDAC tumors. To this end, the application of
physiologically-relevant mathematical models that can utilize
serial scans, clinical and biological data to model tumor growth
(15–18), and predict disease prognosis may help in evaluating
screening strategies and achieving the goal of personalized
approaches based on disease biology.

It is known that PDAC is a heterogeneous disease, and multiple
methods have been proposed to classify the disease. Previously, we
identified imaging-based subtypes of PDAC (19). We showed that
qualitative and quantitative scoring of the change in enhancement
on CT-scans at the interface between PDAC tumors and
parenchyma (delta) is biologically and clinically relevant,
whereby tumors with a conspicuous border (high delta) on CT
show more aggressive mesenchymal biology, are more likely to
have multiple common pathway mutations, and are associated
with poor clinical outcomes, when compared to those with an
inconspicuous border (low delta) on CT (19–22).

In this study, we hypothesized that high and low delta tumors
have different growth kinetics and utilized image-guided
mathematical modeling to characterize the differences in growth
patterns. We used measurements derived from serial pre-diagnostic
and diagnostic CT-scans of patients who developed PDAC as a
second primary cancer to inform a phenomenological mathematical
model of tumor growth and estimate relevant growth parameters.
Themodeling results were utilized to performbinary classification of
tumors into high delta and low delta, solely based on their growth
kinetics differences. Lastly, we tested the hypothesis that these
imaging-based subtypes have different rates of soft tissue wasting,
changes in blood glucose (BG) levels, and clinical outcomes.
December 2020 | Volume 10 | Article 596931
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MATERIALS AND METHODS

Patients
This study was approved by the Institutional Review Board
(PA14-0646) at The University of Texas MD Anderson Cancer
Center (MDACC). Retrospectively, we evaluated a cohort of 55
patients who developed pathologically proven PDAC as a second
primary cancer between the years 2003 and 2019. All patients
had undergone at least one pre-diagnostic CT-scan (T0) as a
follow up for their primary cancer that showed a pancreatic
lesion and a diagnostic (pre-therapy) pancreatic protocol CT-
scan (T1) for PDAC (Supplementary Table S1).

CT Acquisition
Due to the retrospective nature of the study the pre-diagnostic
CT-scan(s) (T0) acquisition protocols varied. However, for all
patients there was at least one contrast-enhanced T0 CT-scan
that was used for tumor measurement. Diagnostic CT- scans
(T1) were acquired using pancreatic-protocol, which is a
diagnostic test for patients with PDAC, where iodine-based
contrast is injected intravenously (23). Fixed-time delay
technique was used in scans obtained before 2006 (n=4), which
consisted of a non-contrast (NC), an arterial (AR) phase (40 s
after starting contrast infusion) and a portovenous (PV) phase
(65–70 s after starting contrast infusion). Scans obtained after
2006 used a bolus tracking technique (n=51), whereby a value of
100 HU in the aorta triggers the countdown to start the AR phase
scan, followed by the PV phase. The slice thickness for post
contrast scans ranged between 2.5 mm and 3 mm.

CT-Analysis: Delta Scoring and Tumor
Measurement
Qualitatively, we scored the imaging-based subtypes of PDAC
tumors on (T1) diagnostic CT-scans based on conspicuity and
shape into low and high delta groups using previously published
criteria (19). Then, we measured pancreatic lesions on the
contrast-enhanced CT images at the following time points: I)
T0(s): when a pancreatic abnormality (lesion) was first
radiologically visible and every follow-up scan until before
PDAC diagnosis was made; II) T1: when the PDAC diagnosis
was radiologically established. Measurement included the long
and short axes of the lesions, which were geometrically averaged
to obtain a reasonable approximation of the mean lesion
diameter (d). Then, by approximating the lesion as a sphere,
we obtained the lesion volume (cm3). This tumor volume
estimation method is verified to have a high correlation with
the actual 3D volume (24).

Empirical Mathematical Modeling
To appropriately model the growth kinetics of the tumors, we
used the Gompertz function given by:

X(t) = Keln
X0
Kð Þe−at

where, X(t) refers to the volume of the tumor at a given time t;
K is the tumor carrying capacity of the host, i.e. maximum tumor
volume that can be achieved in the body under the limitations of
Frontiers in Oncology | www.frontiersin.org 3
nutrient availability (value fixed at 180 cm3, which is equivalent
to a sphere of 7 cm dia.);Xo is the volume of the tumor at the first
observation, which was assumed to be at time zero (T0) and
obtained from the data; and a is the growth rate constant of
the tumor.

The Gompertz function was fit to each patient’s longitudinal
tumor size data to estimate the growth rate constant a. The fitted
function was used for backward projection to estimate the time
to grow (initiation time T) from a single cancerous cell (≈10-6

mm3) to a tumor of 10 mm3 size (10 million cells) using the
following formula:

T = −
1
a
ln

ln (X(t0)=K)
ln (X0=K)

� �����
���� − −

1
a
ln

ln (X(t1)=K)
ln (X0=K)

� �����
����

where, X(t0) and X(t1) are the volume of a single cell and
diagnosable tumor mass, respectively (i.e., 10-6 mm3 and 10
mm3 in our calculations, respectively).

Binary Classification and Cross-Validation
The entire data set (n = 55) was used to train the binary classifier
(low versus high delta tumor types). A logistic regression model
was fit between the predictor (growth rate constant a) and
response (tumor type) variables, and a receiver operating
characteristic (ROC) curve was computed. Accuracy of
classification was obtained as the percentage of tumors
correctly classified by the ‘discrimination threshold’ that was
selected from the ROC curve to maximize the accuracy
of classification.

Leave-one-out cross validation (LOOCV) technique was used
to evaluate the predictive capability of the binary classifier. In this
technique, n-1 training data sets were generated from the total n
data points by iteratively removing one data point. Each training
dataset was used to generate a ROC curve and select a
discrimination threshold to classify the left-out test data point.
The prediction results from all iterations were pooled to calculate
the average accuracy of the classifier.

Soft Tissue and Metabolic Profile
Assessment
We quantified the change in subcutaneous abdominal fat (SAF),
visceral abdominal fat (VAF) and muscle area on a single axial
slice of each CT scan at the L2-L3 vertebral level. In brief, we
imported the CT images to velocity AI software (Varian Medical
Systems, Inc.) and used the provided semi-automated
segmentation tool to contour and obtain the area on the single
slice (25). We then calculated the volume (cm3) of SAF, VAF and
muscle using knowledge of the CT slice thickness. This was
serially done for T0(s) and T1.

To construct a temporal metabolic profile for these patients,
we serially collected the blood glucose (BG) level from the
electronic medical records of the patients starting from the
date of diagnosis and up to 24 months prior to diagnosis.

Inter- and Intra-Rater Variability
To evaluate inter-rater agreement, two trained researchers (DE
and MZ), with 3 and 4 years of experience reviewing pancreatic
December 2020 | Volume 10 | Article 596931
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cancer CT scans, respectively, performed serial biaxial
measurement of the pancreatic lesions in randomly selected
cases (30% of the studied cohort, 16 cases total). Then we
calculated the lesion’s volume by geometrically averaging the
biaxial measurement and approximating the lesion as a sphere.

To evaluate intra-rater agreement, repeated measurements
were performed by one rater (MZ) for the same 16 cases (>2
weeks interval), and similarly calculated the volume of
the lesions.

We used the intraclass correlation coefficient (ICC) test to
evaluate inter-rater (two-way random effects, absolute
agreement) and intra-rater (two-way mixed effects, absolute
agreement) We reported the agreement rates according to the
published guidelines.

Statistical Analysis
Non-linear least squares regression using the “Levenberg-
Marquardt” algorithm was performed to fit the Gompertz
function to each patient’s tumor volume data. To evaluate the
quality of model fits, Pearson’s correlation coefficient R was
calculated between the observed data and model fitted
predictions. Maximum likelihood estimation was performed to
estimate the parameters of lognormal distribution to characterize
the distribution of initiation times. The maximum likelihood
estimates were then used to obtain the probability density
function and cumulative density function (cumulative
probability) of initiation times.

T-test and likelihood ratio were used for comparative
numeric and categorical analysis, respectively between the
groups. Cox proportional-hazards and Kaplan-Meier were used
for overall survival (OS) and progression free survival (PFS)
analyses. Statistical analyses were performed in MATLAB
R2018a (MathWorks), JMP Pro 15 (SAS Institute), and Prism
(GraphPad). All tests were two-tailed and p-value <0.05 was
considered significant.
RESULTS

Patient Population
Our patient population consisted of 33 males (60%) and 22
females (40%), the median age at the time of diagnosis for
PDAC was 68 years (range = 50–87), the median time interval
between the first and second cancer was 4.5 years (range = 0.1–
42) and the median overall survival (OS) time after the PDAC
diagnosis date was 22 months (range = 2–154). At time of
diagnosis, 34 patients had stage I and II disease, 7 patients had
stage III disease and 14 had stage IV disease. Ten patients
underwent surgical resection for PDAC, of which four patients
had stage I tumors, and six patients had stage II tumors
according to the American Joint Committee on Cancer
(AJCC) 8th edition. Twenty-nine patients had high delta
tumors , whi le 26 had low del ta tumors . Pat ients ’
demographics and clinical variables related to PDAC are
shown in Table 1. Clinical variables related to the first
primary cancer are shown in Table 2 and Supplementary
Table S2.
Frontiers in Oncology | www.frontiersin.org 4
Tumor Growth Kinetics
The Gompertz function accurately fits the individual patient data
(Figures 1A and S1), as indicated by a strong correlation
between the observed and fitted values of tumor size leading to
a Pearson correlation coefficient R of 0.99 and 0.92 for low delta
and high delta tumors, respectively (Figures 1B, C). The
estimated growth rate constant (a) of low delta tumors was
significantly lower than high delta tumors (t-test, p<0.0001), with
mean value of 0.024 month−1 and 0.088 month−1, respectively
(Figures 1D, E). These values of growth rate constants
correspond to average characteristic tumor growth times of
~41 months and ~11 months for low delta and high
delta, respectively.
TABLE 1 | Demographic and treatment characteristics.

Characteristic No. (%)

Age (median-range) 68.3 [50-87]
Sex
Female 22 (40)
Male 33 (60)

Race
Caucasian 43 (72)
Black 4 (7)
Hispanic 8 (14)

Surgery
Yes 10 (18)
No 45 (82)

Pathological T stage
T1 1 (1)
T2 8 (8)
T3 1 (1)
T4 –

Pathological N stage
N0 6(64)
N1 4 (36)
N2 0

Clinical Stage
I 21 (38)
II 13 (24)
III 7 (13)
IV 14 (25)

Surgical Stage (AJCC 8th)
IA 1
IB 3
IIA 2
IIB 4
III –

IV –

Surgical margin
Negative (R0) 09 (90)
Positive (R1) 1 (10)

Chemotherapy
Yes 42 (76)
No 13 (24)

Radiotherapy
Yes 11 (20)
No 44 (80)

Adjuvant chemotherapy
Yes 9 (90)
No 1 (10)

Adjuvant radiotherapy
Yes 4 (40)
No 6 (60)
December 2020 | Volume 10 | A
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As shown in Figures 2A, B, the data distribution for initiation
times was positively skewed, hence a lognormal distribution
appropriately represents the probability density of initiation
times (time to grow from 1 cell to a 10 mm3 mass) for the two
tumor types. However, in accordance with the observation
above, initiation times for low delta tumors were less positively
skewed than high delta tumors, with a distribution mode of 25.3
months versus 5.2 months and values ranging up to ~26 years
versus ~17 years for low delta and high delta tumors, respectively
(Figures 2A, B). Finally, we calculated that with 90% probability,
Frontiers in Oncology | www.frontiersin.org 5
the initiation time of low delta tumors was ~14 years and that of
high delta tumors was ≤5 years (Figure 2C). These observations
indicate that low delta tumors grow at a relatively slower rate
than high delta tumors.

Binary Tumor Classification
To further validate the hypothesis that tumor growth kinetics
vary between high and low delta tumors, we performed logistic
regression-based binary classification analysis to classify high
and low delta tumors based on their growth rate constants (a).
The obtained ROC curve had an AUC of ~0.85, which indicates
good classification ability of the growth rate constant (Figure
3A). From the ROC curve, 0.034 month−1 was selected as the
optimal cut-off value to differentiate the tumors into high and
low delta (values >0.034 month−1 indicate high delta tumors,
while <0.034 month−1 indicate low delta tumors). To visualize
the binary classification based on the chosen threshold, we
plotted the complementary cumulative distribution (CCD)
function of the growth rate constant data. As shown in Figures
3B, C, the growth rate constant correctly classified ~81% and
~83% low delta and high delta tumors, respectively, with an
overall accuracy of classification being ~82%. The classifier
achieved high sensitivity (~83%, and ~81%), specificity (~81%,
and ~83%), positive predictive value (~83%, and ~81%), and
negative predictive value (~81% and ~83%) in identifying the
high and low delta tumors, respectively.

The calculated value of Matthews correlation coefficient of
+0.64 suggests good correlation between the predicted values and
TABLE 2 | Distribution of the first malignancy among the patients, the time
interval between the first malignancy and pancreatic ductal adenocarcinoma
(PDAC) diagnosis, and the association with the delta class.

First primary
malignancy

N (%) Time interval in years:
Median (Range)

Delta score
High Low P value*

Lymphoma 13 (23) 9.8 (0.6–42.7) 4 9 0.06
Bladder cancer 8 (14) 1.7 (0.1–4.2) 4 4 0.8
Colorectal
cancer

8 (14) 4 (1.2–13.2) 6 2 0.1

Lung cancer 6 (11) 1.6 (0.15–7.4) 3 3 0.8
Renal cancer 5 (9) 3.5(0.18–6.9) 3 2 0.7
Breast cancer 2 (4) 11.6 (2.1–21.1) 1 1 0.8
Melanoma 2 (4) 5.3 (6.1–5.3–6.9) 1 1 0.8
Endometrial
cancer

2 (4) 4.2 (1.4–7.1) 2 – 0.1

Ovarian cancer 2 (4) 10.2 (9.3–11.1) 1 1 0.8
Others 7 (15) 10 (1.2–25.4) 4 3 0.8
*likelihood ratio test weight each first malignancy types versus all other types combined.
A B

D E

C

FIGURE 1 | Gompertz function fitting and parameter estimation. (A) Non-linear least squares regression fits of Gompertz function to tumor growth kinetics data
for one representative patient each bearing low delta and high delta tumor. Refer to Figure S1 for the remaining patient data fits. Pearson correlation analysis to
assess quality of model fits relative to clinical observations in (B) low delta and (C) high delta tumors. (D) Distribution of the growth rate for high and low delta
tumors. (E) Estimates of growth rate constant (a) of low and high delta tumors. *** P-value < 0.0001.
December 2020 | Volume 10 | Article 596931
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the true values of tumor type, and corroborates the classification
ability of the classifier (26).

To evaluate the predictive ability of the binary classifier, we
performed LOOCV. The average AUC thus obtained for the
ROC curves generated by iteratively removing one data point
from the training data was 0.84 ± 0.007, which was very similar
to the AUC of the complete training data set (Figure 3D). Based
on each training data, we classified the left-out test data point,
pooled the results of all the iterations, and obtained an overall
classification accuracy of 80%, with ~77% and ~83% of low delta
and high delta tumors correctly classified, respectively (Figure
3E). Using LOOCV, the classifier achieved high sensitivity
Frontiers in Oncology | www.frontiersin.org 6
(~83% and ~77%), specificity (~77%, and ~83%), positive
predictive value (80%, and 80%), and negative predictive value
(80% and 80%) in identifying the high and low delta
tumors, respectively.

Inter- and Intra-Rater Variability
Assessment
The ICC test showed excellent inter-rater agreement rates for the
calculated lesion volumes on the pre-diagnostic scans (0.98, 95%
CI: 0.95–0.99) and diagnostic scans (0.99, 95% CI: 0.99–0.94).
Similarly, the ICC model showed excellent intra-rater agreement
rates for the calculated lesion volumes on the pre-diagnostic
A B C

FIGURE 2 | Model predictions. Normalized histogram for time to grow (initiation time) from a single cell to a tumor size of 10 mm3 in high (A) and low (B) delta
tumors. Parameters m and s refer to the mean and standard deviation of lognormal distribution, respectively. Cumulative probability of initiation time in high and low
delta tumors (C).
A B

D E

C

FIGURE 3 | Logistic regression-based binary classification and cross-validation. (A) Receiver operating characteristic (ROC) curve to evaluate the classification ability
of growth rate constant into low delta and high delta tumors. (B) Complementary cumulative distribution function (CCD) of patients shows the accuracy of binary
classification at a discrimination threshold of 0.034 mo−1. (C) Confusion matrix showing results of binary classification. (D) ROC curves generated for multiple training
data sets obtained through the leave-one-out cross validation technique. (E) Results of cross validation in classifying the test data point.
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scans (0.99, 95% CI: 0.98–0.99) and diagnostic scans (0.99, 95%
CI: 0.99–0.1) (Supplementary Table 3).

Association Between Delta Score, Soft
Tissue Wasting, and BG
A significant difference was observed between the rates of soft
tissue wasting of high and low delta tumors, as confirmed by t-
tests, such that patients with high delta tumors experienced
accelerated rate of subcutaneous fat (−8.7 vs. −1.1% change/
month, p < 0.001), visceral fat (−10.2 vs. −1.5% change/month,
p < 0.001), and muscle (−8.8 vs. −0.4% change/month, p < 0.001)
wasting compared to those with low delta tumors (Figures 4A–D).
Additionally, there was a significant difference in the temporal
profile of the patients’ BG, whereby those with high delta tumors
exhibited a higher increase in the BG in the pre-diagnostic period
compared to those with low delta tumors (p = 0.004) (Figure 4E).

Since the diagnosis age of PDAC in our cohort had a relatively
wide range, we tested whether the difference in the basal
metabolic rates across age groups was a confounding factor to
consider. We dichotomized the study subjects based on the
median age (68 years). The t-test did not show any significant
difference in the rate of subcutaneous fat (p=0.9), visceral fat
(p=0.07), and muscle (p=0.8) wasting between the age groups.

Association Between Delta Score and
Clinical Outcomes
There was no significant association between delta score and OS
(log-rank, p = 0.6) (Figure 5A). However, patients with low delta
tumors demonstrated improved PDAC-specific PFS (47 vs. 6
Frontiers in Oncology | www.frontiersin.org 7
months, Log-Rank p < 0.0001), presented with earlier overall
stage of disease, were more likely to have T1-T3 stage tumors,
and were more likely to receive surgical resection (likelihood
ratio, p = 0.008), compared to those with high delta tumors
(Figures 5B–G).

As a continuous variable, patients with a longer time interval
between the first and second primary experienced better OS (HR =
0.94, 95%CI = 0.8–0.9, p = 0.01). Using ROC curve analysis, 3 year
interval was selected as an optimal cut-off (AUC=0.71) to best
predict prolonged OS (>22 months), and was used to dichotomize
the patients into long interval vs. short interval groups. As a
categorical variable, this dichotomy showed a significant
association with OS (32 vs. 20 months, Log-Rank; p = 0.03)
(Figure 5C). We combined the delta score and the time interval to
create four groups; 1) high delta-short interval, 2) high delta-long
interval, 3) low delta-short interval, and 4) low delta-long interval.
The low delta-long interval group had significantly better OS
compared to other groups (37 vs. 22 vs. 20 vs. 10 months, log-rank
p = 0.0005) (Figure 5D).

Multivariate Cox proportional-hazards analysis, showed that
time interval between the primary and secondary cancer was the
only independent prognostic factor for survival accounting for
traditional covariates (HR = 0.9, p = 0.04), as shown in Table 3.
DISCUSSION

In this paper, we utilized phenomenological mathematical modeling
to characterize the growth kinetics of imaging-based subtypes of
A B

D E

C

FIGURE 4 | Soft tissue and metabolic analysis. Rate of change of tissue wasting in muscle (A), subcutaneous abdominal fat (SAF) (B), and visceral abdominal fat
(VAF) (C) in patients with high and low delta tumors. (D) Muscle, SAF, VAF contours on CT-scans at L2 vertebra level. (E) Blood glucose kinetics in high and low
delta tumor-bearing patients. T-test *p value < 0.01, **p value < 0.001.
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PDAC, in addition to evaluating the differential metabolic effects of
these subtypes. We measured pancreatic lesions from the pre-
diagnostic and diagnostic CT-scans of patients who developed
PDAC as a second primary. The model identified significant
differences in the growth rate constant and initiation time
between the subtypes, whereby high delta tumors exhibited an
accelerated growth rate and shorter initiation time compared to low
delta tumors. Moreover, patients with high delta tumors exhibited
greater metabolic profile disturbances in terms of soft tissue wasting
and hyperglycemia. The patients with high delta tumors were more
likely to present with advanced stage disease and had poorer clinical
outcomes compared to those with low delta tumors. These findings
provide additional insights into the biological, metabolic and clinical
aspects of these subtypes and suggest that screening strategies may
require personalization, factoring biology into the intervals at which
patients undergo imaging.

For example, our data illustrated that patients with high
delta tumors have shorter doubling times (calculated from the
tumor growth rate, mean=4.2 ± 3 months) compared to those
with low delta tumors (mean=16 ± 8 months). Indeed, patients
with high delta tumors presented with more advanced T-
and overall stages of the disease. These results suggest that
the one-size-fits-all screening approach is inadequate. Current
protocols use a one-year screening interval, but this would
potentially miss an early stage high delta tumor. This
emphasizes the need for personalized approaches to screening
for PDAC, but also highlights an unmet need: there is currently
no method to predict whether a high-risk patient undergoing
screening will develop no disease, indolent PDAC, or
aggressive PDAC.
Frontiers in Oncology | www.frontiersin.org 8
Secondary signs that are associated with development of
PDAC that can be measured in blood or imaging may help
address this unmet need. Multiple studies investigated the
association between the development of pancreatic cancer and
the onset of metabolic changes in terms of soft tissue wasting and
blood chemistry disturbance (8–10). Sah et al. demonstrated that
there are three distinct phases of soft tissue (fat and muscle)
wasting, hyperglycemia, and dyslipidemia that precedes the
diagnosis of PDAC (8). Our serial quantitative analyses of fat
and muscle changes on CT-scans and BG level disturbances were
consistent with these findings. Moreover, we found significant
differences in the rates of these changes between high and low
delta tumors, further supporting that these imaging-based
subtypes are biologically and metabolically different.
Additionally, the association between these measurable changes
and the imaging-based subtypes provides a potential solution to
personalizing screening intervals for high risk cohorts.

Characterizing the tumor growth pattern is of diagnostic and
prognostic relevance. Haeno et al. used mathematical modeling and
clinical data to illustrate that controlling the growth rate of PDAC,
especially at the early exponential phase, is more effective for
prolonging patients’ survival than surgical resection (27). Since we
previously observed multiple differences in the biology of high and
low delta tumors (20, 28), we hypothesized that the growth pattern
and proliferation kinetics of these tumor subtypes would be
fundamentally different. Our finding that the delta subtypes have
differential growth rates aligns with our earlier observation
regarding the morphological characteristics of the delta as a
function of opposing proliferation versus migration mechanisms
of tumors cells (19).
A B D

E F G

C

FIGURE 5 | Survival analysis. Delta score association with overall survival (A) and progression free survival (B). Comparison of the time interval between the
first and second primary and overall survival (C). Delta score and time interval association with overall survival (D). Contingency plots showing delta score
associations with overall stage at pancreatic ductal adenocarcinoma (PDAC) diagnosis (E), T-stage at PDAC diagnosis (F), and with the likelihood to receive
a curative intent PDAC resection (G).
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This study has a few limitations. First, due to the retrospective
nature of the study, the time intervals between pre-diagnostic and
diagnostic CT-scans were not uniform across all patients. Notably,
however, intervals were not significantly different between high and
low delta cases (mean = 7.3 months vs 8.3 months, respectively).
Also, the imaging protocols of the pre-diagnostic (T0) CT-scans
varied from single phase (PV) scans to triple phase scans with and
without contrast. This is explained by the variability in the location,
stage and the indication for imaging of the first malignancy, i.e.
surveillance (n=29) versus management and follow-up (n=26).
However, there was at least one contrast enhanced CT-scan at
T0 that was used for tumor measurement. Second, with our
mathematical model, we assumed that PDAC tumors consist
mainly of cancerous cells that originate from a single mutated
cell, which might not be the case for all the tumors. While the
Gompertz function has been successfully used to describe tumor
growth previously (29, 30), it assumes that the tumor growth is
fastest early on and slows down with time. While this appears to
Frontiers in Oncology | www.frontiersin.org 9
capture the reported PDAC growth pattern (27), this remains an
approximation. Our future work will address both multi-cell origin
and consider inter- and intra- tumor heterogeneity with an aim to
also understand tumor metastasis. Another potential weakness of
our work is that we used biaxial measurements to estimate the 3D
tumor volume instead of the precise tumor volume. Finally, we
acknowledge that the data was from a single institution with limited
number of patients that requires further external validation. Future
directions include multi-institutional validation, developing a deep
learning-based technique to detect and classify the imaging-based
subtypes of PDAC, investigating the molecular basis associated
with different growth patterns, and enhancing CT imaging
capacities to detect PDAC earlier through amplifying faint
abnormal signals in the pancreas (31).

In conclusion, we used mathematical modeling to characterize
the growth rates and proliferation kinetics of imaging-based
subtypes of PDAC, using serial pre-diagnostic CT scans of
patients who developed PDAC as a second primary. We
highlighted the biological and metabolic differences associated
with these subtypes. With further validation, these findings have
implications for personalized screening strategies for PDAC.
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TABLE 3 | Univariate and multivariate Cox proportional hazard analysis for
overall survival.

Characteristic No. of
patients

Univariate Analysis Multivariate Analysis

HR (95%CI) P
value

HR (95%CI) P
value

Delta (†)
High 29 1.1(0.6-2.1) 0.6 – –

Low
Growth rate (a)

26
55

-
3.6(0.7–16.1)

-
0.11

-
-

-
-

Surgery
Yes 10 0.3(0.13–0.9) 0.02 0.5 (0.16–1.5) 0.2
No 45 – – – –

Age (years) 55 1(0.9–1.05) 0.3 – –

Sex
Female 22 0.9 (0.49–1.7) 0.8 – –

Male 33 – – –

Stage
I and II 34 0.6(0.3–1.2) 0.21 – –

III and IV 21
Chemo/radiation
therapy
Yes 43 1.6(0.82–3.9) 0.15 1.2(0.5–3.2) 0.6
No 12

Years between 1st

and 2nd cancer
55 0.94(0.8–0.99) 0.01 0.95(0.9–0.99) 0.04

Delta (††) * *
High 2 0.9 (0.02–6.2) 0.9 – –

Low
Growth rate (a)

8
10

-
1.5(0.03–22.8)

-
0.7

-
-

-
-

Surgical margin
Positive (R1) 1 3.5 (1.5–15) 0.03 – –

Negative (R0) 9 – – – –

N Stage
Positive (N1) 4 11 (1.6–230) 0.01 – –

Negative (N0) 6 – – – –

Adjuvant chemo/
radiation
Yes 9 0.2 (0.02–5.7) 0.3 – –

No 1
(†)All patients who developed pancreatic cancer as a second primary (n = 55).
(††)Patients who underwent surgical resection (n = 10).
*No sufficient events to run multivariate analysis (data overfitting).
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